Intelligent Transport Systems need to get wiser … or transport will keep on killing us

(The 2nd Futurama exhibition at the 1964 New York World’s Fair displayed a vision for the future that in many ways reflected the concrete highways and highrises constructed at the time. We now recognise that the environments those structures created often failed to support healthy personal and community life. In 50 years’ time, how will we perceive today’s visions of Intelligent Transport Systems? Photo by James Vaughan)


Two weeks ago the Transport Systems Catapult published a “Traveller Needs and UK Capability Study”, which it called “the UK’s largest traveller experience study” – a survey of 10,000 people and their travelling needs and habits, complemented by interviews with 100 industry experts and companies. The survey identifies a variety of opportunities for UK innovators in academia and industry to exploit the predicted £56 billion market for intelligent mobility solutions in the UK by 2025, and £900 billion market worldwide. It is rightly optimistic that the UK can be a world leader in those markets.

This is a great example of the enormous value that the Catapult programme – inspired by Germany’s Fraunhofer Institutes – can play in transferring innovation and expertise out of University research and into the commercial economy, and in enabling the UK’s expert small businesses to reach opportunities in international markets.

But it’s also a great example of failing to connect the ideas of Intelligent Transport with their full impact on society.

I don’t think we should call any transport initiative “intelligent” unless it addresses both the full relationship between the physical mobility of people and goods with social mobility; and the significant social impact of transport infrastructure – which goes far beyond issues of congestion and pollution.

The new study not only fails to address these topics, it doesn’t mention them at all. In that light, such a significant report represents a failure to meet the Catapult’s own mission statement, which incorporates a focus on “wellbeing” – as quoted in the introduction to the report:

“We exist to drive UK global leadership in Intelligent Mobility, promoting sustained economic growth and wellbeing, through integrated, efficient and sustainable transport systems.” [My emphasis]

I’m surprised by this failing in the study as both the engineering consultancy Arup and the Future Cities Catapult – two organisations that have worked extensively to promote human-scale, walkable urban environments and human-centric technology – were involved in its production; as was at least one social scientist (although the experts consulted were otherwise predominantly from the engineering, transport and technology industries or associated research disciplines).

I note also that the list of reports reviewed for the study does not include a single work on urbanism. Jane Jacobs’ “The Death and Life of Great American Cities”, Jan Gehl’s “Cities for People“, Jeff Speck’s “Walkable City” and Charles Montgomery’s “The Happy City“, for example, all describe very well the way that transport infrastructures and traffic affect the communities in which most of the world’s population lives. That perspective is sorely lacking in this report.

Transport is a balance between life and death. Intelligent transport shouldn’t forget that.

These omissions matter greatly because they are not just lost areas of opportunity for the UK economy to develop solutions (although that’s certainly what they are). More importantly, transport systems that are designed without taking their full social impact into account have the most serious social consequences – they contribute directly to deprivation, economic stagnation, a lack of social mobility, poor health, premature deaths, injuries and fatalities.

As town planner Jeff Speck and urban consultant Charles Montgomery recently described at length in “Walkable City” and “The Happy City” respectively, the most vibrant, economically successful urban environments tend to be those where people are able to walk between their homes, places of work, shops, schools, local transport hubs and cultural amenities; and where they feel safe doing so.

But many people do not feel that it is safe to walk about the places in which they live, work and relax. Transport is not their only cause of concern; but it is certainly a significant one.

After motorcyclists (another group of travellers who are poorly represented), pedestrians and cyclists are by far the most likely travellers to be injured in accidents. According to the Royal Society for the Prevention of Accidents, for example, more than 60 child pedestrians are killed or injured every week in the UK – that’s over 3000 every year. No wonder that the number of children walking to school has progressively fallen as car ownership has risen, contributing (though it is obviously far from the sole cause) to rising levels of childhood obesity. In its 60 pages, the Traveller Needs study doesn’t mention the safety of pedestrians at all.

A recent working paper published by Transport for London found that the risk and severity of injury for different types of road users – pedestrians, cyclists, drivers, car passengers, bus passengers etc. – vary in complex and unexpected ways; and that in particular, the risks for each type of traveller vary very differently according to age, as our personal behaviours change, depending on the journeys we undertake, and according to the nature of the transport infrastructure we use.

These are not simple issues, they are deeply challenging. They are created by the tension between our need to travel in order to carry out social and economic interactions, and the physical nature of transport which takes up space and creates pollution and danger.

As a consequence, many of the most persistently deprived areas in cities are badly affected by large-scale transport infrastructure that has been primarily designed in the interests of the travellers who pass through them, and not in the interests of the people who live and work around them.

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the city centre before its redevelopment in 2003, by Birmingham City Council)

Birmingham’s Masshouse circus, for example, was constructed in the 1960s as part of the city’s inner ring-road, intended to improve connectivity to the national economy through the road network. However, the impact of the physical barrier that it created to pedestrian traffic can be seen by the stark difference in land value inside and outside the “concrete collar” that the ring-road created around the city centre. Inside the collar, land is valuable enough for tall office blocks to be constructed on it; whilst outside it is of such low value that it is used as a ground-level carpark. The reason for such a sharp change in value? People didn’t feel safe walking across or under the roundabout. The demolition of Masshouse Circus in 2002 enabled a revitalisation of the city centre that has continued for more than a decade.

Atlanta’s Buford Highway is a seven lane road which for two miles has no pavements, no junctions and no pedestrian crossings, passing through an area of houses, shops and businesses. It is an infrastructure fit only for vehicles, not for people. It allows no safe access along or across it for the communities it passes through – it is closed to them, unless they risk their lives.

In Sheffield, two primary schools were recently forced to close after measurements of pollution from diesel vehicles revealed levels 10-15 times higher than those considered the maximum safe limits, caused by traffic from the nearby M1 motorway. The vast majority of vehicles using the motorway comply to the appropriate emissions legislation depending on their age; and until specific emissions measurements were performed at the precise locations of the schools, the previous regional measurements of air quality had been within legal limits. This illustrates the failure of our transport policies to take into account the nature of the environments within which we live, and the detailed impact of transport on them. That’s why it’s now suspected that up to 60,000 people die prematurely every year in the UK due to the effects of diesel emissions, double previous estimates.

Nathaniel Lichfield and Partners recently published a survey of the 2015 Indices of Multiple Deprivation in the UK – the indices summarise many of the challenges that affect deprived communities such as low levels of employment and income; poor health; poor access to quality education and training; high levels of crime; poor quality living environments and shortages of quality housing and services.

Lichfield and Partners found that most of the UK’s Core Cities (the eight economically largest cities outside London, plus Glasgow and Cardiff) are characterised by a ring of persistently deprived areas surrounding their relatively thriving city centres. Whilst clearly the full causes are complex, it is no surprise that those rings feature a concentration of transport infrastructure passing through them, but primarily serving the interests of those passing in and out of the centre.

Birmingham IMD cropped

(Areas of relative wealth and deprivation in Birmingham as measured by the Indices of Multiple Deprivation. Birmingham, like many of the UK’s Core Cities, has a ring of persistently deprived areas immediately outside the city centre, co-located with the highest concentration of transport infrastructure allowing traffic to flow in and out of the centre)

These issues are not considered at all in the Transport Systems Catapult’s study. The word “walk” appears just three times in the document, all in a section describing the characteristics of only one type of traveller, the “dependent passenger” who does not own a car. Their walking habits are never examined, and walking as a transport choice is never mentioned or presented as an option in any of the sections of the report discussing challenges, opportunities, solutions or policy initiatives, beyond a passing mention that public transport users sometimes undertake the beginnings and ends of their journeys on foot. The word “pedestrian” does not appear at all. Cycling is mentioned only a handful of times; once in the same section on dependent passengers, and later on to note that “bike sharing [schemes have] not yet enjoyed high uptake in the UK”. The reason cited for this is that “it is likely that there are simply not enough use cases where using these types of services is convenient and cost-effective for travellers.”

If that is the case, why not investigate ways to extend the applicability of such schemes to broader use cases?

If only the sharing economy were a walking and cycling economy

The role of the Transport Systems Catapult is to promote the UK transport and transport technology industry, and this perhaps explains why so much of the study is focussed on public and private forms of powered transport and infrastructure. But there are many ways for businesses to profit by providing innovative technology and services that support walking and cycling.

What about way-finding services and street furniture that benefit pedestrians, for example, as the Future Cities Catapult recently explored? What about the cycling industry – including companies providing cargo-carrying bicycles as an alternative to small vans and trucks? What about the wearable technology industry to promote exercise measurement and pedestrian navigation along the safest, least polluted routes?

What about the construction of innovative infrastructure that promotes cycling and walking such as the “SkyCycle” proposal to build cycle highways above London’s railway lines, similar to the pedestrian and cycle roundabouts already built in Europe and China? What about the use of conveyor belts along similar routes to transport freight? What about the use of underground, pneumatically powered distribution networks for recycling and waste processing? All of these have been proposed or explored by UK businesses and universities.

And what about the UK’s world-class community of urban designers, town planners and landscape architects, some of whom are using increasingly sophisticated technologies to complement their professional skills in designing places and communities in which living, working and travelling co-exist in harmony? What about our world class University expertise researching visions for sustainable, liveable cities with less intrusive transport systems?

An even more powerful source of innovations to achieve a better balance between transportation and liveability could be the use of “sharing economy” business models to promote social and economic systems that emphasise local, human-powered travel.

Wikipedia describes the sharing economy as “economic and social systems that enable shared access to goods, services, data and talent“. Usually, these systems employ consumer technologies such as SmartPhones and social media to create online peer-to-peer trading networks that disrupt or replace traditional supply chains and customer channels – eBay is an obvious example for trading second hand goods, Airbnb connects travellers with people willing to rent out a spare room, and Uber connects passengers and drivers.

These business models can be enormously successful. Since its formation 8 years ago, Airbnb has acquired access to over 800,000 rooms to let in more than 190 countries; in 2014 the estimated value of this company which employed only 300 people at the time was $13 billion. Uber has demonstrated similarly astonishing growth.

However, it is much less clear what these businesses are contributing to society. In many cases their rapid growth is made possible by operating business models that side-step – or just ignore – the regulation that governs the traditional businesses that they compete with. Whilst they can offer employment opportunities to the providers in their trading networks, those opportunities are often informal and may not be protected by employment rights and minimum wage legislation. As privately held companies their only motivation is to return a profit to their owners.

By creating dramatic shifts in how transactions take place in the industries in which they operate, sharing economy businesses can create similarly dramatic shifts in transport patterns. For example, hotels in major cities frequently operate shuttle buses to transfer guests from nearby airports – a shared form of transport. Airbnb offer no such equivalent transfers to their independent accommodation. This is a general consequence of replacing large-scale, centrally managed systems of supply with thousands of independent transactions. At present there is very little research to understand these impacts, and certainly no policy to address them.

But what if incentives could be created to encourage the formation of sharing economy systems that promoted local transactions that can take place with less need for powered transport?

For example, Borroclub provides a service that matches someone who needs a tool with a neighbour who owns one that they could borrow. Casserole Club connects people who are unable to cook for themselves with a neighbours who are happy to cook and extra portion and share it. The West Midlands Collaborative Commerce Marketplace identifies opportunities for groups of local businesses to collaborate to win new contracts. Such “hyperlocal” schemes are not a new idea, and there are endless possibilities for them to reveal local opportunities to interact; but they struggle to compete for attention and investment against businesses purely focussed on maximising profits and investor returns.

Surely, a study that includes the Future Cities Catapult, Digital Catapult and Transport Systems Catapult amongst its contributors could have explored possibilies for encouraging and scaling hyperlocal sharing economy business models, alongside all those self-driving cars and multi-modal transport planners that industry seems to be quite willing to invest in on its own?

The study does mention some “sharing economy” businesses, including Uber; but it makes no mention of the controversy created because their profit-seeking focus takes no account of their social, economic and environmental impact.

It also mentions the role of online commerce in providing retail options that avoid the need to travel in person – and cites these as an option for reducing the overall demand for travel. But it fails to adequately explore the impact of the consequent requirements for delivery transport – other than to note the potential for detrimental impact on, let’s wait for it, not local communities but: local traffic!

“Enabling lifestyles is about more than just enabling and improving physical travel. 31% (19bn) of journeys made today would rather not have been made if alternative means were available (e.g. online shopping)” (page 15)

“Local authorities and road operators need to be aware that increased goods delivery can potentially have a negative impact on local traffic flows.” (page 24)

Why promote transactions that we carry out in isolation online rather than transactions that we carry out socially by walking, and that could contribute towards the revitalisation of local communities and town centres? Why mention “enabling lifestyles” without exploring the health benefits of walking, cycling and socialising?

(A poster from the International Sustainability Institute's Commuter Toolkit, depicting the space 200 travellers occupy on Seattle's 2nd Avenue when using different forms of transport, and intended to persuade travellers to adopt those forms that use less public space)

(A poster from the International Sustainability Institute’s Commuter Toolkit, depicting the space 200 travellers occupy on Seattle’s 2nd Avenue when using different forms of transport, and intended to persuade travellers to adopt those forms that use less public space)

Self-driving cars as a consumer product represent selfish interests, not societal interests

The sharing economy is not the only example of a technology trend whose social and economic impact cannot be assumed to be positive. The same challenge applies very much to perhaps the most widely publicised transport innovation today, and one that features prominently in the new study: the self-driving car.

On Friday I attended a meeting of the UK’s Intelligent Transport Systems interest group, ITS-UK. Andy Graham of White Willow Consulting gave a report of the recent Intelligent Transport Systems World Congress in Bordeaux. The Expo organisers had provided a small fleet of self-driving cars to transfer delegates between hotels and conference venues.

Andy noted that the cars drove very much like humans did – and that they kept at least as large, if not a larger, gap between themselves and the car in front. On speaking to the various car manufacturers at the show, he learned that their market testing had revealed that car buyers would only be attracted to self-driving cars if they drove in this familiar way.

Andy pointed out that this could significantly negate one of the promoted advantages of self-driving cars: reducing congestion and increasing transport flow volumes by enabling cars to be driven in close convoys with each other. This focus on consumer motivations rather than the holistic impact of travel choices is repeated in the Transport Systems Catapults’ study’s consideration of self-driving cars.

Cars don’t only harm people, communities and the environment if they are diesel or petrol powered and emit pollution, or if they are involved in collisions: they do so simply because they are big and take up space.

Space – space that is safe for people to inhabit – is vital to city and community life. We use it to walk; to sit and relax; to exercise; for our children to play in; to meet each other. Self-driving cars and electric cars take up no less space than the cars we have driven for decades. Cars that are shared take up slightly less space per journey – but are nowhere near as efficient as walking, cycling or public transport in this regard. Car clubs might reduce the need for vehicles to be parked in cities, but they still take up as much space on the road.

The Transport Systems Catapult’s study does explore many means to encourage the use of shared or public transport rather than private cars; but it does so primarily in the interests of reducing congestion and pollution. The relationship between public space, wellbeing and transport is not explored; and neither is the – at best – neutral societal impact of self-driving cars, if their evolution is left to today’s market forces.

Just as the industry and politicians are failing to enact the policies and incentives that are needed to adapt the Smart Cities market to create better cities rather than simply creating efficiencies in service provision and infrastructure, the Intelligent Transport Systems community will fail to deliver transport that serves our society better if it doesn’t challenge our self-serving interests as consumers and travellers and consider the wider interests of society.

The Catapult’s report does highlight the potential need for city-wide and national policies to govern future transport systems consisting of connected and autonomous vehicles; but once again the emphasis is on optimising traffic flows and the traveller experience, not on optimising the outcomes for everyone affected by transport infrastructure and traffic.

As consumers we don’t always know best. In the words of one of the most famous transport innovators in history: “If I had asked people what they wanted, they would have said ‘faster horses’.” (Henry Ford, inventor of the first mass-produced automobile, and of the manufacturing production line).

A failure that matters

The Transport Systems Catapult’s report doesn’t mention most of the issues I’ve explored in this article, and those that it does touch on are quickly passed over. In 60 pages it only mentions walking and cycling a handful of times; it never analyses the needs of pedestrians and cyclists, and beyond a passing mention of employers’ “cycle to work” schemes and the incorporation of bicycle hire schemes in multi-modal ticketing solutions, these modes of transport are never presented as solutions to our transport and social challenges.

This is a failure that matters. The Transport Systems Catapult is only one voice in the Intelligent Transport Systems community, and many of us would do well to broaden our understanding of the context and consequences of our work. For my part when I worked with IBM’s Intelligent Transport Systeams team several years ago I was similarly disengaged with these issues, and focussed on the narrower economic and technological aspects of the domain. It was only later in my career as I sought to properly understand the wider complexities of Smart Cities that I began to appreciate them.

But the Catapult Centre benefits from substantial public funding, is a high profile influencer across the transport sector, and is perceived to have the authority of a relatively independent voice between the public and private sectors. By not taking into account these issues, its recommendations and initiatives run the risk of creating great harm in cities in the UK, and anywhere else our transport industry exports its ideas to.

Both the “Smart Cities” and “Intelligent Transport” communities often talk in terms of breaking down silos in industry, in city systems and in thinking. But in reality we are not doing so. Too many Smart City discussions separate out “energy”, “mobility” and ”wellbeing” as separate topics. Too few invite town planners, urban designers or social scientists to participate. And this is an example of an “Intelligent Transport” discussion that makes the same mistakes.

(Pedestrian’s attempting to cross Atlanta’s notorious Buford Highway; a 7-lane road with no pavements and 2 miles between junctions and crossings. Photo by PBS)

In the wonderful “Walkable City“, Jeff Speck describe’s the epidemiologist Richard Jackson’s stark realisation of the life-and-death significance of good urban design related to transport infrastructure. Jackson was driving along the notorious two mile stretch of Atlanta’s seven lane Buford highway with no pavements or junctions:

“There, by the side of the road, in the ninety-five degree afternoon, he saw a woman in her seventies, struggling under the burden of two shopping bags. He tried to relate her plight to his own work as an epidemiologist. “If that poor woman had collapsed from heat stroke, we docs would have written the cause of death as heat stroke and not lack of trees and public transportation, poor urban form, and heat-island effects. If she had been killed by a truck going by the cause of death would have been “motor vehicle trauma”, and not lack of sidewalks and transit, poor urban planning and failed political leadership.”

We will only harness technology, transport and infrastructure to create better communities and better cities if we seek out and respect those cross-disciplinary insights that take seriously the needs of everyone in our society who is affected by them; not just the needs of those who are its primary users.

Our failure to do so over the last century is demonstrated by the UK’s disgracefully low social mobility; by those areas of multiple deprivation which in most cases have persisted for decades; and by the fact that as a consequence life expectancy for babies born today in the poorest parts of cities in the UK is 20 years shorter than for babies born today in the richest part of the same city.

That is the life and death impact of the transport strategies that we’ve had in the past; the transport strategies we publish today must do better.

Postscript 3rd November

The Transport Systems Catapult replied very positively on Twitter today to my rather forthright criticisms of their report. They said “Great piece Rick. The study is a first step in an ongoing discussion and we welcome further input/ideas feeding in as we go on.”

I’d like to think I’d respond in a similarly gracious way to anyone’s criticism of my own work!

What my article doesn’t say is that the Catapult’s report is impressively detailed and insightful in its coverage of those topics that it does include. I would absolutely welcome their expertise and resources being applied to a broader consideration of the topic of future transport, and look forward to seeing it. 

Advertisements

6 inconvenient truths about Smart Cities

(When cities forget about people: La Defense, Paris, photographed by Phil Beard)

(I recently took the difficult decision to resign from IBM after nearly 20 years to become IT Director for Smart Data and Technology for Amey, one of the largest infrastructure and services companies in the UK, and a subsidiary of the Ferrovial Group. It’s a really exciting opportunity for me to build a team to create new Smart City services and infrastructures. If you’d like to work in the Smart Cities field, please have a look at the roles I’m hiring for. I’ll be continuing to write the Urban Technologist, and this seemed a good point to share my view of the current state of the Smart Cities movement.)

The last year has shown a huge acceleration of interest and action in the Smart Cities market – in the UK, and around the world. What has long been a topic of interest to technology companies, academics, urban designers and local authorities was covered extensively by mainstream media organisation such as the BBC, the Independent newspaper, New Statesman magazine and marketing magazine The Drum.

But what progress has been made implementing Smart Cities ideas?

In the UK, many local authorities have implemented Open Data portals, usually using Open Source platforms such as CKAN and investing a few £10,000s of resources. These are important first steps for building the ecosystems to share and build new service models using data. Some cities, notably Glasgow and Milton Keynes, have been successful deploying more sophisticated schemes supported by research and innovation grants – though as I pointed out last year, exciting as these initiatives are, research and innovation funds will not scale to support every city in the country.

Further afield, local authorities in Europe, the United States and Asia have constructed more substantial, multi-million Euro / Dollar business cases to invest their own funds in platforms that combine static open data with realtime data from sensors and infrastructure, and which use social media and smartphones to improve engagement between citizens, communities, businesses and both public- and private-sector service providers. The Center for Data Innovation recently wrote a nice summary of two reports explaining the financing vehicles that these cities are using.

This has not happened in the UK yet to the same extent. The highly centralised nature of public sector spending means that cities here have not yet been able to construct such ambitious business cases – Centre for Cities’ report “Outlook for Cities 2014” highlighted this as a general barrier to the UK’s cities carrying out initiatives to improve themselves, and reported that UK cities have autonomy over only about 17% of their funding as compared to an average of 55% across countries represented by the OECD.

As more city deals are signed and the city devolution agenda progresses, this will start to change – but I think that will still take a long time to happen.

(The London Underground is just one example of a transport operator using technology to help it operate more efficiently, safely and effectively)

Where similar technology platforms and channels of engagement are nevertheless starting to appear in the UK is through business cases based on efficiencies and increased customer satisfaction for private sector organisations that offer services such as transportation and asset management to cities, citizens and local authorities.

This approach means there’s even more of a need for collaboration between stakeholders in local ecosystems in order to establish and express common objectives – such as resilience, economic growth and social mobility – which can then guide the outcomes of those smart services through policy tools such as procurement practises and planning frameworks. Recent recommendations from the British Standards Institute on the adaptation of city planning policy to enable the Smart City agenda have highlighted the need for such collaboration.

As a consequence of this increased activity, more and more people and organisations of every type are becoming interested in Smart Cities – from oil companies to car manufacturers to politicians. This broadening of interest led to some extraordinary personal experiences for me last year, which included discussing Smart Cities with ex-US Vice President Al Gore (whose investment company Generation IM explores opportunities to invest in assets, technologies and developments that promote sustainability) and very briefly with the UK’s Princess Anne, a supporter of a leadership training scheme that will focus on Smart Cities this year.

But to be honest, I still don’t think we have really understood what a “Smart City” is; why it’s one of the most important concepts of our time; or how we can turn the concept into reality broadly and at scale.

I’ll explore six “inconvenient truths” in this article to describe why I think that’s the case; and what we can do about it:

  1. The “Smart City” isn’t a technology concept; it’s the political challenge of adapting one of the most powerful economic and social forces of our time to the needs of the places where most of us live and work.
  2. Cities won’t get smart if their leaders aren’t involved.
  3. We can’t leave Smart Cities to the market, we need the courage to shape the market.
  4. Smart cities aren’t top down or bottom up. They’re both.
  5. We need to tell honest stories.
  6. No-one will do this for us – we have to act for ourselves.

1. The “Smart City” isn’t a technology concept; it’s the political challenge of adapting one of the most powerful economic and social forces of our time to the needs of the places where most of us live and work

(Photograph of Macau in the evening by Michael Jenkin illustrating some the great complexity of cities: economic growth, social inequality and pollution)

One topic that’s endlessly revisited as more and more people encounter and consider the idea of a Smart City is just how we define that idea. The best definition I thought I had developed is this, updated slightly from the article “7 Steps to a Smarter City“:

A Smart City systematically creates and encourages innovations in city systems that are enabled by technology; that change the relationships between the creation of economic and social value and the consumption of resources; and that contribute to achieving a vision and clear objectives that are supported by a broad and active collaboration amongst city stakeholders.

But such definitions are contentious. Most obviously there’s the basic issue of whether “smart” implies a central role for digital technology – every technology company takes this approach, of course – or whether it’s simply about being more creative in the way that we manipulate the resources around us to achieve the outcomes we desire, whether that involves digital technology or not.

More broadly, a “city” is such a terrifically broad, complex and multi-disciplinary entity – and one whose behaviour is the aggregate of the millions of individual behaviours of its inhabitants, both enabled and constrained by the environment they experience – that it’s pretty much impossible to create any concise definition without missing out something important.

And of course those who live or work in towns and rural areas raise the challenge that limiting the discussion to “cities” omits important stakeholders from discussions about our future – as do those concerned with the national infrastructures that are not located wholly in cities, but without which neither cities nor any other habitations could survive as they do today.

I don’t think we’ll ever achieve a formal, functional definition of a “Smart City” that everyone will agree to. Much as the popularity of the term “Web 2.0” between (roughly) 2003 and 2010 marked the period in time when interest in the internet re-emerged following the “dot com crash“, rather than defining a specific architecture or group of technologies, I think our interest in “Smart Cities” is best understood as the consequence of a period in history in which a large number of people became aware of – and convinced by – a set of inter-related trends:

In this context, it’s less useful to attempt to precisely define the concept of a smart city, and more important to encourage and enable each of us – every community, city, government and organisation – to develop our own understanding of the changes needed to overcome the challenges and take the opportunities before us, and of the rapidly evolving role of technology in doing so.

Why is it so important that we do that?

In their report “Cities Outlook 1901“, Centre for Cities explored the previous century of urban development in the UK, examining why at various times some cities thrived and some did not. They concluded that the single most important influence on the success of cities was their ability to provide their citizens with the right skills and opportunities to find employment, as the skills required in the economy changed as technology evolved.

The challenges faced by cities and their residents in this century will be unlike any we have faced before; and technology is changing more quickly, and becoming more powerful, than it ever has before. Creating “Smart Cities” involves taking the right political, economic, social and engineering approaches to meeting those challenges.

Cities that do so will be successful. Cities that don’t, won’t be. That is the digital divide of the 21st Century, and for everyone’s sake, I hope we are all on the right side of it.

2. Cities won’t get smart if their leaders aren’t involved

(The Sunderland Software Centre, a multi-£million new technology startup incubation facility in Sunderland’s city centre. The Centre is supported by a unique programme of events and mentoring delivered by IBM’s Academy of Technology, and arising from Sunderland’s Smart City strategy)

Let me tell a short tale of two cities and their Smart transformations.

For a long time I’ve written occasional articles on this blog about Sunderland, a city whose leaders, people and social entrepreneurs have inspired me. Sunderland is one of the very few cities in the UK who have spent significant sums of their own money on Smart City projects and supporting technologies, justified by well-constructed business cases. They have publicised investments of well over £10 million, most recently including their visionary “City Intelligence Hub” initiative.

The seeds of the Intelligence Hub idea were apparent when I first worked with the Council, as can be seen from an article written at the time by the Council’s Chief Executive, Dave Smith, for the Guardian’s Local Government Network Blog, explaining why data and Open Data are crucial to the future of effective, transparent public services.

It is no coincidence at all that one of the cities that has been boldest in investing in technology to support its economic, social and environmental objectives has a Chief Executive who shows belief, leadership and engagement in the ideas of Smart Cities.

Milton Keynes have approached their Smart City agenda in a different way. Rather than making significant investments themselves to procure solutions, they have succeeded in attracting enormous investments from technology companies, universities and innovation bodies to develop and test new solutions in the city.

It is similarly no coincidence that – like Bristol, London and Glasgow, to name just three more – Milton Keynes Council have senior leadership figures – initially the then Chief Executive, Dave Hill, followed by Director of Strategy, Geoff Snelson – who regularly attend Smart Cities conferences and government bodies, and who actively convene Smart Cities collaborations. Their very visible presence demonstrates their belief in the importance of Smart City approaches to those organisations seeking to invest in developing them.

A strategy to transform the operations of a local authority (or any other organisation) using technology, and to re-invest the savings achieved by doing so into new services and initiatives that create economic growth, social mobility and resilience is not going to succeed without direct Executive leadership. Similarly, technology vendors, service providers and research funding bodies are most attracted to invest in developing new ideas and capabilities in cities whose most senior leaders are directly seeking them – they all need the outcomes of their investment to achieve real change, and it’s only through the leaders that such change will happen.

For the most part, where this level of leadership is not engaged I have not seen cities create business cases and issue procurements for Smart City solutions, and I have not seen them be successful winning research and innovation investments.

Finally, let’s be really clear about what most of those city leaders need to do: they need to follow Sunderland’s lead, not Milton Keynes’s.

The research and innovation funding from the EU and the UK that Milton Keynes has attracted will only fund  projects that explore for the first time the capabilities of new, technology-enabled approaches to urban challenges. Those funding sources will not support the widespread deployment of successful approaches in cities around the UK and around the world.

The vast majority of cities will only benefit from Smart Cities initiatives by financing them through robust business cases based on a combination of financial efficiency and social, environmental or economic value – as Sunderland and some cities outside the UK are already doing.

Cities won’t get smart if their leaders aren’t involved in actively driving their institutions to adopt new business cases and operating models. Those that don’t risk leaving the fate of their cities not to chance; but to “the market”.

3. We can’t leave Smart Cities to the market, we need the courage to shape the market

(Photograph by Martin Deutsche of plans to redevelop Queen Elizabeth Park, site of the 2012 London Olympics. The London Legacy Development’s intention, in support of the Smart London Plan, is “for the Park to become one of the world’s leading digital environments, providing a unique opportunity to showcase how digital technology enhances urban living. The aim is to use the Park as a testing ground for the use of new digital technology in transport systems and energy services.”)

As I wrote in my last article on this blog, as the price of digital technologies such as smartphones, sensors, analytics, open source software and cloud platforms reduces rapidly, market dynamics will drive their aggressive adoption to make construction, infrastructure and city services more efficient, and hence make their providers more competitive.

But those market dynamics do not guarantee that we will get everything we want for the future of our cities: efficiency and resilience are not the same as health, happiness and opportunity for every citizen.

If we are to achieve those objectives, then we need the right policy environment – at national and local level – to augment the business case for efficient, resilient “smart city” infrastructures to ensure that they are deployed in a way that makes them open to access and adaptation by ordinary people, businesses and communities; and so that they create the conditions and environment in which vibrant, fair digital cities grow from the successful innovations of their citizens, communities and businesses in the information economy.

In far too many discussions of Smart Cities I hear the argument that we can’t invest in these ideas because we lack the “normalised evidence base” that proves their benefits. I think that’s the wrong view. There are more than enough qualitative examples and stories that demonstrate that these ideas have real value and can make lives better. If we insist on moving no further until there’s a deeper, broader corpus of quantified evidence, then there’ll be no projects to deliver the evidence – a chicken and egg problem.

Writing in “The Plundered Planet”, the economist Paul Collier asserts that any proposed infrastructure of reasonable novelty and significant scale is effectively so unique – especially when considered in its geographic, political, social and economic context – that an accurate cost/benefit case simply cannot be constructed in advance based on comparable prior examples, because those examples don’t – and never will – exist.

Instead we need policy legislation to recognise the importance of digital infrastructure for cities so that it becomes a “given” in any public service or infrastructure business case, not something that has to be individually justified.

This is not a new idea. For example, the Economist magazine wrote recently about the efforts involved in distributing the benefits of the industrial revolution to society at large rather than solely to business owners and the professional classes.

More specifically to cities, in her seminal 1961 work “The Death and Life of Great American Cities“, Jane Jacobs wrote that:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

The “anti-city images” Jacobs was referring to were the vast urban highways built over the last half century to enable the levels of road traffic thought to be vital to economic growth. Since Jacobs’ time, a growing chorus of urbanists from Bogota’s ex-Mayor Enrique Penalosa to town planner Jeff Speck, architect Jan Gehl and London’s current Mayor Boris Johnson has criticised those infrastructures for the great harm they cause to human life – they create noise, pollution, a physical barrier to walking through our cities, and too often they injure or kill us.

Just as Jacobs reminded us to focus on the nature of individual human life in order to understand how cities should be built, Dan Hill of the Future Cities Catapult wrote as long ago as 2008 on the need to understand similar subtleties in the application of digital technology to cities.

Fifty years after she wrote, we should follow Dan’s example and take Jane Jacobs’ advice.

4. Smart cities aren’t top down or bottom up. They’re both.

(The SMS for Life project uses the cheap and widely used SMS infrastructure – very much the product of “top-down” investment – to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa – a “bottom-up” innovation. Photo by Novartis AG)

In case it wasn’t really clear last time I wrote about it (or the time before that), I am utterly fed up with the unconstructive argument about whether cities are best served by “top down” or “bottom up” thinking.

It’s perfectly obvious that we need both: the “bottom up” creativity through which everyone seeks to create a better life for themselves, their family, their business and their community from the resources available to them; and the top-down policies and planning that – when they work best – seek to distribute resources fairly so that everyone has the opportunity to innovate successfully.

It’s only by creating harmony between these two approaches that we will shape the market to create the cities we want and need.

Over the last few years I’ve been inspired by extraordinary thinkers from many disciplines who have tackled the need for this balance. Some of them are creating new ideas now; others created amazing ideas years or decades ago that are nevertheless imperative today. All of them are worth reading and learning from:

  • The economist E F Schumacher, who identified that investment in the distribution and accessibility of “appropriate technologies” was the best way to stimulate and support development in a way that gave rise to the broadest possible opportunities for people to be successful.
  • Andrew Zolli, head of the philanthropic PopTech foundation, who describes the inspiring innovators who synthesise top-down and bottom-up approaches to achieve phenomenal societal changes as “translational leaders” – people with the ability to engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.
  • Jan Gehl who inspired the “human scale cities” movement by relating the scale of city structures –  from pavements to housing blocks to skyscrapers – to the human senses, and the nature of our lives and movement.
  • And, of course, Jane Jacobs, whose book “The Death and Life of Great American Cities” was the first written in the context of modern society and cities to point out that cities, however vast their physical size and population, can only ever be understood by considering the banal minutiae of the daily lives of ordinary people like you and I – why we walk along this street or that; how well we know our neighbours; how far it is to walk to the nearest school, shop or park; and whether we and our families feel happy and safe.

5. We need to tell honest stories

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

Any “smart city” initiative that successfully uses digital technology to create a financially sustainable social, economic or environmental improvement, in a particular physical place and on behalf of a particular community, must draw together skills from a wide variety of disciplines such as architecture, economics, social science, psychology and technology. Experts from these disciplines use a vast and confusing array of language and terminology; and all of us are frequently guilty of focussing on the concerns of our discipline, rather than communicating the benefits of our work in plain language.

The leaders of city institutions and businesses, who we are asking to take the courageous and forward-looking decisions to invest in our ideas, are understandably not familiar with this torrent of technical terminology, which can easily appear to be (and too often is) jargon; and new ideas that appear to be presented in jargon are unlikely to be trusted.

Simon Giles of Accenture was quoted in an article on UBM’s Future Cities site as saying that the Smart Cities industry has not done a good enough job of selling the benefits of its ideas to a wide audience. Simon is a very smart guy, and I think that’s a challenge we need to face up to, and start to tell better stories about the differences Smart Cities will make to everyday lives.

In the Community Lover’s Guide to Birmingham, for example, Nick Booth describes the way his volunteer-led social media surgeries helped the Central Birmingham Neighbourhood Forum, Brandwood End Cemetery and Jubilee Debt Campaign to benefit from technology.

Another Birmingham initiative, the Northfield Ecocentre, crowdfunded £10,000 to support their “Urban Harvest” project. The funds helped the Ecocentre pick unwanted fruit from trees in domestic gardens in Birmingham and distribute it between volunteers, children’s centres, food bank customers and organisations promoting healthy eating; and to make some of it into jams, pickles and chutneys to raise money so that in future years the initiative can become self-sustaining.

In the village of Chale on the Isle of Wight, a community not served by the national gas power network and with significant levels of fuel poverty, my IBM colleague Andy Stanford-Clark has helped an initiative not only to deploy solar panels and smart meters to generate energy and measure its use by each household; but to co-design with residents how they will use that technology, so that the whole community feels a sense of ownership and inclusion in the initiative. The project has resulted in a significant drop in rent arrears as residents use the technology to reduce their utility bills, in some cases by up to 50 percent. Less obviously, the sense of shared purpose has extended to the creation of a communal allotment area in the village and a successful campaign to halve bus fares to nearby towns.

There are countless other examples. Play Fitnessgamify” exercise to persuade children to get fit, and work very hard to ensure that their products are accessible to children in communities of any level of wealth. Casserole Club use social media to introduce people who can’t cook for themselves to people who are prepared to volunteer to cook for others. The West Midlands Collaborative Commerce Marketplace uses analytics technology to help it’s 10,000 member businesses work together to win more than £4billion in new contracts each year. … and so on.

None of these initiatives are purely to do with technology. But they all use technologies that simply were not available and accessible as recently as a few years ago to achieve outcomes that are important to cities and communities. By understanding how the potential of technology was apparent to the stakeholders in such initiatives, why it was affordable and accessible to them, and how they acquired the skills to exploit it, we can learn how to design Smart Cities in a way that encourages widespread grass-roots, localised innovation.

It’s vital that these stories are honest and grounded in reality. London School of Economics Professor Adam Greenfield rightly criticised technology companies that have overstated (and misunderstood) the potential benefits of Smart Cities ideas by describing “autonomous, intelligently functioning IT systems that will have perfect knowledge of users’ habits”. No-one trusts such hyperbole, and it undermines our efforts to communicate sensibly the very real difference that sympathetically applied technology can make to real lives, businesses, communities and places.
BLANK

6. No-one will do this for us – we have to act for ourselves

Harborne Food School

(The Harborne Food School, started by Shaleen Meelu in 2014, as a community business initiative to promote healthy, sustainable approaches to food)

No single person or organisation can shape the Smart Cities market so that it delivers the cities that we need. Local governments have the ethics of civic duty and care but lack the expertise in financing and business model innovation to convert existing spending schemes into the outcomes they desire. Private sector corporations as institutions are literally amoral and strongly incentivised by the financial markets to maximise profits. Many social enterprises are enormously admirable attempts to fuse these two models, but often lack the resources and ability to scale.

Ultimately, though, all of these organisations are staffed and run by people like you and I; and we can choose to influence their behaviour. Hence my new employer Amey measures itself against a balanced scorecard that measures social, environmental and wellbeing performance in addition to financial profits; and my previous employer IBM has implemented a re-use and recycling system so sophisticated and effective that only 0.3% of the resources and assets that reach the end of their initial useful life are disposed of in landfill or by incineration: the vast majority are re-used, have their components re-manufactured or materials recycled.

Most of us won’t ever be in a position to determine the reporting model or approach to recycling of corporations as large as Amey or IBM. But all of us make choices every day about the products we buy, the organisations we work for, the politicians we vote for, the blog articles we read, share and write and the activities we prioritise our resources on.

Those choices have real effects, and digital technology gives us all the opportunity for our choices to have more impact than ever before. This blog, which costs me nothing to operate other than the time it takes me to write articles, now reaches thousands of readers in over 150 counties. Air BnB took 2 years to accumulate the same number of rentable rooms that it took the Hilton Hotel chain 50 years to build.

It has never been easier to express an opinion widely or create a new way of doing things. That’s exactly what Shaleen Meelu did when she started the Harborne Food School to promote healthier, more sustainable approaches to food, with the support of Birmingham’s Smart City community. It’s an opportunity all of us should seize; and it’s absolutely the best opportunity we have to create better cities and a better world for ourselves.

Smart Digital Urbanism: creating the conditions for equitably distributed opportunity in the digital age

(The sound artists FA-TECH [http://fa-tech.tumblr.com/] improvising in Shoreditch, London. Shoreditch's combination of urban character, cheap rents and proximity to London's business, financial centres and culture led to the emergence of a thriving technology startup community - although that community's success is now driving rents up, challenging some of the characteristics that enabled it.)

(The sound artists FA-TECH improvising in Shoreditch, London. Shoreditch’s combination of urban character, cheap rents and proximity to London’s business, financial centres and culture led to the emergence of a thriving technology startup community – although that community’s success is now driving rents up, challenging some of the characteristics that enabled it.)

(I first learned of the architect Kelvin Campbell‘s concept of “massive/small” just over two years ago – the idea that certain characteristics of policy and the physical environment in cities could encourage “massive amounts of small-scale innovation” to occur. Kelvin recently launched a collaborative campaign to capture ideas, tools and tactics for massive/small “Smart Urbanism“. This is my first contribution to that campaign.)

Over the past 5 years, enormous interest has developed in the potential for digital technologies to contribute to the construction and development of cities, and to the operation of the services and infrastructures that support them. These ideas are often referred to as “Smart Cities” or “Future Cities”.

Indeed, as the price of digital technologies such as smartphones, sensors, analytics, open source software and cloud platforms reduces rapidly, market dynamics will drive their aggressive adoption to make construction, infrastructure and city services more efficient, and hence make their providers more competitive.

But those market dynamics do not guarantee that we will get everything we want for the future of our cities: efficiency and resilience are not the same as health, happiness and opportunity for every citizen.

Is it realistic to ask ourselves whether we can achieve those objectives? Yes, it has to be.

Many of us believe in that possibility, and spend a lot of our efforts finding ways to achieve it. And over the same timeframe that interest in “smart” and “future” cities has emerged, a belief has developed around the world that the governance institutions of cities – local authorities and elected mayors, rather than the governments of nations – are the most likely political entities to implement the policies that lead to a sustainable, resilient future with more equitably distributed economic growth.

Consequently many Mayors and City Councils are considering or implementing legislation and policy frameworks that change the economic and financial context in which construction, infrastructure and city services are deployed and operated. The British Standards Institute recently published guidance on this topic as part of its overall Smart Cities Standards programme.

But whilst in principle these trends and ideas are incredibly exciting in their potential to create better cities, communities, places and lives in the future, in practise many debates about applying them falter on a destructive and misleading argument between “top-down” and “bottom-up” approaches – the same chasm that Smart Urbanism seeks to bridge in the physical world.

Policies and programmes driven by central government organisations or implemented by technology and infrastructure corporations that drive digital technology into large-scale infrastructures and public services are often criticised as crude, “top-down” initiatives that prioritise resilience and efficiency at the expense of the concerns and values of ordinary people, businesses and communities. However, the organic, “bottom-up” innovation that critics of these initatives champion as the better, alternative approach is ineffective at creating equality.

("Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(“Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

“Bottom-up innovation” is what every person, community and business does every day: using our innate creativity to find ways to use the resources and opportunities available to us to make a better life.

But the degree to which we fail to distribute those resources and opportunities equally is illustrated by the stark variation in life expectancy between the richest and poorest areas of cities in the UK: often this variation is as much as 20 years within a single city.

Just as the “design pattern”, a tool invented by a town planner in the 1970s, Christopher Alexander, is probably the single most influential concept that drove the development of the digital technology we all use today, two recent movements in town planning and urban design – “human scale cities” and “smart urbanism” – offer the analogies that can connect “top-down” technology policies and infrastructure with the factors that affect the success of “bottom-up” creativity to create “massive / small” success: future, digital cities that create “massive amounts of small-scale innovation“.

The tools to achieve this are relatively cheap, and the right policy environment could make it fairly straightforward to augment the business case for efficient, resilient “smart city” infrastructures to ensure that they are deployed. They are the digital equivalents of the physical concepts of Smart Urbanism – the use of open grid structures for spatial layouts, and the provision of basic infrastructure components such as street layouts and party walls in areas expected to attract high growth in informal housing. Some will be delivered as a natural consequence of market forces driving technology adoption; but others will only become economically viable when local or national government policies shape the market by requiring them:

  • Broadband, wi-if and 3G / 4G connectivity should be broadly available so that everyone can participate in the digital economy.
  • The data from city services should be made available as Open Data and published through “Application Programming Interfaces” (APIs) so that everybody knows how they work; and can adapt them to their own individual needs.
  • The data and APIs should be made available in the form of Open Standards so that everybody can understand them; and so that the systems that we rely on can work together.
  • The data and APIs should be available to developers working on Cloud Computing platforms with Open Source software so that anyone with a great idea for a new service to offer to people or businesses can get started for free.
  • The technology systems that support the services and infrastructures we rely on should be based on Open Architectures, so that we have freedom to chose which technologies we use, and to change our minds.
  • Governments, institutions, businesses and communities should participate in an open dialogue about the places we live and work in, informed by open data, enabled by social media and smartphones, and enlightened by empathy.

(Casserole Club, a social enterprise developed by FutureGov uses social media to connect people who have difficulty cooking for themselves with others who are happy to cook an extra portion for a neighbour; a great example of a locally-focused “sharing economy” business model which creates financially sustainable social value.)

These principles would encourage good “digital placemaking“: they would help to align the investments that will be made in improving cities using technology with the needs and motivations of the public sector, the private sector, communities and businesses. They would create “Smart Digital Urbanism”: the conditions and environment in which vibrant, fair digital cities grow from the successful innovations of their citizens, communities and businesses in the information economy.

In my new role at Amey, a vast organisation in the UK that delivers public services and operates and supports public infrastructure, I’m leading a set of innovative projects with our customers and technology partners to explore these ideas and to understand how we can collaboratively create economic, social and environmental value for ourselves; for our customers; and for the people, communities and businesses who live in the areas our services support.

It’s a terrifically exciting role; and I’ll soon be hiring a small team of passionate, creative people to help me identify, shape and deliver those projects. I’ll post an update here with details of the skills, experience and characteristics I’m looking for. I hope some of you will find them attractive and get in touch.

12 simple technologies for cities that are Smart, open and fair

(Fritz Lang’s 1927 dystopian film Metropolis pictured a city that exploited futuristic technologies, but only on behalf of a minority of its citizens. Image by Breve Storia del Cinema)

Efficiency; resilience; growth; vitality. These are all characteristics that cities desire, and that are regularly cited as the objectives of Smarter City programmes and other forward-looking initiatives.

But, though it is less frequently stated, a more fundamental objective underlies all of these: fairness.

The Nobel Prize-winning economist Joseph Stiglitz has written extensively about the need to prioritise fairness as a policy and investment objective in a world that in many areas – and in many cities – is becoming more unequal. That inequality is demonstrated by the difference in life expectancy of 20 years or so that exists between the poorest and richest parts of many UK cities.

I think the Smart Cities movement will only be viewed as a success by the wider world if it contributes to redressing that imbalance.

So how do we design Smart City systems that employ technology to make cities more successful, resilient and efficient; in a way that distributes resources and creates opportunities more fairly than today?

One answer to that question is that the infrastructures and institutions of such cities should be open to citizens and businesses: accessible, understandable, adaptable and useful.

Why do we need open cities?

In the wonderful “Walkable City“, Jeff Speck describe’s the epidemiologist Richard Jackson’s stark realisation of the life-and-death significance of good urban design. Jackson was driving along a notorious 2 mile stretch of Atlanta’s 7-lane Buford highway with no pavements or junctions:

There, by the side of the road, in the ninety-five degree afternoon, he saw a woman in her seventies, struggling under the burden of two shopping bags. He tried to relate her plight to his own work as an epidemiologist. “If that poor woman had collapsed from heat stroke, we docs would have written the cause of death as heat stroke and not lack of trees and public transportation, poor urban form, and heat-island effects. If she had been killed by a truck going by the cause of death would have been “motor vehicle trauma”, and not lack of sidewalks and transit, poor urban planning and failed political leadership.”

(Pedestrian’s attempting to cross Atlanta’s notorious Buford Highway; a 7-lane road with no pavements and 2 miles between junctions and crossings. Photo by PBS)

Buford Highway is an infrastructure fit only for vehicles, not for people. It allows no safe access along or across it for the communities it passes through – it is closed to them, unless they risk their lives.

At the same time that city leaders are realising more and more that better planning is needed to create more equal cities, so it  is imperative that the digital infrastructures we deploy in cities are accessible and useful to citizens, not as dangerous to them as Buford Highway.

Unfortunately, there are already examples of city infrastructures using technologies that are poorly designed, that fail to serve the needs of  communities, or that fail in operation.

For instance, a network of CCTV cameras in Birmingham were eventually dismantled after it was revealed they had been erected to gather evidence of terrorist activities in Birmingham’s Muslim communities, rather than in support of their safety. And there have been many examples of the failure of both public sector agencies and private companies to properly safeguard the data they hold about citizens.

Market failures can result in the benefits of technology being more accessible to wealthier communities than poorer communities. For example,  private sector network providers will not deploy connectivity in areas which are insufficiently economically active for them to make a profit, and Government funding is not yet sufficient to close the gap. And community lenders, who typically offer loans at one-tenth to one-hundredth the cost of payday lenders, have so far lacked the resources to invest in the online technology that makes some payday loans so easy to take out – though this is starting to change.

One of the technology industry’s most notorious failures, the Greyhound Lines bus company’s 1993 “Trips” reservations system, made a city service – bus transport – unusable. The system was intended to make it quicker and easier for ticket agents to book customers onto Greyhound’s buses. But it was so poorly designed and operated so slowly that passengers missed their buses whilst they stood in line waiting for their tickets; were separated from their luggage; and in some cases were stranded overnight in bus terminals.

In the 21st Century, badly applied digital technology will create bad cities, just as badly designed roads and buildings did in the last century.

(The SMS for Life project uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa. Photo by Novartis AG)

Smart Cities for the digitally disconnected

It’s possible to benefit from Smart city infrastructures without being connected to the internet or having skills in digital technology – Stockholm’s road-use charging scheme reduces congestion and pollution for everyone in the city, for example.

But the benefits of many Smart systems are dependent on being connected to the internet and having the skills to use it. From the wealth of educational material now available online (from the most sophisticated Harvard University courses to the most basic tutorials on just about any subject available on YouTube), to the increasing role of technology in high-paid careers, it’s absolutely obvious that the ability to access and use the internet and digital technologies in the future will be a crucial component of a successful life.

Smart cities won’t be fair cities if we take connectivity and skills for granted. Worldwide, fully one-third of the population has never been online; and even in as rich and advanced a country as the United Kingdom, 18% of adults – a fifth of the voting population – have never used the internet. At the risk of generalising a complex issue, many of those people will be those that Smart City services should create benefits for if they are to contribute to making cities fairer.

After legal challenges from private sector providers, the UK Government’s plan to assist cities in funding the deployment of ubiquitous broadband connectivity has been replaced by a voucher scheme that subsidises businesses connecting to existing networks. The scheme will not now directly help to improve broadband coverage in those areas that are poorly served because they are economically relatively inactive – precisely the areas that need the most help.

There’s been a lot of discussion of “net neutrality” recently – the principle that on the Internet, all traffic is equal, and that there is no way to pay for certain data to be treated preferentially. The principle is intended to ensure that the benefits of the internet are equally available to everyone.

But net neutrality is irrelevant to those who can’t access the internet at all; and the free market is already bypassing it in some ways. Network providers who control the local infrastructures that connect homes and businesses to the internet are free to charge higher prices for faster connections. Wealthy corporations and governments can bypass parts of the internet entirely with their own international cable networks through which they can route traffic between users on one continent and content on another.

Governments in emerging economies are building new cities to house their rapidly urbanising populations with ubiquitous, high-speed connectivity from the start. The Australian government is investing the profits from selling raw materials to support that construction boom in providing broadband coverage across the entire country. The least wealthy areas of European cities will be further disadvantaged compared to them unless we can find ways to invest in their digital infrastructure without contravening the European Union’s “State aid” law.

Technology as if people mattered

The UK’s Government Digital Service employ an excellent set of agile, user-centric design principles that are intended to promote the development of Smarter, digitally-enabled services that can be accessed by anyone anywhere who needs them, regardless of their level of skill with digital technology or ability to access the Internet.

The principles include: “Start with needs”; “Do the hard work to make it simple”; “Build for inclusion”; “Understand context”; and “Build digital services, not websites”.

(An electricity bill containing information provided by OPower comparing one household’s energy usage to their neighbours. Image from Grist)

A good example of following these principles and designing excellent, accessible digital services using common sense is the London Borough of Newham. By concentrating on the delivery of services through mobile telephones – which are much more widely owned than PCs and laptops – and on contexts in which a friend or family member assists the ultimate service user, Newham have achieved a remarkable shift to online services in one of London’s least affluent boroughs, home to many communities and citizens without access to broadband connectivity or traditional computers.

Similar, low-tech innovations in designing systems that people find useful can be found in some smart meter deployments.

In principle, the analytic technology in smart meters can provide insights that helps households and businesses reduce energy usage – identifying appliances that are operating inefficiently, highlighting leaks, and comparing households’ energy usage to that of their neighbours.

But most people don’t want to look at smart meter displays or consult a computer before they put the washing on or have a shower.

In one innovative project in the village of Chale, these issues were overcome by connecting analytic technology to a glow globe in the lounge – the globe simply glows red, orange or green depending on whether too much energy is being used compared to that expected for the time of day and year. A similarly effective but even more down-to-earth approach was adopted by OPower in the US who reported that they have helped households save 1.9 terawatt hours of power simply by including a report based on data from smart meters in a printed letter sent with customers’ electricity bills.

There are countless other examples. During peak traffic periods, Dublin’s “Live Drive” radio station plays a mixture of 80s pop music and traffic information derived from sophisticated analytics developed by IBM’s Smarter Cities Research team based on data from road sensors and GPS beacons in the city’s buses. And in India’s rural Karnataka region, which lacks internet infrastructure and where many workers lack literacy skills, let alone access to computers and smartphones, the benefits of online job portals have been recreated using “spoken web” technology using the existing traditional analogue telephone network.

(The inspirational Kilimo Salama scheme that uses

(The inspirational Kilimo Salama scheme that uses “appropriate technology” to make crop insurance affordable to subsistence farmers. Photo by Burness Communications)

In Kenya, Kilimo Salama has made crop insurance affordable for subsistence farmers by using remote weather monitoring to trigger payouts via Safaricom’s M-Pesa mobile payments service, rather than undertaking expensive site visits to assess claims. And the SMS for Life project in Tanzania uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicine between rural pharmacists.

These are all examples of what was originally described as “Intermediate Technology” by the economist Ernst Friedrich “Fritz” Schumacher in his influential work, “Small is Beautiful: Economics as if People Mattered“, and is now known as Appropriate Technology.

12 “appropriate technologies” for Smart Cities

Schumacher’s views on technology were informed by his belief that our approach to economics should be transformed “as if people mattered”. He asked:

What happens if we create economics not on the basis of maximising the production of goods and the ability to acquire and consume them – which ends up valuing automation and profit – but on the Buddhist definition of the purpose of work: “to give a man a chance to utilise and develop his faculties; to enable him to overcome his ego-centredness by joining with other people in a common task; and to bring forth the goods and services needed for a becoming existence.”

Schumacher pointed out that the most advanced technologies, to which we often look to create value and growth, are in fact only effective in the hands of those with the resources and skills required to use them- i.e. those who are already wealthy; and that by emphasising efficiency, output and profit they tend to further concentrate economic value in the hands of the wealthy – often specifically by reducing the employment of people with less advanced skills and roles.

In contrast, Schumacher felt that the most genuine “development ” of our society would occur when the most possible people were employed in a way that gave them the practical ability to earn a living ; and that also offered a level of human reward – much as Maslow’s “Hierarchy of Needs” first identifies our most basic requirements for food, water, shelter and security; but next relates the importance of family, friends and “self-actualisation” (which can crudely be described as the process of achieving things that we care about).

This led him to ask:

What is that we really require from the scientists and technologists? I should answer:

We need methods and equipment which are:

    • Cheap enough so that they are accessible to virtually everyone;
    • Suitable for small-scale application; and
    • Compatible with man’s need for creativity

(Maslow’s Hierarchy of Needs, image by Factoryjoe via Wikimedia Commons)

I can’t think of a more powerful set of tools that reflect these characteristics than the digital technologies that have emerged over the past decade, such as social media, smartphones, Cloud computing and Open Data. They provide a digital infrastructure of appropriate technologies that are accessible to everyone, but that connect with the large scale city infrastructures that support millions of urban lives; and they give citizens, communities and businesses the ability to adapt city infrastructures to their own needs.

I can think of at least 12 such technologies that are particularly important; and that fall into the categories of “Infrastructures that matter”; “Technologies for everyone”; and “The keys to the city”.

Infrastructures that matter

1.Broadband connectivity

I’ve covered the importance of broadband connectivity, and the challenges involved in providing it ubiquitously, already, so I won’t go into detail again here. But whether it’s fixed-line, mobile or wi-fi, its benefits are becoming so significant that it can’t be omitted.

2. Cloud computing

Before Cloud computing, anyone who wanted to develop a computing system for others to use had to invest up-front in an infrastructure capable of operating the service to a reasonable level of reliability. Cloud computing provides a much easier, cheaper alternative: rent a little bit of someone else’s infrastructure. And if your service becomes popular, don’t worry about carrying out complex and costly upgrades, just rent a little more.

Cloud computing has helped to democratise digital services by making it  it dramatically easier and cheaper for anyone to create and offer them.

Technologies for everyone

3. Mobile and Smart phones

In 2013, the number of cellphone subscriptions worldwide surpassed the number of people who have ever owned fixed line telephones.

In the developed world, we’re conscious of the increasing power of Smartphones; and Councils such as Newham are exploiting the fact that many people who lack the desire or resources to purchase a computer and a broadband connection possess and use relatively sophisticated Smartphones through which they access digital services and content.

But in some countries in the developing world, the real story is simply the availability of the first basic infrastructure – voice calls and SMS – that’s available to almost everyone, everywhere. According to one report, access to a basic mobile phone is more common than access to a toilet with proper drainage. In his TEDGlobal 2013 talk, Toby Shapshak described how entire business infrastructures and supply chains are being built upon SMS and similiarly “appropriate” technologies – to the extent that 4o% of Kenya’s GDP now passes through the M-Pesa mobile payments service offered by Safaricom. Banks, technology entrepreneurs, governments and others in the developed world are looking to this wave of innovation as a source of new ideas.

4. Social media

In his 2011 book “Civilization“, Niall Fergusson comments that news of the Indian Mutiny in 1857 took 46 days to reach London, travelling in effect at 3.8 miles an hour. By Jan 2009 when US Airways flight 1549 crash landed in the Hudson river, Jim Hanrahan’s message on Twitter communicated the news to the entire world four minutes later; it reached Perth, Australia at more than 170,000 miles an hour.

Social media is the tool that around a quarter of the world’s population now simply uses to stay in touch with friends and family at this incredible speed.

At a recent Mayoral debate on Smarter Cities, Ridwan Kamil, Mayor of Bandung, Indonesia, described how he has nurtured an atmosphere of civic engagement, trust and transparency by encouraging his staff to connect with the city’s 2.3 million Twitter-using citizens through social media. By encouraging citizens to report issues online and by publishing details of city spending, Mayor Kami has helped to combat corruption and improve public services. Montpellier in France is engaging with citizens through social media in a similar way, asking them to explore data about their city and suggest ways to improve it. And the ambitious control room set up in Rio de Janeiro by Mayor Eduardo Paes to help manage the city during the current World Cup uses social media not just as one of the information feeds that provides insight into what is happening in the city, but to keep citizens as well informed as possible.

The “Community Lovers Guide“, of which 60 editions have now been published across the world, contains stories of people and projects that have improved their communities. The guide is not concerned directly with technology; but many of the initiatives that it describes have used social media as a tool for engaging with stakeholders and supporters.

And we increasingly use social media to conduct business. From e-Bay to Uber, social media is being used to create “sharing economy” business models that replace traditional sales channels and supply chains with networks of peer-to-peer transactions in industries from financial services to agriculture to distribution to retail. Nearly 2 billion of us now regularly use the technologies that allow us to participate in those trading networks.

5. The touchscreen

Three years ago, I watched my then 2-year-old son teach himself how to use a touchscreen tablet to watch cartoons from around the world. He is a member of the first generation to grow up with the world’s information literally at their fingertips before they can read and write.

The simplicity of the touchscreen has already led to the adoption of tablet computers by huge numbers of people who would never have so willingly chosen to use a laptop computer and keyboard. As touchscreens and the devices that use them become cheaper and cheaper, many more people who currently don’t choose to access online content and services will do so without realising it, simply by interacting with the world around them.

We will rapidly develop even more intimate interfaces to technology. Three years ago, scientists at the University of Berkely used computers attached to an MRI scanner to recreate moving images from the magnetic field created by the brain of a person inside the scanner watching a film on a pair of goggles. And last year, scientists at the University of Washington used similar technology to allow one of them to move the other’s arm simply by thinking about it. Whilst it will take time for these technologies to become widely available – and there are certainly ethical issues concerning their use that must be addressed in the process – eventually they will make an important contribution to making information and the ability to communicate widely even more accessible than today.

6. Open Source software

Open Source software is one of the very few technologies that is free in principle to anyone with the time to understand how to use it. It is not free in the medium or long-term – most organisations that use it pay for some form of support or maintenance to be carried out on their Open Source systems. But it is free to get started, and the Open Source community is a great place to get help and advice whilst doing so.

My colleagues around the world work very hard to ensure that IBM’s technologies support open source technology, from interoperating with the MySQL database and CKAN open data portal; to donating IBM-developed technologies such as Eclipse, MQTT and Node-RED to the Open Source community; to IBM’s new “BlueMix” Cloud computing platform for developers which is built from Open Source technology and offers developers 50 pre-built services for inclusion in their Apps, many of which are open source.

Not all technology is Open Source, and there are good reasons why many technology companies large and small invest in developing products and services for cities that use proprietary software – often, simply to protect their investment. For as long as those products and services offer valuable capabilities that are not available as open source software, cities will use them.

But it is vital that city systems incorporating those technologies are nevertheless open for use by open source software, simply to make them as widely accessible as possible for people who need to adapt them to their own needs.

7. Intelligent hardware

The emergence of the internet as a platform for enabling sales, marketing and logistics over the last decade has enabled small and micro-businesses to reach markets across the world that were previously accessible only to much larger organisations with international sales and distribution networks.

More recently, the emergence and maturation of technologies such as 3D printingopen-source manufacturing and small-scale energy generation are enabling small businesses and community initiatives to succeed in new sectors by reducing the scale at which it is economically viable to carry out what were previously industrial activities – a trend recently labelled by the Economist magazine as the “Third Industrial Revolution“.

Arduino, an Open Source electronics prototyping platform, and the Raspberry Pi, a cheap and simple computer intended to simplify the process of teaching programming skills, provide very easy introductions to these technologies; and organisations such as Hub Launchpad and TechShop make it possible for entrepreneurs and small businesses to explore them in more depth.

The keys to the city

8. Open APIs 

An “API” is an “Application Programming Interface“: it is a tool that allows one computer system – such as an Open Source “app” written by an entrepreneur or social innovator – to use the information and capabilities of another computer system – such as a traffic information system for a city’s transport network.

For example, Amazon make an API available to developers that exposes all of the capabilities of Amazon Marketplace – from listing products, to changing prices to despatching goods to customers. Whilst these features are not free to use, they offer one way for businesses to create new online shops extremely quickly,  linked to a fulfilment operation to support them.

Open APIs are a tool that can make digital city infrastructures open to local innovation, and allow citizens, businesses and communities to adapt them to their own needs. For instance, Birmingham’s Droplet, a SmartPhone payment service that encourages local economic growth by making it easy to pay for goods and services from local merchants, offer a developer API to allow their fast, cheap payments system to be included in other city services.

A Smarter City infrastructure whose IT systems offer APIs to citizens, communities and businesses can be accessed and adapted by them. It is the very opposite of Atlanta’s Buford Highway.

(The UK’s Open Data Institute’s 2013 Summit. The ODI promotes open data in the UK and shares best practise internationally. Photo by the ODI)

9. Open Data

The Open Data movement champions the principle that any non-sensitive data from public services and infrastructures should be freely and openly available. Most such data is not currently available in this form – either because the organisations operating those services have yet to adopt the principle, or because the computer systems they use simply were not designed to make data available.

There are many reasons to support the idea of Open Data. McKinsey estimate its economic value to be at least $3 trillion per year, for example.

But perhaps more importantly, Open Data is a fundamental tool for democracy and transparency in a digital age. Niall Firth’s November 2013 editorial for the New Scientist magazine describes how citizens of developing nations are using open data to hold their governments to account, from basic information about election candidates to the monitoring of government spending.

The “Dublinked” information sharing partnership, in which Dublin City Council, three surrounding local authorities and  service providers to the city share information and make it available to their communities as “open data”, is a good example of the benefits that openness can bring. Dublinked now makes 3,000 datasets available to local authority analysts; to researchers from IBM Research and the National University of Ireland; and to businesses, entrepreneurs and citizens. The partnership is identifying new ways for the city’s public services and transport, energy and water systems to work; and enabling the formation of new, information-based businesses with the potential to export the solutions they develop in Dublin to cities internationally. It is putting the power of technology and of city information not only at the disposal of the city authority and its agencies, but also into the hands of communities and innovators.

10. Open Standards

Open Data and Open APIs will only be widely used and effective in cities across the world if they conform to Open Standards that mean that everyone, everywhere can use them in the same way.

In order to do something as simple as changing a lightbulb, we rely on open standards for the levels of voltage and power from our electricity supply; the physical dimensions of the socket and bulb and the characteristics of their fastenings; specifications of the bulb’s light and heat output; and the tolerance of the bulb and the fitting for the levels of moisture found in bathrooms and kitchens. Cities are much more complicated than lightbulbs; and many more standards will be required on order for us to connect to and re-configure their systems easily and reliably.

Open standards are also an important tool in avoiding city systems becoming “locked-in” to any particular supplier. By specifying common characteristics that all systems are required to demonstrate, it becomes more straightforward to exchange one supplier’s implementation for another.

Some standards that Smarter City infrastructures can use are already in place – for example, Web services and REST that specify the general ways in which computer systems interact, and the Common Alerting Protocol which is more specific to interactions between systems that monitor and control the physical world. But many others will need to be invented and encouraged to spread. The City Protocol Society is one organisation seeking to develop those new standards; and the British Standards Institute recently published the first set of national standards for Smarter Cities in the UK, including a standard for the interoperability of data between Smart City systems.

(Photo of the Brixton Pound by Charlie Waterhouse)

11. Local and virtual currencies and trading systems

Local trading systems use paper or electronic currencies that are issued and accepted within a particular place or region. They influence people and businesses to spend the money that they earn locally, thereby promoting regional economic synergies.

Examples include the Bristol Pound; the Droplet smartphone payment scheme in Birmingham; and schemes based on the bartering of goods, money, time and services, such as time banking. Some schemes combine both elements – in Switzerland, a complementary currency, the Wir , has contributed to economic stability over the last century by allowing some debt repayments to be bartered locally when they cannot be repaid in universal currency.

As these schemes develop – and in particular as they adopt technologies such as smartphones and Open APIs – they are increasingly being used as an infrastructure for Smarter City projects in domains such as transport, food supply and energy.

Smarter Cities will succeed at scale when we discover the business models that convert financial payments and investments into social, economic and environmental improvements in the places where we live and work. I can’t think of a more directly applicable tool for designing those business models than flexible, locally focussed currencies and payment infrastructures.

12. Identity stores

In order to use digital services, we have to provide personal information online. What happens to that personal information once we have finished using the service?

Social networks such as Facebook regularly cause controversy when they experiment with new ways to use the data that we freely share with them; often granting them extensive rights over that data in the process.

Our use of technologies such as social media, Smartphones and APIs creates a mass of data about us that is often retained by the operators of the services we use. Sometimes this is as a result of deliberate actions:  when we share geo-tagged photos through social media, for example. In other cases, it is incidental. The location and movement of GPS sensors in our smartphones is anonymised by our network providers and aggregated with that of others nearby who are moving similarly. It is then sold to traffic information services, so that they can sell it back to us through the satellite navigation systems in our cars to help us to avoid traffic congestion.

Organisations of all types and sizes are competing for the new markets and opportunities of the information economy that are created, in part, by this increased availability of personal information. That is simply the natural consequence of the emergence of a new resource in a competitive economy. But it is also true that as the originators of much of that information, and as the ultimate stakeholders in that economy, we should seek to establish an equitable consensus between us for how our information is used.

A different approach is being taken by organisations such as MyDex. MyDex are a Community Interest Company (CIC) who have created a platform that allows users to securely share personal information with digital service providers when they need to; but to revoke access when they have finished using the service.

Incorporation as a Community Interest Company allows MyDex:

“… to be sustainable and requires it be run for community benefit. Crucially, the CIC assets and the majority of any profits must be used for the community purposes for which Mydex is established. Its assets cannot be acquired by another party to which such restrictions do not apply.”

(From the MyDex website, http://mydex.org/about/ensuring-trust/).

As a result of both the security of their technology solution and the clarity with which personal and community interests are reflected in their business model, MyDex’s platform is now being used by a variety of public sector and community organisations to offer a personal data store to the people they support.

MyDex’s approach to creating trust in the use of personal data is not the only one, but it is a good example of a business model that explicitly addresses and prioritises the interests of the individual.

(The town plan for Edinburgh’s New Town, clearly showing the grid structure that gives rise to the adaptability that it is famous for showing for the past 250 years. Image from the JR James archive)

Smart Digital Urbanism

Architects and city planners such as Kelvin Campbell, founder of the Smart Urbanism movement and Jan Gehl, who inspired the “human-scale cities” movement have been identifying the fine-grained physical characteristics of large-scale urban environments that encourage vibrant communities and successful economies through the daily activities of people, families, communities and businesses.

A good example is provided by Edinburgh’s “New Town”, regarded as a masterpiece of urban planning that has proved adaptable and successful through the economic and social changes of the past 250 years. It has frequent road crossings, junctions and side-streets that slow down traffic; provides stopping opportunities for traffic and crossing opportunities for people, encouraging businesses to thrive; and has a mixture of small and large premises for a variety of businesses to occupy.

Smarter cities will not be fairer cities unless we identify and employ technologies for building them that create similar openness and accessibility for digital services and information. That’s precisely what I think Open Data, mobile phones, virtual currencies and the other technologies I’ve described in this article can achieve.

I can’t think of a more exciting idea than using them to address the economic, social and environmental challenge of our time and to build better cities and communities for tomorrow.

From field to market to kitchen: smarter food for smarter cities

(A US Department of Agriculture inspector examines a shipment of imported frozen meat in New Orleans in 2013. Photo by Anson Eaglin)

One of the biggest challenges associated with the rapid urbanisation of the world’s population is working out how to feed billions of extra citizens. I’m spending an increasing amount of my time understanding how technology can help us to do that.

It’s well known that the populations of many of the world’s developing nations – and some of those that are still under-developed – are rapidly migrating from rural areas to cities. In China, for example, hundreds of millions of people are moving from the countryside to cities, leaving behind a lifestyle based on extended family living and agriculture for employment in business and a more modern lifestyle.

The definitions of “urban areas” used in many countries undergoing urbanisation include a criterion that less than 50% of employment and economic activity is based on agriculture (the appendices to the 2007 revision of the UN World Urbanisation Prospects summarise such criteria from around the world). Cities import their food.

In the developed countries of the Western world, this criterion is missing from most definitions of cities, which focus instead on the size and density of population. In the West, the transformation of economic activity away from agriculture took place during the Industrial Revolution of the 18th and 19th Centuries.

Urbanisation and the industrialisation of food

The food that is now supplied to Western cities is produced through a heavily industrialised process. But whilst the food supply chain had to scale dramatically to feed the rapidly growing cities of the Industrial Revolution, the processes it used, particularly in growing food and creating meals from it, did not industrialise – i.e. reduce their dependence on human labour – until much later.

As described by Population Matters, industrialisation took place after the Second World War when the countries involved took measures to improve their food security after struggling to feed themselves during the War whilst international shipping routes were disrupted. Ironically, this has now resulted in a supply chain that’s even more internationalised than before as the companies that operate it have adopted globalisation as a business strategy over the last two decades.

This industrial model has led to dramatic increases in the quantity of food produced and distributed around the world, as the industry group the Global Harvest Initiative describes. But whether it is the only way, or the best way, to provide food to cities at the scale required over the next few decades is the subject of much debate and disagreement.

(Irrigation enables agriculture in the arid environment of Al Jawf, Libya. Photo by Future Atlas)

One of the critical voices is Philip Lymbery, the Chief Executive of Compassion in World Farming, who argues passionately in “Farmageddon” that the industrial model of food production and distribution is extremely inefficient and risks long-term damage to the planet.

Lymbery questions whether the industrial system is sustainable financially – it depends on vast subsidy programmes in Europe  and the United States; and he questions its social benefits – industrial farms are highly automated and operate in formalised international supply chains, so they do not always provide significant food or employment in the communities in which they are based.

He is also critical of the industrial system’s environmental impact. In order to optimise food production globally for financial efficiency and scale, single-use industrial farms have replaced the mixed-use, rotational agricultural systems that replenish nutrients in soil  and that support insect species that are crucial to the pollination of plants. They also create vast quantities of animal waste that causes pollution because in the single-use industrial system there are no local fields in need of manure to fertilise crops.

And the challenges associated with feeding the growing populations of the worlds’ cities are not only to do with long-term sustainability. They are also a significant cause of ill-health and social unrest today.

Intensity, efficiency and responsibility

Our current food systems fail to feed nearly 1 billion people properly, let alone the 2 billion rise in global population expected by 2050. We already use 60% of the world’s fresh water to produce food – if we try to increase food production without changing the way that water is used, then we’ll simply run out of it, with dire consequences. In fact, as the world’s climate changes over the next few decades, less fresh water will be available to grow food. As a consequence of this and other effects of climate change, the UK supermarket ASDA reported recently that 95% of their fresh food supply is already exposed to climate risk.

The supply chains that provide food to cities are vulnerable to disruption – in the 2000 strike by the drivers who deliver fuel to petrol stations in the UK, some city supermarkets came within hours of running out of food completely; and disruptions to food supply have already caused alarming social unrest across the world.

These challenges will intensify as the world’s population grows, and as the middle classes double in size to 5 billion people, dramatically increasing demand for meat – and hence demand for food for the animals which produce it. Overall, the United Nations Food and Agriculture Organization estimates that we will need to produce 70% more food than today by 2050.

insect delicacies

(Insect delicacies for sale in Phnom Penh’s central market. The United Nations suggested last year that more of us should join the 2 billion people who include insects in their diet – a nutritious and environmentally efficient source of food)

But increasing the amount of food available to feed people doesn’t necessarily mean growing more food, either by further intensifying existing industrial approaches or by adopting new techniques such as vertical farming or hydroponics. In fact, a more recent report issued by the United Nations and partner agencies cautioned that it was unlikely that the necessary increase in available food would be achieved through yield increases alone. Instead, it recommended reducing food loss, waste, and “excessive demand” for animal products.

There are many ways we might grow, distribute and use food more efficiently. We currently waste about 30% of the food we produce: some through food that rots before it reaches our shops or dinner tables, some through unpopularity (such as bread crusts or fruit and vegetables that aren’t the “right” shape and colour), and some because we simply buy more than we need to eat. If those inefficiencies were corrected, we are already producing enough food to feed 11billion people, let alone the 9 billion population predicted for the Earth by 2050.

I think that technology has some exciting roles to play in how we respond to those challenges.

Smarter food in the field: data for free, predicting the future and open source beekeeping

New technologies give us a great opportunity to monitor, measure and assess the agricultural process and the environment in which it takes place.

The SenSprout sensor can measure and transmit the moisture content of soil; it is made simply by printing an electronic circuit design onto paper using commercially-available ink containing silver nano-particles; and it powers itself using ambient radio waves. We can use sensors like SenSprout to understand and respond to the natural environment, using technology to augment the traditional knowledge of farmers.

By combining data from sensors such as SenSprout and local weather monitoring stations with national and international forecasts, my colleagues in IBM Research are investigating how advanced weather prediction technology can enable approaches to agriculture that are more efficient and precise in their use of water. A trial project in Flint River, Georgia is allowing farmers to apply exactly the right amount of water at the right time to their crops, and no more.

Such approaches improve our knowledge of the natural environment, but they do not control it. Nature is wild, the world is uncertain, and farmers’ livelihoods will always be exposed to risk from changing weather patterns and market conditions. The value of technology is in helping us to sense and respond to those changes. “Pasture Scout“, for example, does that by using social media to connect farmers in need of pasture to graze their cattle with other farmers with land of the right sort that is currently underused.

These possibilities are not limited to industrial agriculture or to developed countries. For example, the Kilimo Salama scheme adds resilience to the traditional practises of subsistence farmers by using remote weather monitoring and mobile phone payment schemes to provide affordable insurance for their crops.

Technology is also helping us to understand and respond to the environmental impact of the agricultural practises that have developed in previous decades: as urban beekeepers seek to replace lost natural habitats for bees, the Open Source Beehive project is using technology to help them identify the factors leading to the “colony collapse disorder” phenomenon that threatens the world’s bee population.

Smarter food in the marketplace: local food, the sharing economy and soil to fork traceability

The emergence of the internet as a platform for enabling sales, marketing and logistics over the last decade has enabled small and micro-businesses to reach markets across the world that were previously accessible only to much larger organisations with international sales and distribution networks. The proliferation of local food and urban farming initiatives shows that this transformation is changing the food industry too, where online marketplaces such as Big Barn and FoodTrade make it easier for consumers to buy locally produced food, and for producers to sell it.

This is not to say that vast industrial supply-chains will disappear overnight to be replaced by local food networks: they clearly won’t. But just as large-scale film and video production has adapted to co-exist and compete with millions of small-scale, “long-tail” video producers, so too the food industry will adjust. The need for co-existence and competition with new entrants should lead to improvements in efficiency and impact – the supermarket Tesco’s “Buying Club” shows how one large food retailer is already using these ideas to provide benefits that include environmental efficiences to its smaller suppliers.

(A Pescheria in Bari, Puglia photographed by Vito Palmi)

One challenge is that food – unlike music and video – is a fundamentally physical commodity: exchanging it between producers and consumers requires transport and logistics. The adoption by the food industry of “sharing economy” approaches – business models that use social media and analytics to create peer-to-peer transactions, and that replace bulk movement patterns by thousands of smaller interactions between individuals – will be dependent on our ability to create innovative distribution systems to support them. Zaycon Foods operate one such system, using online technology to allow consumers to collectively negotiate prices for food that they then collect from farmers at regular local events.

Rather than replacing existing markets and supply chains, one role that technology is already playing is to give food producers better insight into their behaviour. M-farm links farmers in Kenya to potential buyers for their produce, and provides them with real-time information about prices; and the University of Bari in Puglia, Italy operates a similar fish-market pricing information service that makes it easier for local fisherman to identify the best buyers and prices for their daily catch.

Whatever processes are involved in getting food from where it’s produced to where it’s consumed, there’s an increasing awareness of the need to track those movements so that we know what we’re buying and eating, both to prevent scandals such as last year’s discovery of horsemeat in UK food labelled as containing beef; and so that consumers can make buying decisions based on accurate information about the source and quality of food. The “eSporing” (“eTraceability”) initiative between food distributors and the Norwegian government explored these approaches following a breakout of E-Coli in 2006.

As sensors become more capable and less expensive, we’ll be able to add more data and insight into this process. Soil quality can be measured using sensors such as SenSprout; plant health could be measured by similar sensors or by video analytics using infra-red data. The gadgets that many of us use whilst exercising to measure our physical activity and use of calories could be used to assess the degree to which animals are able to exercise. And scientists at the University of the West of England in Bristol have developed a quick, cheap sensor that can detect harmful bacteria and the residues of antibiotics in food. (The overuse of antibiotics in food production has harmful side effects, and in particular is leading some bacteria that cause dangerous diseases in humans to develop resistance to treatment).

This advice from the Mayo Clinic in the United States gives one example of the link between the provenance of food and its health qualities, explaining that beef from cows fed on grass can have lower levels of fat and higher levels of beneficial “omega-3 fatty acids” than what they call “conventional beef” – beef from cows fed on grain delivered in lorries. (They appear to have forgotten the “convention” established by several millennia of evolution and thousands of years of animal husbandry that cows eat grass).

(Baltic Apple Pie – a recipe created by IBM’s Watson computer)

All of this information contributes to describing both the taste and health characteristics of food; and when it’s available, we’ll have the opportunity to make more informed choices about what we put on our tables.

Smarter food in the kitchen: cooking, blogging and cognitive computing

One of the reasons that the industrial farming system is so wasteful is that it is optimised to supply Western diets that include an unhealthy amount of meat; and to do so at an unrealistically low price for consumers. Enormous quantities of fish and plants – especially soya beans – that could be eaten by people as components of healthy diets are instead fed to industrially-farmed animals to produce this cheap meat. As a consequence, in the developed world many of us are eating more meat than is healthy for us. (Some of the arguments on this topic were debated by the UK’s Guardian newspaper last year).

But whilst eating less meat and more fish and vegetables is a simple idea, putting it into practise is a complex cultural challenge.

A recent report found that “a third of UK adults struggle to afford healthy food“. But the underlying cause is not economic: it is a lack of familiarity with the cooking and food preparation techniques that turn cheap ingredients into healthy, tasty food; and a cultural preference for red meat and packaged meals. The Sustainable Food School that is under development in Birmingham is one example of an initiative intending to address those challenges through education and awareness.

Engagement through traditional and social media also has an influence. The celebrity chefs that have campaigned for a shift in our diets towards more sustainably sourced fish and the schoolgirl who  provoked a national debate concerning the standard and health of school meals simply by blogging about the meals that were offered to her each day at school, are two recent examples in the UK; as is the food blogger Jack Monroe who demonstrated how she could feed herself and her two-year-old son healthy, interesting food on a budget of £10 a week.

My colleagues in IBM Research have explored turning IBM’s Watson cognitive computing technology to this challenge. In an exercise similar to the “invention test” common to television cookery competitions, they have challenged Watson to create recipes from a restricted set of ingredients (such as might be left in the fridge and cupboards at the end of the week) and which meet particular criteria for health and taste.

(An example of local food processing: my own homemade chorizo.)

Food, technology, passion

The future of food is a complex and contentious issue – the controversy between the productivity benefits of industrial agriculture and its environmental and social impact being just one example. I have touched on but not engaged in those debates in this article – my expertise is in technology, not in agriculture, and I’ve attempted to link to a variety of sources from all sides of the debate.

Some of the ideas for providing food to the world’s growing population in the future are no less challenging, whether those ideas are cultural or technological. The United Nations suggested last year, for example, that more of us should join the 2 billion people who include insects in their diet. Insects are a nutritious and environmentally efficient source of food, but those of us who have grown up in cultures that do not consider them as food are – for the most part – not at all ready to contemplate eating them. Artificial meat, grown in laboratories, is another increasingly feasible source of protein in our diets. It challenges our assumption that food is natural, but has some very reasonable arguments in its favour.

It’s a trite observation, but food culture is constantly changing. My 5-year-old son routinely demands foods such as humus and guacamole that are unremarkable now but that were far from commonplace when I was a child. Ultimately, our food systems and diets will have to adapt and change again or we’ll run out of food, land and water.

Technology is one of the tools that can help us to make those changes. But as Kentaro Toyama famously said: technology is not the answer; it is the amplifier of human intention.

So what really excites me is not technology, but the passion for food that I see everywhere: from making food for our own families at home, to producing it in local initiatives such as Loaf, Birmingham’s community bakery; and from using technology in programmes that contribute to food security in developing nations to setting food sustainability at the heart of corporate business strategy.

There are no simple answers, but we are all increasingly informed and well-intentioned. And as technology continues to evolve it will provide us with incredible new tools. Those are great ingredients for an “invention test” for us all to find a sustainable, healthy and tasty way to feed future cities.

Six ways to design humanity and localism into Smart Cities

(Birmingham’s Social Media Cafe, where individuals from every part of the city share their experience using social media to promote their businesses and community initiatives. Photograph by Meshed Media)

The Smart Cities movement is sometimes criticised for appearing to focus mainly on the application of technology to large-scale city infrastructures such as smart energy grids and intelligent transportation.

It’s certainly vital that we manage and operate city services and infrastructure as intelligently as possible – there’s no other way to deal with the rapid urbanisation taking place in emerging economies; or the increasing demand for services such as health and social care in the developed world whilst city budgets are shrinking dramatically; and the need for improved resilience in the face of climate change everywhere.

But to focus too much on this aspect of Smart Cities and to overlook the social needs of cities and communities risks forgetting what the full purpose of cities is: to enable a huge number of individual citizens to live not just safe, but rewarding lives with their families.

Maslow’s Hierarchy of Needs identifies our most basic requirements to be food, water, shelter and security. The purpose of many city infrastructures is to answer those needs, either directly (buildings, utility infrastructures and food supply chains) or indirectly (the transport systems that support us and the businesses that we work for).

Important as those needs are, though – particularly to the billions of people in the world for whom they are not reliably met – life would be dull and unrewarding if they were all that we aspired to.

Maslow’s hierarchy next relates the importance of family, friends and “self-actualisation” (which can crudely be described as the process of achieving things that we care about). These are the more elusive qualities that it’s harder to design cities to provide. But unless cities provide them, they will not be successful. At best they will be dull, unrewarding places to live and work, and will see their populations fall as those can migrate elsewhere. At worst, they will create poverty, poor health and ultimately short, unrewarding lives.

A Smart City should not only be efficient, resilient and sustainable; it should improve all of these qualities of life for its citizens.

So how do we design and engineer them to do that?

(Maslow’s Hierarchy of Needs, image by Factoryjoe via Wikimedia Commons)

Tales of the Smart City

Stories about the people whose lives and businesses have been made better by technology tell us how we might answer that question.

In the Community Lover’s Guide to Birmingham, for example, Nick Booth describes the way his volunteer-led social media surgeries helped the Central Birmingham Neighbourhood Forum, Brandwood End Cemetery and Jubilee Debt Campaign to benefit from technology.

Another Birmingham initiative, the Northfield Ecocentre, crowdfunded £10,000 to support their “Urban Harvest” project. The funds helped the Ecocentre pick unwanted fruit from trees in domestic gardens in Birmingham and distribute it between volunteers, children’s centres, food bank customers and organisations promoting healthy eating; and to make some of it into jams, pickles and chutneys to raise money so that in future years the initiative can become self-sustaining.

In the village of Chale on the Isle of Wight, a community not served by the national gas power network and with significant levels of fuel poverty, my colleague Andy Stanford-Clark has helped an initiative not only to deploy smart meters to measure the energy use of each household; but to co-design with residents how they will use that technology, so that the whole community feels a sense of ownership and inclusion in the initiative. The project has resulted in a significant drop in rent arrears as residents use the technology to reduce their utility bills, in some cases by up to 50 percent. Less obviously, the sense of shared purpose has extended to the creation of a communal allotment area in the village and a successful compaign to halve bus fares in the area.

There are countless other examples. Play Fitness “gamify” exercise to persuade children to get fit, and work very hard to ensure that their products are accessible to children in communities of any level of wealth.  Casserole Club use social media to introduce people who can’t cook for themselves to people who are prepared to volunteer to cook for others. The West Midlands Collaborative Commerce Marketplace uses analytics technology to help it’s 10,000 member businesses win more than £4billion in new contracts each year. … and so on.

None of these initiatives are purely to do with technology. But they all use technologies that simply were not available and accessible as recently as a few years ago to achieve outcomes that are important to cities and communities. By understanding how the potential of technology was apparent to the stakeholders in such initiatives, why it was affordable and accessible to them, and how they acquired the skills to exploit it, we can learn how to design Smart Cities in a way that encourages widespread grass-roots, localised innovation.

(Top: Birmingham's Masshouse Circus roundabout, part of the inner-city ringroad that famously impeded the city's growth. Bottom: This pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

(Top: Birmingham’s Masshouse Circus roundabout, part of the inner-city ringroad that famously impeded the city’s growth until it was demolished. Photo by Birmingham City Council. Bottom: Pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

A tale of two roundabouts

History tells us that we should not assume that it will be straightforward to design Smart Cities to achieve that objective, however.

A measure of our success in building the cities we know today from the generations of technology that shaped them – concrete, cars and lifts – is the variation in life expectancy across them. In the UK, it’s common for life expectancy to vary by around 20 years between the poorest and richest parts of the same city.

That staggering difference is the outcome of a complex set of issues including the availability of education and opportunity, lifestyle factors such as diet and exercise, and the accessibility of city services. But a significant influence on many of those issues is the degree to which the large-scale infrastructures built to support our physiological needs and the demands of the economy also create a high-quality environment for daily life.

The photograph on the right shows two city transport infrastructures that are visually similar, but that couldn’t be more different in their influence on the success of the cities that they are part of.

The picture at the top shows Masshouse Circus in Birmingham in 2001 shortly before it was demolished. It was constructed in the 1960s as part of the city’s inner ring-road, intended to improve connectivity to the national economy through the road network. However, the impact of the physical barrier that it created to pedestrian traffic can be seen by the stark difference in land value inside and outside the “concrete collar” of the ring-road. Inside the collar, land is valuable enough for tall office blocks to be constructed on it; whilst outside it is of such low value that it is used as a ground-level carpark.

In contrast, the pedestrian roundabout in Lujiazui, China pictured at the bottom, constructed over a busy road junction, balances the need to support traffic flows through the city with the need for people to walk freely about the areas in which they live and work. As can be seen from the people walking all around it, it preserves the human vitality of an area that many busy roads flow through. 

We should take insight from these experiences when considering the design of Smart City infrastructures. Unless those infrastructures are designed to be accessible to and usable by citizens, communities and local businesses, they will be as damaging as poorly constructed buildings and poorly designed transport networks. If that sounds extreme, then consider the dangers of cyber-stalking, or the implications of the gun-parts confiscated from a suspected 3D printing gun factory in Manchester last year that had been created on general purpose machinery from digital designs shared through the internet. Digital technology has life and death implications in the real world.

For a start, we cannot take for granted that city residents have the basic ability to access the internet and digital technology. Some 18% of adults in the UK have never been online; and children today without access to the internet at home and in school are at an enormous disadvantage. As digital technology becomes even more pervasive and important, the impact of this digital divide – within and between people, cities and nations – will become more severe. This is why so many people care passionately about the principle of “Net Neutrality” – that the shared infrastructure of the internet provides the same service to all of its users; and does not offer preferential access to those individuals or corporations able to pay for it.

These issues are very relevant to cities and their digital strategies and governance. The operation of any form of network requires physical infrastructure such as broadband cables, wi-fi and 4G antennae and satellite dishes. That infrastructure is regulated by city planning policies. In turn, those planning policies are tools that cities can and should use to influence the way in which technology infrastructure is deployed by private sector service providers.

(Photograph of Aesop’s fable “The Lion and the Mouse” by Liz West)

Little and big

Cities are enormous places in which what matters most is that millions of individually small matters have good outcomes. They work well when their large scale systems support the fine detail of life for every one of their very many citizens: when “big things” and “little things” work well together.

A modest European or US city might have 200,000 to 500,000 inhabitants; a large one might have between one and ten million. The United Nations World Urbanisation Prospects 2011 revision recorded 23 cities with more than 10 million population in 2011 (only six of them in the developed world); and predicted that there would be nearly 40 by 2025 (only eight of them in the developed world – as we define it today). Overall, between now and 2050 the world’s urban population will double from 3 billion to 6 billion. 

A good example of the challenges that this enormous level of urbanisation is already creating is the supply of food. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency; and Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America Feeding the 7 to 10 billion people who will inhabit the planet between now and 2050, and the 3 to 6 billion of them that will live in dense cities, is certainly a challenge on an industrial scale. 

In contrast, Casserole Club, the Northfield Eco-Centre, the Chale Project and many other initiatives around the world have demonstrated the social, health and environmental benefits of producing and distributing food locally. Understanding how to combine the need to supply food at city-scale with the benefits of producing it locally and socially could make a huge difference to the quality of urban lives.

The challenge of providing affordable broadband connectivity throughout cities demonstrates similar issues. Most cities and countries have not yet addressed that challenge: private sector network providers will not deploy connectivity in areas which are insufficiently economically active for them to make a profit, and Government funding is not yet sufficient to close the gap.

In his enjoyable and insightful book “Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia“, Anthony Townsend describes a grass-roots effort by civic activists to provide New York with free wi-fi connectivity. I have to admire the vision and motivation of those involved, but – rightly or wrongly; and as Anthony describes – wi-fi has ultimately evolved to be dominated by commercial organisations.  

As technology continues to improve and to reduce in price, the balance of power between large, commercial, resource-rich institutions and small, agile, resourceful  grassroots innovators will continue to changeTechnologies such as Cloud Computing, social media, 3D printing and small-scale power generation are reducing the scale at which many previously industrial technologies are now economically feasible; however, it will remain the case for the foreseeable future that many city infrastructures – physical and digital – will be large-scale, expensive affairs requiring the buying power and governance of city-scale authorities and the implementation resources of large companies.

But more importantly, neither small-scale nor large-scale solutions alone will meet all of our needs. Many areas in cities – usually those that are the least wealthy – haven’t yet been provided with wi-fi or broadband connectivity by either.  

(Cars in Frederiksberg, Copenhagen wishing to join a main road must give way to cyclists and pedestrians)

(A well designed urban interface between people and infrastructure. Cars in Frederiksberg, Copenhagen wishing to join a main road must give way to cyclists and pedestrians passing along it)

We need to find the middle ground between the motivations, abilities and cultures of large companies and formal institutions on one hand; and those of agile, local innovators and community initiatives on the other. The pilot project to provide broadband connectivity and help using the internet to Castle Vale in Birmingham is a good example of finding that balance.

And I am optimistic that we can find it more often. Whilst Anthony is rightly critical of approaches to designing and building city systems that are led by technology, or that overlook the down-to-earth and sometimes downright “messy” needs of people and communities for favour of unrealistic technocratic and corporate utopias; the reality of the people I know that are employed by large corporations on Smart City projects is that they are acutely aware of the limitations as well as the value of technology, and are passionately committed to the human value of their work. That passion is often reflected in their volunteered commitment to “civic hacking“, open data initiatives, the teaching of technology in schools and other activities that help the communities in which they live to benefit from technology.

But rather than relying on individual passion and integrity, how do we encourage and ensure that large-scale investments in city infrastructures and technology enable small-scale innovation, rather than stifle it?

Smart urbanism and massive/small innovation

I’ve taken enormous inspiration in recent years from the architect Kelvin Campbell whose “Massive / Small” concept and theory of “Smart Urbanism” are based on the belief that successful cities emerge from physical environments that encourage “massive” amounts of “small”-scale innovation – the “lively, diversified city, capable of continual, close- grained improvement and change” that Jane Jacobs described in “The Death and Life of Great American Cities“.

We’ll have to apply similar principles in order for large-scale city technology infrastructures to support localised innovation and value-creation. But what are the practical steps that we can take to put those principles into practise?

Step 1: Make institutions accessible

There’s a very basic behaviour that most of us are quite bad at – listening. In particular, if the institutions of Smart Cities are to successfully create the environment in which massive amounts of small-scale innovation can emerge, then they must listen to and understand what local activists, communities, social innovators and entrepreneurs want and need.

Many large organisations – whether they are local authorities or private sector companies – are poor at listening to smaller organisations. Their decision-makers are very busy; and communications, engagement and purchasing occur through formally defined processes with legal, financial and confidentiality clauses that can be difficult for small or informal organisations to comply with. The more that we address these barriers, the more that our cities will stimulate and support small-scale innovation. One way to do so is through innovations in procurement; another is through the creation of effective engagements programmes, such as the Birmingham Community Healthcare Trust’s “Healthy Villages” project which is listening to communities expressing their need for support for health and wellbeing. This is why IBM started our “Smarter Cities Challenge” which has engaged hundreds of IBM’s Executives and technology experts in addressing the opportunities and challenges of city communites; and in so doing immersed them in very varied urban cultures, economies, and issues.

But listening is also a personal and cultural attitude. For example, in contrast to the current enthusiasm for cities to make as much data as possible available as “open data”, the Knight Foundation counsel a process of engagement and understanding between institutions and communities, in order to identify the specific information and resources that can be most usefully made available by city institutions to individual citizens, businesses and social organisations.

(Delegates at Gov Camp 2013 at IBM’s Southbank office, London. Gov Camp is an annual conference which brings together anyone interested in the use of digital technology in public services. Photo by W N Bishop)

In IBM, we’ve realised that it’s important to us to engage with, listen to and support small-scale innovation in its many forms when helping our customers and partners pursue Smarter City initiatives; from working with social enterprises, to supporting technology start-ups through our Global Entrepreneur Programme, to engaging with the open data and civic hacking movements.

More widely, it is often talented, individual leaders who overcome the barriers to engagement and collaboration between city institutions and localised innovation. In “Resilience: why things bounce back“, Andrew Zolli describes many examples of initiatives that have successfully created meaningful change. A common feature is the presence of an individual who shows what Zolli calls”translational leadership“: the ability to engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.

Step 2: Make infrastructure and technology accessible

Whilst we have a long way to go to address the digital divide, Governments around the world recognise the importance of access to digital technology and connectivity; and many are taking steps to address it, such as Australia’s national deployment of broadband internet connectivity and the UK’s Urban Broadband Fund. However, in most cases, those programmes are not sufficient to provide coverage everywhere.

Some businesses and social initiatives are seeking to address this shortfall. CommunityUK, for example, are developing sustainable business models for providing affordable, accessible connectivity, and assistance using it, and are behind the Castle Vale project in Birmingham. And some local authorities, such as Sunderland and Birmingham, have attempted to provide complete coverage for their citizens – although just how hard it is to achieve that whilst avoiding anti-competition issues is illustrated by Birmingham’s subsequent legal challenges.

We should also tap into the enormous sums spent on the physical regeneration of cities and development of property in them. As I first described in June last year, while cities everywhere are seeking funds for Smarter City initiatives, and often relying on central government or research grants to do so, billions of Pounds, Euros, and Dollars are being spent on relatively conventional property development and infrastructure projects that don’t contribute to cities’ technology infrastructures or “Smart” objectives.

Local authorities could use planning regulations to steer some of that investment into providing Smart infrastructure, basic connectivity, and access to information from city infrastructures to citizens, communities and businesses. Last year, I developed a set of “Smart City Design Principles” on behalf a city Council considering such an approach, including:

Principle 4: New or renovated buildings should be built to contain sufficient space for current and anticipated future needs for technology infrastructure such as broadband cables; and of materials and structures that do not impede wireless networks. Spaces for the support of fixed cabling and other infrastructures should be easily accessible in order to facilitate future changes in use.

Principle 6: Any development should ensure wired and wireless connectivity is available throughout it, to the highest standards of current bandwidth, and with the capacity to expand to any foreseeable growth in that standard.

(The Birmingham-based Droplet smartphone payment service, now also operating in London, is a Smart City start-up that has won backing from Finance Birmingham, a venture capital company owned by Birmingham City Council)

Step 3: Support collaborative innovation

Small-scale, local innovations will always take place, and many of them will be successful; but they are more likely to have significant, lasting, widespread impact when they are supported by city institutions with resources.

That support might vary from introducing local technology entrepreneurs to mentors and investors through the networks of contacts of city leaders and their business partners; through to practical assistance for social enterprises, helping them to put in place very basic but costly administration processes to support their operations.

City institutions can also help local innovations to thrive simply by becoming their customers. If Councils, Universities and major local employers buy services from innovative local providers – whether they be local food initiatives such as the Northfield Ecocentre or high-tech innovations such as Birmingham’s Droplet smartphone payment service – then they provide direct support to the success of those businesses.

In Birmingham,for example, Finance Birmingham (a Council-owned venture capital company) and the Entrepreneurs for the Future (e4F) scheme provide real, material support to the city’s innovative companies; whilst Bristol’s Mayor George Ferguson and Lambeth’s Council both support their local currencies by allowing salaries to be paid in them.

It becomes more obvious  why stakeholders in a city might become involved in collaborative innovation when they have the opportunity to co-create a clear set of shared priorities. Those priorities can be compared to the objectives of innovative proposals seeking support, whether from social initiatives or businesses; used as the basis of procurement criteria for goods, services and infrastructure; set as the objectives for civic hacking and other grass-roots creative events; or even used as the criteria for funding programmes for new city services, such as the “Future Streets Incubator” that will shortly be launched in London as a result of the Mayor of London’s Roads Task Force.

In this context, businesses are not just suppliers of products and services, but also local institutions with significant supply chains, carbon and economic footprints, purchasing power and a huge number of local employees. There are many ways such organisations can play a role in supporting the development of an open, Smarter, more sustainable city.

The following “Smart City Design Principles” promote collaborative innovation in cities by encouraging support from development and regeneration initiatives:

Principle 12: Consultations on plans for new developments should fully exploit the capabilities of social media, virtual worlds and other technologies to ensure that communities affected by them are given the widest, most immersive opportunity possible to contribute to their design.

Principle 13: Management companies, local authorities and developers should have a genuinely engaging presence in social media so that they are approachable informally.

Principle 14: Local authorities should support awareness and enablement programmes for social media and related technologies, particularly “grass roots” initiatives within local communities.

Step 4: Promote open systems

A common principle between the open data movement; civic hacking; localism; the open government movement; and those who support “bottom-up” innovations in Smart Cities is that public systems and infrastructure – in cities and elsewhere – should be “open”. That might mean open and transparent in their operation; accessible to all; or providing open data and API interfaces to their technology systems so that citizens, communities and businesses can adapt them to their own needs. Even better, it might mean all of those things.

The “Dublinked” information sharing partnership, in which Dublin City Council, three surrounding County Councils and  service providers to the city share information and make it available to their communities as “open data”, is a good example of the benefits that openness can bring. Dublinked now makes 3,000 datasets available to local authority analysts; to researchers from IBM Research and the National University of Ireland; and to businesses, entrepreneurs and citizens. The partnership is identifying new ways for the city’s public services and transport, energy and water systems to work; and enabling the formation of new, information-based businesses with the potential to export the solutions they develop in Dublin to cities internationally. It is putting the power of technology and of city information not only at the disposal of the city authority and its agencies, but also into the hands of communities and innovators.

(I was delighted this year to join Innovation Birmingham as a non-Executive Director in addition to my role with IBM. Technology incubators – particularly those, like Innovation Birmingham and Sunderland Software City, that are located in city centres – are playing an increasingly important role in making the support of city institutions and major technology corporations available to local communities of entrepreneurs and technology activists)

In a digital future, the more that city infrastructures and services provide open data interfaces and APIs, the more that citizens, communities and businesses will be able to adapt the city to their own needs. This is the modern equivalent of the grid system that Jane Jacobs promoted as the most adaptable urban form. A grid structure is the basis of Edinburgh’s “New Town”, often regarded as a masterpiece of urban planning that has proved adaptable and successful through the economic and social changes of the past 250 years, and is also the starting point for Kelvin Campbell’s work.

But open data interfaces and APIs will only be widely exploitable if they conform to common standards. In order to make it possible to do something as simple as changing a lightbulb, we rely on open standards for the levels of voltage and power from our electricity supply; the physical dimensions of the socket and bulb and the characteristics of their fastenings; specifications of the bulb’s light and heat output; and the tolerance of the bulb and the fitting for the levels of moisture found in bathrooms and kitchens. Cities are much more complicated than lightbulbs; and many more standards will be required on order for us to connect to and re-configure their systems easily and reliably.

Open standards are also an important tool in avoiding city systems becoming “locked-in” to any particular supplier. By specifying common characteristics that all systems are required to demonstrate, it becomes more straightforward to exchange one supplier’s implementation for another.

Some standards that Smarter City infrastructures can use are already in place – for example, Web services and REST that specify the general ways in which computer systems interact, and the Common Alerting Protocol which is more specific to interactions between systems that monitor and control the physical world. But many others will need to be invented and encouraged to spread. The City Protocol Society is one organisation seeking to develop those new standards; and the British Standards Institute recently published the first set of national standards for Smarter Cities in the UK, including a standard for the interoperability of data between Smart City systems.

Some open source technologies will also be pivotal; open source (software whose source code is freely available to anyone, and which is usually written by unpaid volunteers) is not the same as open standards (independently governed conventions that define the way that technology from any provider behaves). But some open source technologies are so widely used to operate the internet infrastructures that we have become accustomed to – the “LAMP” stack of operating system, web server, database and web progamming language, for example – that they are “de facto” standards that convey some of the benefits of wide usability and interoperability of open standards. For example, IBM recently donated MQTT, a protocol for connecting information between small devices such as sensors and actuators in Smart City systems to the open source community, and it is becoming increasingly widely adopted as a consequence.

Once again, local authorities can contribute to the adoption of open standards through planning frameworks and procurement practises:

Principle 7: Any new development should demonstrate that all reasonable steps have been taken to ensure that information from its technology systems can be made openly available without additional expenditure. Whether or not information is actually available will be dependent on commercial and legal agreement, but it should not be additionally subject to unreasonable expenditure. And where there is no compelling commercial or legal reason to keep data closed, it should actually be made open.

Principle 8: The information systems of any new development should conform to the best available current standards for interoperability between IT systems in general; and for interoperability in the built environment, physical infrastructures and Smarter Cities specifically.

(The town plan for Edinburgh’s New Town, clearly showing the grid structure that gives rise to the adaptability that it is famous for showing for the past 250 years. Image from the JR James archive)

Finally, design skills will be crucial both to creating interfaces to city infrastructures that are truly useful and that encourage innovation; and in creating innovations that exploit them that in turn are useful to citizens.

At the technical level, there is already a rich corpus of best practise in the design of interfaces to technology systems and in the architecture of technology infrastructures that provide them.

But the creativity that imagines new ways to use these capabilities in business and in community initiatives will also be crucial. The new academic discipline of “Service Science” describes how designers can use technology to create new value in local contexts; and treats services such as open data and APIs as “affordances” – capabilities of infrastructure that can be adapted to the needs of an individual. In the creative industries, “design thinkers” apply their imagination and skills to similar subjects.

Step 5: Provide common services

At the 3rd EU Summit on Future Internet, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project, identified the specific tools that local innovators need in order to exploit city information infrastructures. They include real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust.

The Dublinked information sharing partnership is already putting some of these ideas into practise. It provides assistance to innovators in using, analysing and visualising data; and now makes available realtime data showing the location and movements of buses in the city. The partnership is based on specific governance processes that protect data privacy and manage the risk associated with sharing data.

As we continue to engage with communities of innovators in cities, we will discover further requirements of this sort. Imperial College’s “Digital Cities Exchange” research programme is investigating the specific digital services that could be provided as enabling infrastructure to support innovation and economic growth in cities, for example. And the British Standards Institute’s Smart Cities programme includes work on standards that will enable small businesses to benefit from Smart City infrastructure.

Local authorities can adapt planning frameworks to encourage the provision of these services:

Principle 9: New developments should demonstrate that they have considered the commercial viability of providing the digital civic infrastructure services recommended by credible research sources.

Step 6: Establish governance of the information economy

From the exponential growth in digital information we’ve seen in recent years, to the emergence of digital currencies such as Bitcoin, to the disruption of traditional industries by digital technology; it’s clear that we are experiencing an “information revolution” just as significant as the “industrial revolution” of the 18th and 19th centuries. We often refer to the resulting changes to business and society as the development of an “information economy“.

But can we speak in confidence of an information economy when the basis of establishing the ownership and value of its fundamental resource – digital information – is not properly established?

(Our gestures when using smartphones may be directed towards the phones, or the people we are communicating with through them; but how are they interpreted by the people around us? “Oh, yeah? Well, if you point your smartphone at me, I’m gonna point my smartphone at you!” by Ed Yourdon)

A great deal of law and regulation already applies to information, of course – such as the European Union’s data privacy legislation. But practise in this area is far less established than the laws governing the ownership of physical and intellectual property and the behaviour of the financial system that underlie the rest of the economy. This is evident in the repeated controversies concerning the use of personal information by social media businesses, consumer loyalty schemes, healthcare providers and telecommunications companies.

The privacy, security and ownership of information, especially personal information, are perhaps the greatest challenges of the digital age. But that is also a reflection of their importance to all aspects of our lives. Jane Jacobs’ description of urban systems in terms of human and community behaviour was based on those concepts, and is still regarded as the basis of our understanding of cities. New technologies for creating and using information are developing so rapidly that it is not only laws specifically concerning them that are failing to keep up with progress; laws concerning the other aspects of city systems that technology is transforming are failing to adapt quickly enough too.

A start might be to adapt city planning regulations to reflect and enforce the importance of the personal information that will be increasingly accessed, created and manipulated by city systems:

Principle 21: Any information system in a city development should provide a clear policy for the use of personal information. Any use of that information should be with the consent of the individual.

The triumph of the commons

I wrote last week that Smarter Cities should be a “middle-out” economic investment – in other words, an investment in common interests – and compared them to the Economist’s report on the efforts involved in distributing the benefits of the industrial revolution to society at large rather than solely to business owners and the professional classes.

One of the major drivers for the current level of interest in Smarter Cities and technology is the need for us to adapt to a more sustainable way of living in the face of rising global populations and finite resources. At large scale, the resources of the world are common; and at local scale, the resources of cities are common too.

For four decades, it has been widely assumed that those with access to common resources will exploit them for short term gain at the expense of long term sustainability – this is the “tragedy of the commons” first described by the economist Garrett Hardin. But in 2009, Elinor Ostrum won the Nobel Prize for economics by demonstrating that the “tragedy” could be avoidedand that a community could manage and use shared resources in a way that was sustainable in the long-term.

Ostrum’s conceptual framework for managing common resources successfully is a set of criteria for designing “institutions” that consist of people, processes, resources and behaviours. These need not necessarily be formal political or commercial institutions, they can also be social structures. It is interesting to note that some of those criteria – for example, the need for mechanisms of conflict resolution that are local, public, and accessible to all the members of a community – are reflected in the development over the last decade of effective business models for carrying out peer-to-peer exchanges using social media, supported by technologies such as reputation systems.

Of course, there are many people and communities who have championed and practised the common ownership of resources regardless of the supposed “tragedy” – not least those involved in the Transition movement founded by Rob Hopkins, and which has developed a rich understanding of how to successfully change communities for the better using good ideas; or the translational leaders described by Andrew Zolli. But Elinor Ostrum’s ideas are particularly interesting because they could help us to link the design, engineering and governance of Smarter Cities to the achievement of sustainable economic and social objectives based on the behaviour of citizens, communities and businesses.

Combined with an understanding of the stories of people who have improved their lives and communities using technology, I hope that the work of Kelvin Campbell, Rob Hopkins, Andrew Zolli, Elinor Ostrum and many others can inspire technologists, urban designers, architects and city leaders to develop future cities that fully exploit modern technology to be efficient, resilient and sustainable; but that are also the best places to live and work that we can imagine, or that we would hope for for our children.

Cities created by people like that really would be Smart.

Information and choice: nine reasons our future is in the balance

(The Bandra pedestrian skywalk in Mumbai, photo taken from the Collaborative Research Initiative Trust‘s study of Mumbai, “Being Nicely Messy“, produced for the 2012 Audi Urban Futures awards)

The 19th and 20th centuries saw the flowering and maturation of the Industrial Revolution and the creation of the modern world. Standards of living worldwide increased dramatically as a consequence – though so did inequality.

The 21st century is already proving to be different. We are reaching the limits of supply of the natural resources and cheap energy that supported the last two centuries of development; and are starting to widely exploit the most powerful man-made resource in history: digital information.

Our current situation isn’t simply an evolution of the trends of the previous two centuries; nine “tipping points” in economics, society, technology and the environment indicate that our future will be fundamentally different to the past, not just different by degree.

Three of those tipping points represent changes that are happening as the ultimate consequences of the Industrial Revolution and the economic globalisation and population growth it created; three of them are the reasons I think it’s accurate to characterise the changes we see today as an Information Revolution; and the remaining three represent challenges for us to face in the future.

The difficulty faced in addressing those challenges internationally through global governance institutions is illustrated by the current status of world trade deal and climate change negotiations; but our ability to respond to them is not limited to national and international governments. It is in the hands of businesses, communities and each of us as individuals as new business models emerge.

The structure of the economy is changing

In 2012, the Collaborative Research Initiatives Trust were commissioned by the Audi Urban Futures Awards to develop a vision for the future of work and life in Mumbai. In the introduction to their report, “Being Nicely Messy“, they cite a set of statistics describing Mumbai’s development that nicely illustrate the changing nature of the city:

“While the population in Mumbai grew by 25% between 1991 and 2010, the number of people travelling by trains during the same years increased by 66% and the number of vehicles grew by 181%. At the same time, the number of enterprises in the city increased by 56%.

All of this indicates a restructuring of the economy, where the nature of work and movement has changed.”

(From “Being Nicely Messy“, 2011, Collaborative Research Initiatives Trust)

Following CRIT’s inspiration, over the last year I’ve been struck by several similar but more widely applicable sets of data that, taken together, indicate that a similar restructuring is taking place across the world.

ScreenHunter_223 Nov. 28 00.06

(Professor Robert Gordon’s analysis of historic growth in productivity, as discussed by the famous investor Jeremy Grantham, showing that the unusual growth experienced through the Industrial Revolution may have come to an end. Source: Gordon, Robert J., “Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six Headwinds,” NBER Working Paper 18315, August 2012)

The twilight of the Industrial Revolution

Tipping point 1: the slowing of economic growth

According to the respected investor Jeremy Grantham, Economic growth has slowed systemically and permanently. He states that: “Resource costs have been rising, conservatively, at 7% a year since 2000 … in a world growing at under 4% and [in the] developed world at under 1.5%”

Grantham’s analysis is that the rapid economic growth of the last century was a historical anomaly driven by the productivity improvements made possible through the Industrial Revolution; and before that revolution reached such a scale as to create global competition for resources and energy. Property and technology bubbles extended that growth into the early 21st Century, but it has now reduced to much more modest levels where Grantham expects it to remain. The economist Tyler Cowan came to similar conclusions in his 2011 book, “The Great Stagnation“.

This analysis was supported by the property developers I met at a recent conference in Birmingham. They told me that indicators in their market today are the most positive they have been since the start of the 1980s property boom; but none of them expect that boom to be repeated. The market is far more cautious concerning medium and long-term prospects for growth.

We have passed permanently into an era of more modest economic growth than we have become accustomed to; or at very least into an era whereby we need to restructure the relationship between economic growth and the consumption of resources and energy in ways that we have not yet determined before higher growth does return. We have passed a tipping point; the world has changed.

(Growth in the world's urban population as reported by World Urbanization Prospects”, 2007 Revision, Department of Economic and Social Affairs, United Nations)

(Growth in the world’s urban population as reported by “World Urbanization Prospects”, 2007 Revision, Department of Economic and Social Affairs, United Nations)

Tipping point 2: urbanisation and the industrialisation of food supply 

As has been widely quoted in recent years, more than half the world’s population has lived in cities since 2010 according to the United Nations Department of Economic and Social Affairs. That percentage is expected to increase to 70% by 2050.

The implications of those facts concern not just where we live, but the nature of the economy. Cities became possible when we industrialised the production and distribution of food, rather than providing it for ourselves on a subsistence basis; or producing it in collaboration with our neighbours. For this reason, many developing nations still undergoing urbanisation and industrialisation – such as Tanzania, Turkmenistan and Tajikstan – still formally define cities by criteria including “the pre-dominance of non-agricultural workers and their families” (as referenced in the United Nations’ “World Urbanization Prospects” 2007 Revision).

So for the first time more than half the world’s population now lives in cities; and is provided with food by industrial supply chains rather than by families or neighbours. We have passed a tipping point; the world has changed.

(Estimated damage in $US billion caused by natural disasters between 1900 and 2012 as reported by EM-DAT)

(Estimated damage in $US billion caused by natural disasters between 1900 and 2012 as reported by EM-DAT)

Tipping point 3: the frequency and impact of extreme weather conditions

As our climate changes, we are experiencing more unusual and extreme weather. In addition to the devastating impact recently of Typhoon Haiyan in the Philippines,  cities everywhere are regularly experiencing the effects to a more modest degree.

One city in the UK told me recently that inside the last 12 months they have dealt with such an increase in incidents of flooding severe enough to require coordinated cross-city action that it has become an urgent priority for local Councillors. We are working with other cities in Europe to understand the effect of rising average levels of flooding – historic building construction codes mean that a rise in average levels of a meter or more could put significant numbers of buildings at risk of falling down. The current prediction from the United Nations International Panel on Climate Change is that levels will rise somewhere between 26cm and 82cm by the end of this century – close enough for concern.

The EM-DAT International Disasters Database has calculated the financial impact of natural disasters over the past century. They have shown that in recent years the increased occurrence of unusual and extreme weather combined with the increasing concentration of populations and economic activity in cities has caused this impact to rise at previously unprecedented rates.

The investment markets have identified and responded to this trend. In their recent report “Global Investor Survey on Climate Change”, the Global Investor Coalition on Climate Change reported this year that 53% of fund managers collectively responsible for $14 trillion of assets indicated that they had divested stocks, or chosen not to invest in stocks, due to concerns over the impact of climate change on the businesses concerned. We have passed a tipping point; the world has changed.

(The prediction of exponential growth in digital information from EMC's Digital Universe report)

(The prediction of exponential growth in digital information from EMC’s Digital Universe report)

The dawn of the Information Revolution

Tipping point 4: exponential growth in the world’s most powerful man-made resource, digital information

Information has always been crucial to our world. Our use of language to share it is arguably a defining characteristic of what it means to be human; it is the basis of monetary systems for mediating the exchange of goods and services; and it is a core component of quantum mechanics, one of the most fundamental physical theories that describes how our universe behaves.

But the emergence of broadband and mobile connectivity over the last decade have utterly transformed the quantity of recorded information in the world and our ability to exploit it.

EMC’s Digital Universe report shows that in between 2010 and 2012 more information was recorded than in all of previous human history. They predict that the quantity of information recorded will double every 2 years, meaning that at any point in the next two decades it will be true to make the same assertion that “more information was recorded in the last two years than in all of previous history”. In 2011 McKinsey described the “information economy” that has emerged to exploit this information as a fundamental shift in the basis of the economy as a whole.

Not only that, but information has literally been turned into money. The virtual currency Bitcoin is based not on the value of a raw material such as gold whose availability is physically limited; but on the outcomes of extremely complex cryptographic calculations whose performance is limited by the speed at which computers can process information. The value of Bitcoins is currently rising incredibly quickly – from $20 to $1000 since January; although it is also subject to significant fluctuations. 

Ultimately, Bitcoin itself may succeed or fail – and it is certainly used in some unethical and dangerous transactions as well as by ordinary people and businesses. But its model has demonstrated in principle that a decentralised, non-national, information-based currency can operate successfully, as my colleague Richard Brown recently explained.

Digital information is the most valuable man-made resource ever invented; it began a period of exponential growth just three years ago and has literally been turned into money. We have passed a tipping point; the world has changed.

Tipping point 5: the disappearing boundary between humans, information and the physical world

In the 1990s the internet began to change the world despite the fact that it could only be accessed by using an expensive, heavy personal computer; a slow and inconvenient telephone modem; and the QWERTY keyboard that was designed in the 19th Century to prevent typists from typing faster than the levers in mechanical typewriters could move.

Three years ago, my then 2-year-old son taught himself how to use a touchscreen tablet to watch cartoons from around the world before he could read or write. Two years ago, Scientists at the University of California at Berkeley used a Magnetic Resonance Imaging facility to capture images from the thoughts of a person watching a film. A less sensitive mind-reading technology is already available as a headset from Emotiv, which my colleagues in IBM’s Emerging Technologies team have used to help a paralysed person communicate by thinking directional instructions to a computer.

Earlier this year, a paralysed woman controlled a robotic arm by thought; and prosthetic limbs, a working gun and living biological structures such as muscle fibre and skin are just some of the things that can be 3D printed on demand from raw materials and digital designs.

Our thoughts can control information in computer systems; and information in those systems can quite literally shape the world around us. The boundaries between our minds, information and the physical world are disappearing. We have passed a tipping point; the world has changed.

(A personalised prosthetic limb constructed using 3D printing technology. Photo by kerolic)

Tipping point 6: the miniaturisation of industry

The emergence of the internet as a platform for enabling sales, marketing and logistics over the last decade has enabled small and micro-businesses to reach markets across the world that were previously accessible only to much larger organisations with international sales and distribution networks.

More recently, the emergence and maturation of technologies such as 3D printingopen-source manufacturing and small-scale energy generation are enabling small businesses and community initiatives to succeed in new sectors by reducing the scale at which it is economically viable to carry out what were previously industrial activities – a trend recently labelled by the Economist magazine as the “Third Industrial Revolution“. The continuing development of social media and pervasive technology enable them to rapidly form and adapt supply and exchange networks with other small-scale producers and consumers.

Estimates of the size of the resulting “sharing economy“, defined by Wikipedia as “economic and social systems that enable shared access to goods, services, data and talent“, vary widely, but are certainly significant. The UK Economist magazine reports one estimate that it is a $26 billion economy already, whilst 2 Degrees Network report that just one aspect of it – small-scale energy generation – could save UK businesses £33 billion annually by 2030Air B’n’B – a peer-to-peer accommodation service – reported recently that they had contributed $632 million in value to New York’s economy in 2012 by enabling nearly 5,000 residents to earn an average of $7,500 by renting their spare rooms to travellers; and as a consequence of those travellers additionally spending an average of $880 in the city during their stay. Overall, there has been a significant rise in self-employment and “micro-entrepreneurial” enterprises over the last few years, which now account for 14% of the US economy.

Organisations participating in the sharing economy exhibit a range of motivations and ethics – some are aggressively commercial, whilst others are “social enterprises” with a commitment to reinvest profits in social growth. The social enterprise sector, comprised of mutuals, co-operatives, employee-owned businesses and enterprises who submit to “triple bottom line” accounting of financial, social and environmental capital, is about 15% of the value of most economies, and has been growing and creating jobs faster than traditional business since the 2008 crash.

In the first decade of the 21st Century, mobile and internet technologies caused a convergence between the technology, communications and media sectors of the economy. In this decade, we will see far more widespread disruptions and convergences in the technology, manufacturing, creative arts, healthcare and utilities industries; and enormous growth in the number of small and social enterprises creating innovative business models that cut across them. We have passed a tipping point; the world has changed.

Rebalancing the world

Tipping point 7: how we respond to climate change and resource constraints

There is now agreement amongst scientists, expressed most conclusively by the United Nations International Panel on Climate Change this year, that the world is undergoing a period of overall warming resulting from the impact of human activity. But there is not yet a consensus on how we should respond.

Views vary from taking immediate, sweeping measures to drastically cut carbon and greenhouse gas emissions,  to the belief that we should accept climate change as inevitable and focus investment instead on adapting to it, as suggested by the “Skeptical Environmentalist” Bjørn Lomborg and the conservative think-tank the American Enterprise Institute. As a result of this divergence of opinion, and of the challenge of negotiating between the interests of countries, communities and businesses across the world, the agreement reached by last year’s climate change negotiations in Doha was generally regarded as relatively weak.

Professor Chris Rogers of the University of Birmingham and his colleagues in the Urban Futures initiative have assessed over 450 proposed future scenarios and identified four archetypes (described in his presentation to Base Cities Birmingham) against which they assess the cost and effectiveness of environmental and climate interventions. The “Fortress World” scenario is divided between an authoritarian elite who control the world’s resources from their protected enclaves and a wider population living in poverty. In “Market Forces”, free markets encourage materialist consumerism to wholly override social and environmental values; whilst in “Policy Reform” a combination of legislation and citizen behaviour change achieve a balanced outcome. And in the “New Sustainability Paradigm” the pursuit of wealth gives way to a widespread aspiration to achieve social equality and environmental sustainability. (Chris is optimistic enough that his team dismissed another scenario, “Breakdown”, as unrealistic).

Decisions that are taken today affect the degree to which our world will evolve to resemble those scenarios. As the impact of weather and competition for resources affect the stability of supply of energy and foodmany cities are responding to the relative lack of national and international action by taking steps themselves. Some businesses are also building strategies for long-term success and profit growth  around sustainability; in part because investing in a resilient world is a good basis for a resilient business, and in part because they believe that a genuine commitment to sustainability will appeal to consumers. Unilever demonstrated that they are following this strategy recently by committing to buy all of their palm oil – of which they consume one third of the world’s supply – from traceable sources by the end of 2014.

At some point, we will all – individuals, businesses, communities, governments – be forced to change our behaviour to account for climate change and the limits of resource availability: as the prices of raw materials, food and energy rise; and as we are more and more directly affected by the consequences of a changing environment.

The questions are: to what extent have these challenges become urgent to us already; and how and when will we respond?

(“Makers” at the Old Print Works in Balsall Heath, Birmingham, sharing the tools, skills and ideas that create successful small businesses)

Tipping point 8: the end of the average career

In “The End of Average“, the economist Tyler Cowen observed that about 60% of the jobs lost during the 2008 recession were in mid-wage occupations; and the UK Economist magazine reported that many jobs lost from professional industries had been replaced in artisan trades and small-scale industry such as food, furniture and design.

Echoing Jeremy Grantham, Cowen further observes that these changes take place within a much longer term 28% decline in middle-income wages in the US between 1969 and 2009 which has no identifiable single cause. Cowen worries that this is a sign that the economy is beginning to diverge into the authoritarian elite and the impoverished masses of Chris Rogers’ “Fortress World” scenario.

Other evidence points to a more complex picture. Jake Dunagan, Research Director of the Institute for the Future, believes that the widespread availability of digital technology and information is extending democracy and empowerment – just as the printing press and education did in the last millennium as they dramatically increased the extent to which people were informed and able to make themselves heard. Dunagan notes that through our reliance on technology and social media to find and share information, our thoughts and beliefs are already formed by, and having an effect on, society in a way that is fundamentally new.

The miniaturisation of industry (tipping point 6 above) and the disappearance of the boundary between our minds and bodies, information and the physical world (tipping point 5 above) are changing the ways in which resources and value are exchanged and processed out of all recognition. Just imagine how different the world would be if a 3D-printing service such as Shapeways transformed the manufacturing industry as dramatically as iTunes transformed the music industry 10 years ago. Google’s futurologist Thomas Frey recently described 55 “jobs of the future” that he thought might appear as a result.

(Activities comprising the “Informal Economy” and their linkages to the mainstream economy, by Claro Partners)

In both developed and emerging countries, informal, social and micro-businesses are significant elements of the economy, and are growing more quickly than traditional sectorsClaro partners estimate that the informal economy (in which they include alternative currencies, peer-to-peer businesses, temporary exchange networks and micro-businesses – see diagram, right) is worth $10 trillion worldwide, and that it employs up to 80% of the workforce in emerging markets. 

In developed countries, the Industrial Revolution drove a transformation of such activity into a more formal economy – a transformation which may now be in part reversing. In developing nations today, digital technology may make part of that transformation unnecessary. 

To be successful in this changing economy, we will need to change the way we learn, and the way we teach our children. Cowen wrote that “We will move from a society based on the pretense that everyone is given an okay standard of living to a society in which people are expected to fend for themselves much more than they do now”; and expressed a hope that online education offers the potential for cheaper and more widespread access to new skills to enable people to do so. This thinking echoes a finding of the Centre for Cities report “Cities Outlook 1901” that the major factor driving the relative success or failure of UK cities throughout the 20th Century was their ability to provide their populations with the right skills at the right time as technology and industry developed.

The marketeer and former Yahoo Executive Seth Godin’s polemic “Stop Stealing Dreams” attacked the education system for continuing to prepare learners for stable, traditional careers rather than the collaborative entrepreneurialism that he and other futurists expect to be required. Many educators would assert that their industry is already adapting and will continue to do so – great change is certainly expected as the ability to share information online disrupts an industry that developed historically to share it in classrooms and through books.

Many of the businesses, jobs and careers of 2020, 2050 and 2100 will be unrecognisable or even unimaginable to us today; as are the skills that will be needed to be successful in them. Conversely, many post-industrial cities today are still grappling with challenges created by the loss of jobs in manufacturing, coalmining and shipbuilding industries in the last century.

The question for our future is: will we adapt more comfortably to the sweeping changes that will surely come to the industries that employ us today?

("Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(“Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

Tipping point 9: inequality

The benefits of living in cities are distributed extremely unevenly.

The difference in life expectancy of children born into the poorest and wealthiest areas of UK cities today is often as much as 20 years – for boys in Glasgow the difference is 28 years. That’s a deep inequality in the opportunity to live.

There are many causes of that inequality, of course: health, diet, wealth, environmental quality, peace and public safety, for example. All of them are complex, and the issues that arise from them to create inequality – social deprivation and immobility, economic disengagement, social isolation, crime and lawlessness – are notoriously difficult to address.

But a fundamental element of addressing them is choosing to try to do so. That’s a trite observation, but it is nonetheless the case that in many of our activities we do not make that choice – or, more accurately, as individuals, communities and businesses we take choices primarily in our own interests rather than based on their wider impact.

Writing about cities in the 1960s, the urbanist Jane Jacobs observed that:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

In many respects, we have not shaped the financial machinery of the world to achieve equality. Nobel Laureate Joseph Stiglitz wrote recently that in fact the financial machinery of the United States and the UK in particular create considerable inequality in those countries; and the Economist magazine reminds us of the enormous investments made into public institutions in the past in order to distribute the benefits of the Industrial Revolution to society at large rather than concentrate them on behalf of business owners and the professional classes – with only partial success.

New legislation in banking has been widely debated and enacted since the 2008 financial crisis – enforcing the separation of commercial and investment banking, for example. But addressing inequality is a much broader challenge than the regulation of banking, and will not only be addressed by legislation. Business models such as social enterprise, cross-city collaborations and the sharing economy are emerging to develop sustainable businesses in industries such as food, energy, transportation and finance, in addition to the contribution made by traditional businesses building sustainability into their strategies.

Whenever we vote, buy something or make a choice in business, we contribute to our overall choice to develop a fairer, more sustainable world in which everyone has a chance to participate. The question is not just whether we will take those choices; but the degree to which their impact on the wider world will be apparent to us so that we can do so in an informed way.

That is a challenge that technology can help with.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times. The predictions gave commuters the opportunity to take a better-informed choice about their travel to work.)

Data and Choice

Like the printing press, the vote and education, access to data allows us to make more of a difference than we were able to without it.

Niall Firth’s November editorial for the New Scientist magazine describes how citizens of developing nations are using open data to hold their governments to account, from basic information about election candidates to the monitoring of government spending. In the UK, a crowd-sourced analysis of politicians’ expenses claims that had been leaked to the press resulted in resignations, the repayment of improperly claimed expenses, and in the most severe cases, imprisonment.

Unilever are committing to making their supply chain for palm oil traceable precisely because that data is what will enable them to next improve its sustainability; and in Almere, city data and analytics are being used to plan future development of the city in a way that doesn’t cause harmful impacts to existing citizens and residents. Neither initiative would have been possible or affordable without recent improvements in technology.

Data and technology, appropriately applied, give us an unprecedented ability to achieve our long-term objectives by taking better-informed, more forward-looking decisions every day, in the course of our normal work and lives. They tell us more than we could ever previously have known about the impact of those decisions.

That’s why the tipping points I’ve described in this article matter to me. They translate my general awareness that I should “do the right thing” into a specific knowledge that at this point in time, my choices in many aspects of daily work and life contribute to powerful forces that will shape the next century that we share on this planet; and that they could help to tip the balance in all of our favour.

%d bloggers like this: