Information and choice: nine reasons our future is in the balance

(The Bandra pedestrian skywalk in Mumbai, photo taken from the Collaborative Research Initiative Trust‘s study of Mumbai, “Being Nicely Messy“, produced for the 2012 Audi Urban Futures awards)

The 19th and 20th centuries saw the flowering and maturation of the Industrial Revolution and the creation of the modern world. Standards of living worldwide increased dramatically as a consequence – though so did inequality.

The 21st century is already proving to be different. We are reaching the limits of supply of the natural resources and cheap energy that supported the last two centuries of development; and are starting to widely exploit the most powerful man-made resource in history: digital information.

Our current situation isn’t simply an evolution of the trends of the previous two centuries; nine “tipping points” in economics, society, technology and the environment indicate that our future will be fundamentally different to the past, not just different by degree.

Three of those tipping points represent changes that are happening as the ultimate consequences of the Industrial Revolution and the economic globalisation and population growth it created; three of them are the reasons I think it’s accurate to characterise the changes we see today as an Information Revolution; and the remaining three represent challenges for us to face in the future.

The difficulty faced in addressing those challenges internationally through global governance institutions is illustrated by the current status of world trade deal and climate change negotiations; but our ability to respond to them is not limited to national and international governments. It is in the hands of businesses, communities and each of us as individuals as new business models emerge.

The structure of the economy is changing

In 2012, the Collaborative Research Initiatives Trust were commissioned by the Audi Urban Futures Awards to develop a vision for the future of work and life in Mumbai. In the introduction to their report, “Being Nicely Messy“, they cite a set of statistics describing Mumbai’s development that nicely illustrate the changing nature of the city:

“While the population in Mumbai grew by 25% between 1991 and 2010, the number of people travelling by trains during the same years increased by 66% and the number of vehicles grew by 181%. At the same time, the number of enterprises in the city increased by 56%.

All of this indicates a restructuring of the economy, where the nature of work and movement has changed.”

(From “Being Nicely Messy“, 2011, Collaborative Research Initiatives Trust)

Following CRIT’s inspiration, over the last year I’ve been struck by several similar but more widely applicable sets of data that, taken together, indicate that a similar restructuring is taking place across the world.

ScreenHunter_223 Nov. 28 00.06

(Professor Robert Gordon’s analysis of historic growth in productivity, as discussed by the famous investor Jeremy Grantham, showing that the unusual growth experienced through the Industrial Revolution may have come to an end. Source: Gordon, Robert J., “Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six Headwinds,” NBER Working Paper 18315, August 2012)

The twilight of the Industrial Revolution

Tipping point 1: the slowing of economic growth

According to the respected investor Jeremy Grantham, Economic growth has slowed systemically and permanently. He states that: “Resource costs have been rising, conservatively, at 7% a year since 2000 … in a world growing at under 4% and [in the] developed world at under 1.5%”

Grantham’s analysis is that the rapid economic growth of the last century was a historical anomaly driven by the productivity improvements made possible through the Industrial Revolution; and before that revolution reached such a scale as to create global competition for resources and energy. Property and technology bubbles extended that growth into the early 21st Century, but it has now reduced to much more modest levels where Grantham expects it to remain. The economist Tyler Cowan came to similar conclusions in his 2011 book, “The Great Stagnation“.

This analysis was supported by the property developers I met at a recent conference in Birmingham. They told me that indicators in their market today are the most positive they have been since the start of the 1980s property boom; but none of them expect that boom to be repeated. The market is far more cautious concerning medium and long-term prospects for growth.

We have passed permanently into an era of more modest economic growth than we have become accustomed to; or at very least into an era whereby we need to restructure the relationship between economic growth and the consumption of resources and energy in ways that we have not yet determined before higher growth does return. We have passed a tipping point; the world has changed.

(Growth in the world's urban population as reported by World Urbanization Prospects”, 2007 Revision, Department of Economic and Social Affairs, United Nations)

(Growth in the world’s urban population as reported by “World Urbanization Prospects”, 2007 Revision, Department of Economic and Social Affairs, United Nations)

Tipping point 2: urbanisation and the industrialisation of food supply 

As has been widely quoted in recent years, more than half the world’s population has lived in cities since 2010 according to the United Nations Department of Economic and Social Affairs. That percentage is expected to increase to 70% by 2050.

The implications of those facts concern not just where we live, but the nature of the economy. Cities became possible when we industrialised the production and distribution of food, rather than providing it for ourselves on a subsistence basis; or producing it in collaboration with our neighbours. For this reason, many developing nations still undergoing urbanisation and industrialisation – such as Tanzania, Turkmenistan and Tajikstan – still formally define cities by criteria including “the pre-dominance of non-agricultural workers and their families” (as referenced in the United Nations’ “World Urbanization Prospects” 2007 Revision).

So for the first time more than half the world’s population now lives in cities; and is provided with food by industrial supply chains rather than by families or neighbours. We have passed a tipping point; the world has changed.

(Estimated damage in $US billion caused by natural disasters between 1900 and 2012 as reported by EM-DAT)

(Estimated damage in $US billion caused by natural disasters between 1900 and 2012 as reported by EM-DAT)

Tipping point 3: the frequency and impact of extreme weather conditions

As our climate changes, we are experiencing more unusual and extreme weather. In addition to the devastating impact recently of Typhoon Haiyan in the Philippines,  cities everywhere are regularly experiencing the effects to a more modest degree.

One city in the UK told me recently that inside the last 12 months they have dealt with such an increase in incidents of flooding severe enough to require coordinated cross-city action that it has become an urgent priority for local Councillors. We are working with other cities in Europe to understand the effect of rising average levels of flooding – historic building construction codes mean that a rise in average levels of a meter or more could put significant numbers of buildings at risk of falling down. The current prediction from the United Nations International Panel on Climate Change is that levels will rise somewhere between 26cm and 82cm by the end of this century – close enough for concern.

The EM-DAT International Disasters Database has calculated the financial impact of natural disasters over the past century. They have shown that in recent years the increased occurrence of unusual and extreme weather combined with the increasing concentration of populations and economic activity in cities has caused this impact to rise at previously unprecedented rates.

The investment markets have identified and responded to this trend. In their recent report “Global Investor Survey on Climate Change”, the Global Investor Coalition on Climate Change reported this year that 53% of fund managers collectively responsible for $14 trillion of assets indicated that they had divested stocks, or chosen not to invest in stocks, due to concerns over the impact of climate change on the businesses concerned. We have passed a tipping point; the world has changed.

(The prediction of exponential growth in digital information from EMC's Digital Universe report)

(The prediction of exponential growth in digital information from EMC’s Digital Universe report)

The dawn of the Information Revolution

Tipping point 4: exponential growth in the world’s most powerful man-made resource, digital information

Information has always been crucial to our world. Our use of language to share it is arguably a defining characteristic of what it means to be human; it is the basis of monetary systems for mediating the exchange of goods and services; and it is a core component of quantum mechanics, one of the most fundamental physical theories that describes how our universe behaves.

But the emergence of broadband and mobile connectivity over the last decade have utterly transformed the quantity of recorded information in the world and our ability to exploit it.

EMC’s Digital Universe report shows that in between 2010 and 2012 more information was recorded than in all of previous human history. They predict that the quantity of information recorded will double every 2 years, meaning that at any point in the next two decades it will be true to make the same assertion that “more information was recorded in the last two years than in all of previous history”. In 2011 McKinsey described the “information economy” that has emerged to exploit this information as a fundamental shift in the basis of the economy as a whole.

Not only that, but information has literally been turned into money. The virtual currency Bitcoin is based not on the value of a raw material such as gold whose availability is physically limited; but on the outcomes of extremely complex cryptographic calculations whose performance is limited by the speed at which computers can process information. The value of Bitcoins is currently rising incredibly quickly – from $20 to $1000 since January; although it is also subject to significant fluctuations. 

Ultimately, Bitcoin itself may succeed or fail – and it is certainly used in some unethical and dangerous transactions as well as by ordinary people and businesses. But its model has demonstrated in principle that a decentralised, non-national, information-based currency can operate successfully, as my colleague Richard Brown recently explained.

Digital information is the most valuable man-made resource ever invented; it began a period of exponential growth just three years ago and has literally been turned into money. We have passed a tipping point; the world has changed.

Tipping point 5: the disappearing boundary between humans, information and the physical world

In the 1990s the internet began to change the world despite the fact that it could only be accessed by using an expensive, heavy personal computer; a slow and inconvenient telephone modem; and the QWERTY keyboard that was designed in the 19th Century to prevent typists from typing faster than the levers in mechanical typewriters could move.

Three years ago, my then 2-year-old son taught himself how to use a touchscreen tablet to watch cartoons from around the world before he could read or write. Two years ago, Scientists at the University of California at Berkeley used a Magnetic Resonance Imaging facility to capture images from the thoughts of a person watching a film. A less sensitive mind-reading technology is already available as a headset from Emotiv, which my colleagues in IBM’s Emerging Technologies team have used to help a paralysed person communicate by thinking directional instructions to a computer.

Earlier this year, a paralysed woman controlled a robotic arm by thought; and prosthetic limbs, a working gun and living biological structures such as muscle fibre and skin are just some of the things that can be 3D printed on demand from raw materials and digital designs.

Our thoughts can control information in computer systems; and information in those systems can quite literally shape the world around us. The boundaries between our minds, information and the physical world are disappearing. We have passed a tipping point; the world has changed.

(A personalised prosthetic limb constructed using 3D printing technology. Photo by kerolic)

Tipping point 6: the miniaturisation of industry

The emergence of the internet as a platform for enabling sales, marketing and logistics over the last decade has enabled small and micro-businesses to reach markets across the world that were previously accessible only to much larger organisations with international sales and distribution networks.

More recently, the emergence and maturation of technologies such as 3D printingopen-source manufacturing and small-scale energy generation are enabling small businesses and community initiatives to succeed in new sectors by reducing the scale at which it is economically viable to carry out what were previously industrial activities – a trend recently labelled by the Economist magazine as the “Third Industrial Revolution“. The continuing development of social media and pervasive technology enable them to rapidly form and adapt supply and exchange networks with other small-scale producers and consumers.

Estimates of the size of the resulting “sharing economy“, defined by Wikipedia as “economic and social systems that enable shared access to goods, services, data and talent“, vary widely, but are certainly significant. The UK Economist magazine reports one estimate that it is a $26 billion economy already, whilst 2 Degrees Network report that just one aspect of it – small-scale energy generation – could save UK businesses £33 billion annually by 2030Air B’n’B – a peer-to-peer accommodation service – reported recently that they had contributed $632 million in value to New York’s economy in 2012 by enabling nearly 5,000 residents to earn an average of $7,500 by renting their spare rooms to travellers; and as a consequence of those travellers additionally spending an average of $880 in the city during their stay. Overall, there has been a significant rise in self-employment and “micro-entrepreneurial” enterprises over the last few years, which now account for 14% of the US economy.

Organisations participating in the sharing economy exhibit a range of motivations and ethics – some are aggressively commercial, whilst others are “social enterprises” with a commitment to reinvest profits in social growth. The social enterprise sector, comprised of mutuals, co-operatives, employee-owned businesses and enterprises who submit to “triple bottom line” accounting of financial, social and environmental capital, is about 15% of the value of most economies, and has been growing and creating jobs faster than traditional business since the 2008 crash.

In the first decade of the 21st Century, mobile and internet technologies caused a convergence between the technology, communications and media sectors of the economy. In this decade, we will see far more widespread disruptions and convergences in the technology, manufacturing, creative arts, healthcare and utilities industries; and enormous growth in the number of small and social enterprises creating innovative business models that cut across them. We have passed a tipping point; the world has changed.

Rebalancing the world

Tipping point 7: how we respond to climate change and resource constraints

There is now agreement amongst scientists, expressed most conclusively by the United Nations International Panel on Climate Change this year, that the world is undergoing a period of overall warming resulting from the impact of human activity. But there is not yet a consensus on how we should respond.

Views vary from taking immediate, sweeping measures to drastically cut carbon and greenhouse gas emissions,  to the belief that we should accept climate change as inevitable and focus investment instead on adapting to it, as suggested by the “Skeptical Environmentalist” Bjørn Lomborg and the conservative think-tank the American Enterprise Institute. As a result of this divergence of opinion, and of the challenge of negotiating between the interests of countries, communities and businesses across the world, the agreement reached by last year’s climate change negotiations in Doha was generally regarded as relatively weak.

Professor Chris Rogers of the University of Birmingham and his colleagues in the Urban Futures initiative have assessed over 450 proposed future scenarios and identified four archetypes (described in his presentation to Base Cities Birmingham) against which they assess the cost and effectiveness of environmental and climate interventions. The “Fortress World” scenario is divided between an authoritarian elite who control the world’s resources from their protected enclaves and a wider population living in poverty. In “Market Forces”, free markets encourage materialist consumerism to wholly override social and environmental values; whilst in “Policy Reform” a combination of legislation and citizen behaviour change achieve a balanced outcome. And in the “New Sustainability Paradigm” the pursuit of wealth gives way to a widespread aspiration to achieve social equality and environmental sustainability. (Chris is optimistic enough that his team dismissed another scenario, “Breakdown”, as unrealistic).

Decisions that are taken today affect the degree to which our world will evolve to resemble those scenarios. As the impact of weather and competition for resources affect the stability of supply of energy and foodmany cities are responding to the relative lack of national and international action by taking steps themselves. Some businesses are also building strategies for long-term success and profit growth  around sustainability; in part because investing in a resilient world is a good basis for a resilient business, and in part because they believe that a genuine commitment to sustainability will appeal to consumers. Unilever demonstrated that they are following this strategy recently by committing to buy all of their palm oil – of which they consume one third of the world’s supply – from traceable sources by the end of 2014.

At some point, we will all – individuals, businesses, communities, governments – be forced to change our behaviour to account for climate change and the limits of resource availability: as the prices of raw materials, food and energy rise; and as we are more and more directly affected by the consequences of a changing environment.

The questions are: to what extent have these challenges become urgent to us already; and how and when will we respond?

(“Makers” at the Old Print Works in Balsall Heath, Birmingham, sharing the tools, skills and ideas that create successful small businesses)

Tipping point 8: the end of the average career

In “The End of Average“, the economist Tyler Cowen observed that about 60% of the jobs lost during the 2008 recession were in mid-wage occupations; and the UK Economist magazine reported that many jobs lost from professional industries had been replaced in artisan trades and small-scale industry such as food, furniture and design.

Echoing Jeremy Grantham, Cowen further observes that these changes take place within a much longer term 28% decline in middle-income wages in the US between 1969 and 2009 which has no identifiable single cause. Cowen worries that this is a sign that the economy is beginning to diverge into the authoritarian elite and the impoverished masses of Chris Rogers’ “Fortress World” scenario.

Other evidence points to a more complex picture. Jake Dunagan, Research Director of the Institute for the Future, believes that the widespread availability of digital technology and information is extending democracy and empowerment – just as the printing press and education did in the last millennium as they dramatically increased the extent to which people were informed and able to make themselves heard. Dunagan notes that through our reliance on technology and social media to find and share information, our thoughts and beliefs are already formed by, and having an effect on, society in a way that is fundamentally new.

The miniaturisation of industry (tipping point 6 above) and the disappearance of the boundary between our minds and bodies, information and the physical world (tipping point 5 above) are changing the ways in which resources and value are exchanged and processed out of all recognition. Just imagine how different the world would be if a 3D-printing service such as Shapeways transformed the manufacturing industry as dramatically as iTunes transformed the music industry 10 years ago. Google’s futurologist Thomas Frey recently described 55 “jobs of the future” that he thought might appear as a result.

(Activities comprising the “Informal Economy” and their linkages to the mainstream economy, by Claro Partners)

In both developed and emerging countries, informal, social and micro-businesses are significant elements of the economy, and are growing more quickly than traditional sectorsClaro partners estimate that the informal economy (in which they include alternative currencies, peer-to-peer businesses, temporary exchange networks and micro-businesses – see diagram, right) is worth $10 trillion worldwide, and that it employs up to 80% of the workforce in emerging markets. 

In developed countries, the Industrial Revolution drove a transformation of such activity into a more formal economy – a transformation which may now be in part reversing. In developing nations today, digital technology may make part of that transformation unnecessary. 

To be successful in this changing economy, we will need to change the way we learn, and the way we teach our children. Cowen wrote that “We will move from a society based on the pretense that everyone is given an okay standard of living to a society in which people are expected to fend for themselves much more than they do now”; and expressed a hope that online education offers the potential for cheaper and more widespread access to new skills to enable people to do so. This thinking echoes a finding of the Centre for Cities report “Cities Outlook 1901” that the major factor driving the relative success or failure of UK cities throughout the 20th Century was their ability to provide their populations with the right skills at the right time as technology and industry developed.

The marketeer and former Yahoo Executive Seth Godin’s polemic “Stop Stealing Dreams” attacked the education system for continuing to prepare learners for stable, traditional careers rather than the collaborative entrepreneurialism that he and other futurists expect to be required. Many educators would assert that their industry is already adapting and will continue to do so – great change is certainly expected as the ability to share information online disrupts an industry that developed historically to share it in classrooms and through books.

Many of the businesses, jobs and careers of 2020, 2050 and 2100 will be unrecognisable or even unimaginable to us today; as are the skills that will be needed to be successful in them. Conversely, many post-industrial cities today are still grappling with challenges created by the loss of jobs in manufacturing, coalmining and shipbuilding industries in the last century.

The question for our future is: will we adapt more comfortably to the sweeping changes that will surely come to the industries that employ us today?

("Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(“Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

Tipping point 9: inequality

The benefits of living in cities are distributed extremely unevenly.

The difference in life expectancy of children born into the poorest and wealthiest areas of UK cities today is often as much as 20 years – for boys in Glasgow the difference is 28 years. That’s a deep inequality in the opportunity to live.

There are many causes of that inequality, of course: health, diet, wealth, environmental quality, peace and public safety, for example. All of them are complex, and the issues that arise from them to create inequality – social deprivation and immobility, economic disengagement, social isolation, crime and lawlessness – are notoriously difficult to address.

But a fundamental element of addressing them is choosing to try to do so. That’s a trite observation, but it is nonetheless the case that in many of our activities we do not make that choice – or, more accurately, as individuals, communities and businesses we take choices primarily in our own interests rather than based on their wider impact.

Writing about cities in the 1960s, the urbanist Jane Jacobs observed that:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

In many respects, we have not shaped the financial machinery of the world to achieve equality. Nobel Laureate Joseph Stiglitz wrote recently that in fact the financial machinery of the United States and the UK in particular create considerable inequality in those countries; and the Economist magazine reminds us of the enormous investments made into public institutions in the past in order to distribute the benefits of the Industrial Revolution to society at large rather than concentrate them on behalf of business owners and the professional classes – with only partial success.

New legislation in banking has been widely debated and enacted since the 2008 financial crisis – enforcing the separation of commercial and investment banking, for example. But addressing inequality is a much broader challenge than the regulation of banking, and will not only be addressed by legislation. Business models such as social enterprise, cross-city collaborations and the sharing economy are emerging to develop sustainable businesses in industries such as food, energy, transportation and finance, in addition to the contribution made by traditional businesses building sustainability into their strategies.

Whenever we vote, buy something or make a choice in business, we contribute to our overall choice to develop a fairer, more sustainable world in which everyone has a chance to participate. The question is not just whether we will take those choices; but the degree to which their impact on the wider world will be apparent to us so that we can do so in an informed way.

That is a challenge that technology can help with.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times. The predictions gave commuters the opportunity to take a better-informed choice about their travel to work.)

Data and Choice

Like the printing press, the vote and education, access to data allows us to make more of a difference than we were able to without it.

Niall Firth’s November editorial for the New Scientist magazine describes how citizens of developing nations are using open data to hold their governments to account, from basic information about election candidates to the monitoring of government spending. In the UK, a crowd-sourced analysis of politicians’ expenses claims that had been leaked to the press resulted in resignations, the repayment of improperly claimed expenses, and in the most severe cases, imprisonment.

Unilever are committing to making their supply chain for palm oil traceable precisely because that data is what will enable them to next improve its sustainability; and in Almere, city data and analytics are being used to plan future development of the city in a way that doesn’t cause harmful impacts to existing citizens and residents. Neither initiative would have been possible or affordable without recent improvements in technology.

Data and technology, appropriately applied, give us an unprecedented ability to achieve our long-term objectives by taking better-informed, more forward-looking decisions every day, in the course of our normal work and lives. They tell us more than we could ever previously have known about the impact of those decisions.

That’s why the tipping points I’ve described in this article matter to me. They translate my general awareness that I should “do the right thing” into a specific knowledge that at this point in time, my choices in many aspects of daily work and life contribute to powerful forces that will shape the next century that we share on this planet; and that they could help to tip the balance in all of our favour.

Better stories for Smarter Cities: three trends in urbanism that will reshape our world

(Stories of Mumbai: an exploration of Mumbai’s history of urban development, and its prospects for the future, using storytelling and puppetshows, by the BMW Guggenheim Lab)

Towards the end of last year, it became clearer how cities could take practical steps to position themselves to transform to meet the increasing economic, environmental and social challenges facing them; and to seek investment to support those transformations, as I described in “Smart Ideas for Everyday Cities“.

Equally important as those practical approaches to organisation, though, are the conceptual tools that will shape those transformations. Across fields as diverse as psychology, town planning, mathematics, construction, service-design and technology, some striking common themes have emerged that are shaping those tools.

Those themes imply that we will need to take radically different approaches to city systems driven by the astonishing, exciting and sometimes disturbing changes that we’re likely to see taking place increasingly rapidly in our world over the next decade.

To adopt the terminology of Irene Ng, a Researcher in new economic models and service science at the University of Warwick, these changes will create both “needs-led” and “capability-led” drivers to do things differently.

“Needs-led” changes will be driven by the massive growth taking place in the global middle class as economies across the world modernise. The impacts will be varied and widespread, including increasing business competition in a single, integrated economy; increasing competition for resources such as food, water and energy; and increasing fragility in the systems that supply those resources to a population that is ever more concentrated in cities. We are already seeing these effects in our everyday lives: many of us are paying more for our food as a proportion of our income than a few years ago.

At a recent lecture on behalf of the International Federation for Housing and Planning and the Association of European Schools of Planning, Sir Peter Hall, Professor of Planning and Regeneration at the Bartlett School of Planning, spoke of the importance of making the growth of cities sustainable through the careful design of the transport systems that support them. In the industrial revolution, as Edward Glaeser described in Triumph of the City, cities grew up around lifts powered by steam engines; Sir Peter described how more recently they have grown outwards into suburbs populated with middle-class car-owners who habitually drive to work, schools, shops, gyms and parks.

This lifestyle simply cannot be sustained – in the developed world or in emerging economies – across such an explosively growing number of people who have the immediate wealth to afford it, but who are not paying the full price of the resources it consumes. According to the exhibition in Siemens’ “Crystal” building, where Sir Peter’s lecture was held, today’s middle class is consuming resources at one-and-a-half times the rate the world creates them; unless something changes, the rate of growth of that lifestyle will hurl us towards a global catastrophe.

So, as the Collective Research Initiatives Trust (CRIT) observed in their study of the ongoing evolution of Mumbai, “Being Nicely Messy“, the structure of movement and the economy will have to change.

(Siemens’ Crystal building in London, a show case for sustainable technology in cities, photographed by Martin Deutsch)

Meanwhile, the evolution of technology is creating incredible new opportunities for “capability-led” change.

In the last two decades, we have seen the world revolutionised by information and communication technologies such as the internet and SmartPhones; but this is only the very start of a transformation that is still gathering pace. Whilst so far these technologies have created an explosion in the availability of information, recent advances in touch-screen technology and speech recognition are just starting to demonstrate that the boundary between the information world and physical, biological and neural systems is starting to disappear.

For example, a paralysed woman recently controlled a robotic arm by thought; and prosthetic limbs, a working gun and living biological structures such as muscle fibre and skin are just some of the things that can be 3D printed on demand from raw materials and digital designs.

What changes to our urban systems will these developments – and the ones that follow them – lead to?

Following the decline of industries such as manufacturing, resource-mining and ship-building,  many post-industrial cities in the developed world are rebuilding their economies around sectors with growth potential, such as environmental technology and creative media. They are also working with the education system to provide their citizens with access to the skills those sectors require.

Supplying the skills that today’s economy needs can be a challenge. Google’s Chairman Eric Schmidt lambasted the British Education system last year for producing insufficient computer programming skills; and a cross-industry report, “Engineering the Future“, laid out the need for increased focus on environmental, manufacturing, technology and engineering skills to support future economic growth in the UK. As the rate of change in science and technology increases, the skills required in a consequently changing economy will also change more rapidly; providing those skills will be an even bigger challenge.

Or will it? How much of a leap forward is required from the technologies I’ve just described, to imagining that by 2030, people will respond to the need for changing skills in the market by downloading expertise Matrix-style to exploit new employment opportunities?

Most predictions of the future turn out to be wrong, and I’m sure that this one will be, in part or in whole. But as an indication of the magnitude of changes we can expect across technology, business, society and our own physical and mental behaviour I expect it will be representative.

Our challenge is to understand how these needs-led and capability-led transformations can collectively create a world that is sustainable; and that is sympathetic to us as human beings and communities. That challenge will be most acute where both needs and capabilities are most concentrated – in cities. And across economics, architecture, technology and human behaviour, three trends in urban thinking have emerged – or, at least, become more prominent – in recent years that provide guiding principles for how we might meet that challenge.

The attraction of opposites, part 1: producer and consumer

20120605-005134.jpg

(Photograph of 3D printers by Rob Boudon)

In the Web 2.0 era (roughly 2003-2009), the middle classes of the developed world became connected by “always-on” broadband connections, turning these hundreds of millions of information-consumers into information-producers. That is why in 2007 (and every year since) more new information was created than in all of the previous 5 millenia. Industries such as publishing, music and telecommunications have been utterly transformed as a result.

The disappearance of the boundary between  information, physical and biological systems, and the explosive growth in the population with access to the technologies responsible for that disappearance, will transform every economic and social structure we can imagine through the same producer / consumer revolution.

We can already produce as well as consume transport resources by participating in car-sharing schemes; and energy by exploiting domestic solar power and bio-energy. The falling cost and increasing sophistication of 3D printers are just starting to make it feasible to manufacture some products in the home, particularly in specialist areas such as railway modelling; and platforms such as the Amazon Turk and Slivers of Time can quickly connect producers and consumers in the service industries.

Business-to-business and business-to-consumer marketplaces such as Big Barn and Sustaination provide the same service in local food systems. And the transport industry is evolving to serve these new markets: for instance, Shutl provide a marketplace for home delivery services through a community of independent couriers; and a handful of cities are deploying or planning recycling systems in which individual items of waste are distributed to processing centres through pneumatically powered underground transport networks.

Of course, from the earliest development of farming in human culture, we have all been both producers and consumers in a diversified economy. What’s new is the opportunity for technology to dramatically improve the flexibility, timeliness and efficiency of the value-chains that connect those two roles. Car-sharing not only reduces the amount of fuel used by our journeys; it could reduce the resources consumed by manufacturing vehicles that spend the majority of their lives stationary on drives or in car parks. Markets that more efficiently connect food production, processing and consumption could reduce the thousands of miles that food currently travels between farm and fork, often crossing its own path several times; they could create employment opportunities in small-scale food processing; not to mention reducing the vast quantity of food that is produced but not eaten, and goes to waste.

Irene Ng explores these themes wonderfully in her new book, “Value and Worth: Creating New Markets in the Digital Economy“; they offer us exciting opportunities for economic and social growth, and an evolution towards a more sustainable urban future – if we can harness them in that way.

The attraction of opposites, part 2: little and big

Some infrastructures can be “blunt” instruments: from roads and railway lines which connect their destinations but which cut apart the communities they pass through; to open data platforms which provide vast quantities of data “as-is” but little in the way of information and services customised to the needs of local individuals and communities.

Architects such as Jan Gehl have argued that the design process for cities should concentrate on the life between buildings, rather than on the structure of buildings; and that cities should be constructed at a “human-scale” – medium-sized buildings, not tower-blocks and sky-scrapers; and streets that are walkable and cycle-able, not dominated by cars. In transport, elevated cycleways and pedestrian roundabouts have appeared in Europe and Asia. These structures prevent road traffic infrastructures form impeding the fluid movement of cycling and walking – transport modes which allow people to stop and interact in a city more easily and often than driving.

At a meeting held in London last year to establish the UK’s chapter to the City Protocol Society, Keith Coleman of Capgemini offered a different view by comparing the growth in size of cities to the structure of the world’s largest biological organisms. In particular, Keith contrasted the need to provide infrastructure – such as the Pando forest in Utah, a single, long-lived and vastly extensive root system supporting millions of individual trees that live, grow and die independently – with the need to provide capabilities – such as those encoded in the genes of the Neptune sea grass, which is not a single organism, but rather a genetically identical colony which collectively covers 5% of the Mediterranean sea floor.

The Collective Research Initiatives Trust‘s study of Mumbai, “Being Nicely Messy“, Colin Rowe and Fred Koetter’s “Collage City“, Manu Fernandez’s “Human Scale Cities” project and CHORA’s Taiwan Strait Atlas project have all suggested an approach to urban systems that is more like the Neptune sea grass than the Pando forest: the provision of a “toolkit” for individuals and organisations to apply in their local context

My own work, initially in Sunderland, was similarly informed by the Knight Foundation’s report on the Information Needs of Communities, to which I was introduced by Conn Crawford of Sunderland City Council. It counsels for a process of engagement and understanding between city institutions and communities, in order that the resources of large organisations can be focused on providing the information and services that can be most effectively used by individual citizens, businesses and social organisations.

(The Bristol Pound, a local currency intended to encourage and reinforce local trading synergies.)

Kelvin Campbell of Urban Initiatives has perhaps taken this thinking furthest in the urban context in his concept of “Massive Small” and the “urban operating system”. Similar thinking appears throughout research on resilience in systems such as cities, coral reefs, terrorist networks and financial systems, as described by Andrew Zolli and Ann Marie Healy in “Resilience: Why Things Bounce Back“. And it is reflected in the work that many researchers and professionals across fields as diverse as city planning, economics and technology are doing to understand how institutional city systems can engage effectively with “informal” activity in the economy.

In IBM we have adapted our approach too. To take one example, a few years ago we launched our “Global Entrepreneur” programme, through which we engage directly with small, startup businesses using technology to develop what we call “Smarter Planet” and “Smarter Cities” solutions. These businesses are innovating in specific markets that they understand much better than we do; using operating models that IBM does not have. In turn, IBM’s resources can help them build more resilient solutions more quickly and cost-effectively, and reach a wider set of potential customers across the world.

A civic infrastructure that combines economics and technology and that, whilst it has a long history,  is starting to evolve rapidly, is the local currency. Last year Bristol became the fifth place in the UK to launch its own currency; whilst in Switzerland an alternative currency, the Wir, is thought to have contributed to the stability of the Swiss economy for the last century by providing an alternative, more flexible basis for debt, by allowing repayments to made in kind through bartering, as well as in currency.

Such systems can promote local economic synergy, and enable the benefits of capital fluidity to be adapted to the needs of local contexts. And from innovations in mobile banking in Africa to Birmingham’s DropletPay SmartPhone payment system, they are rapidly exploiting new technologies. They are a clear example of a service that city and economic institutions can support; and that can be harnessed and used by individuals and organisations anywhere in a city ecosystem for the purposes that are most important and valuable to them.

IMG-20121104-00606

(The Co-operative Society building at Avoncroft Museum of Historic Buildings)

Co-operative Governance

It’s increasingly obvious that on their own, traditional businesses and public and civic institutions won’t deliver the transformations that our cities, and our planet, need. The restructuring of our economy, cities and society to address the environmental and demographic challenges we face requires that social, environmental and long term economic goals drive our decisions, rather than short term financial returns alone.

Alternatives have been called for and proposed. In her speech ahead of the Rio +20 Summit, Christine Lagarde, Managing Director of the International Monetary Fund, said that one of the challenges for achieving a sustainable, equitably distributed return to growth following the recent economic challenges was that “externalities” such as social and environmental impacts are not currently included in the prices of goods and services.

I participated last year in a panel discussion at the World Bank’s “Rethinking Cities” conference which asked whether including those costs would incent consumers to chose to purchase sustainably provided goods and services. We examined several ways to create positive and negative incentives through pricing; but also examples of simply “removing the barriers” to making such choices. Our conclusion was that a combination of approaches was needed, including new ideas from game theory and technology, such as “open data”; and that evidence exists from a variety of examples to prove that consumer behaviour can and does adapt in response to well designed systems.

In “Co-op Capitalism“, Noreena Hertz proposed an alternative approach to enterprise based on social principles, where the objectives of collective endeavours are to return broad value to all of their stakeholders rather than to pay dividends to financial investors. This approach has a vital role in enabling communities across the entirety of city ecosystems to harness and benefit from technology in a sustainable way, and is exemplified by innovations such as MyDex in personal information management, Carbon Voyage in transport, and Eco-Island in energy.

New forms of cooperation have also emerged from resilience research, such as “constellations” and “articulations”. All of these approaches have important roles to play in specific city systems, community initiatives and new businesses, where they successfully create synergies between the financial, social and economic capabilities and needs of the participants involved.

But none of them directly address the need for cities to create a sustainable, cohesive drive towards a sustainable, equitable, successful future.

(Photo by Greg Marshall of the rocks known as “The Needles” just off the coast of the Isle of Wight; illustrating the potential for the island to exploit wave and tidal energy sources through the Eco-Island initiative)

In “Smart Ideas for Everyday Cities“, I described an approach that seems to be emerging from the cities that have made the most progress so far. It involves bringing together stakeholders across city systems – representatives of communities; city institutions; owners and operators of city systems and assets such as buildings, transportation and utilities; Universities and schools; and so on – into a group that can not only agree a vision and priorities for the city’s future; but that is empowered to take collective decisions accordingly.

The initiatives agreed by such a group will require individual “special purpose vehicles” (SPVs) to be created according to the specific set of stakeholder interests involved in each case – such as public/private partnerships to build infrastructure or Community Interest Companies and Energy Service Companies to operate local energy schemes. (There are some negative connotations associated with SPVs, which have been used in some cases by private organisations seeking to hide their debt or ownership; but in the Smarter Cities context they are frequently associated with more positive purposes).

Most importantly, though: where a series of such schemes and commercial ventures are initiated by a stable collaboration within a city, investors will see a reliable decision-making process and a mature understanding of shared risk and its management; making each individual initiative more likely to attract investment.

In his analysis of societal responses to critical environmental threats, Jared Diamond noted in his 2005 book “Collapse” that successful responses often emerge when choices are taken by leaders with long-term vested interests, working closely with their communities. In a modern economy, the interests of stakeholders are driven by many timescales – electoral cycles, business cycles, the presence of commuters, travellers and the transient and long-term residents of the city, for example. Bringing those stakeholders together can create a forum that transcends individual timescales, creating stability and the opportunity for a long-term outlook.

A challenge for 2013: better stories for Smarter Cities

Some cities are seizing the agenda for change that I have described in this article; and the very many of us across countries, professions and disciplines who are exploring that agenda are passionate about helping them to do so successfully.

In their report “Cities Outlook 1901“, Centre for Cities explored the previous century of urban development in the UK, examining why at various times some cities thrived and some did not. They concluded that actions taken by cities in areas such as planning, policy, skills development and economic strategy could have significant effects on their economic and social prosperity relative to others.

The need for cities to respond to the challenges and opportunities of the future using the old, new and evolving tools at their disposal is urgent. In the 20th Century, some cities suffered a gradual decline as they failed to respond successfully to the changes of their age. In the 21st Century those changes will be so striking, and take place so quickly, that failing to meet them could result in a decline that is catastrophic.

But there is a real impediment to our ability to apply these ideas in cities today: a lack of common understanding.

(Matthew Boulton, James Watt and William Murdoch, Birmingham’s three fathers of the Industrial Revolution, photographed by Neil Howard)

As the industrial and information revolutions have led our world to develop at a faster and faster pace, human knowledge has not just grown dramatically; it has fragmented to an extraordinary extent.

Consequently, across disciplines such as architecture, economics, social science, psychology, technology and all the many other fields important to the behaviour of cities, a vast and confusing array of language and terminology is used – a Tower of Babel, no less. The leaders of many city institutions and businesses are understandably not familiar with what they can easily perceive as jargon; and new ideas that appear to be presented in jargon are unlikely to be trusted.

To address the challenge, those of us who believe in these new approaches to city systems need to tell better stories about them; stories about individuals and their lives in the places where they live and work; how they will be more healthy, better equiped to support themselves, and able to move around freely in a pleasant urban environment.

Professor Miles Tight at the University of Birmingham and his colleagues in the “Visions 2030” project have applied this idea to the description of future scenarios for transportation in cities. They have created a series of visually appealing animated depictions of everyday scenes in city streets and places that could be the result of the various forces affecting the development of transport over the next 20 years. Malcolm Allan, a colleague in the Academy of Urbanism, helps cities to tell “stories about place” as a tool for envisaging their future development in a way that people can understand and identify with. And my colleagues in IBM Research have been exploring more generally how storytelling can enable the exchange of knowledge in situations where collaborative creativity is required across multiple domains of specialisation.

If we can bring our knowledge of emerging technologies and new approaches to urbanism into conversations about specific places in the form of stories, we will build trust and understanding in those places, as well as envisioning their possible futures. And that will give us a real chance of achieving the visions we create. This is what I’ll be concentrating on doing in 2013; and it looks like being an exciting year.

(It’s been much longer than usual since I last wrote an article for this blog; following an extended break over Christmas and the New Year, I’ve had a very busy start to 2013. I hope to resume my usual frequency of writing for the rest of the year.

And finally, an apology: in my remarks on the panel discussion following Sir Peter Hall’s lecture at the Crystal, I gave a very brief summary of some of the ideas described in this article. In particular, I used the term “Massive / Small” without attributing it to Kelvin Campbell and Urban Initiatives. My apologies to Kelvin, whose work and influence on my thinking I hope I have now acknowledged properly).

Zen and the art of messy urbanism

(Children playing in the “Science Garden” outside Birmingham’s Science Museum at Millenium Point; part of the new Eastside City Park, a vast urban space surrounded by education, culture and manufacturing.)

Over the past few months and weeks, some interesting announcements have been made concerning emerging frameworks and protocols for Smarter Cities.

Perhaps the highest profile was the formation of the “City Protocol” collaboration in Barcelona, which will be formally launched at the Smart City Expo later this month. The protocol has been established to identify and capture emerging practises and standards to promote interoperability across city systems and enable progress towards city-level goals to be stimulated, coordinated and measured.

More recently, UN-HABITAT, the United Nations agency for human settlements which promotes socially and environmentally sustainable towns and cities, and a source frequently referred to for statistics concerning the progress of urbanisation, published its “State of the World’s Cities 2012/2013” report, which includes extensive consultation with cities around the world. It proposes a number of new mechanisms which are intended to assist decision makers in cities.

These resources of knowledge and experience will be key to helping cities face the grand challenge of demographics, economics and sustainability that is becoming acute. In a paper published in the respected, peer-reviewed scientific journal Nature, Professors Geoffrey West and Luis Bettencourt described it as “the greatest challenge that the planet has faced since humans became social“; and we have already seen evidence of its urgency. The “Barnett graph of doom“, for example, famously predicted that within 20 years, unless significant changes in public services are made, cities will be unable to afford to provide any services except social care; the UK’s energy regulator Ofgem’s recently warned that the country could experience power shortages in the winter of 2015-2016; and there is concern that this year’s drought in the US will once again cause food shortages across the world.

However, we should not expect that cities will reach a sustainable future state through the process of city leaders and institutions adopting a deterministic framework or method. Such an approach may work when applied to the transformation of organisations and their formal relationships with partners; but cities are more fundamentally complex “systems of systems” incorporating vast numbers of autonomous agents and interrelationships.

The Collective Research Initiatives Trust (CRIT) recently produced a fascinating piece of research, “Being Nicely Messy“, about the evolution of Mumbai’s economy in this context. As a background for the transformative changes taking place, they state that:

“While the population in Mumbai grew by 25% between 1991 and 2010, the number of people traveling by trains during the same years increased by 66% and number of vehicles grew by 181%. At the same time, the number of enterprises in the city increased by 56%. All of this indicates a restructuring of the economy, where the nature of work and movement has changed.”

Rather than focus on the policies and approaches of the city’s institutions, CRIT’s research focussed on the activities of everyday entrepreneurs in Mumbai – average people, finding a way to make their livelihood within the city:

“… new patterns of work emerged as the new entrepreneurs struggled to survive and settle. they occupied varied locations and blurred the distinction between formality and informality; legality and illegality as all of them produced legitimate commodities and services.”

“… the entrepreneurs of Mumbai have innovatively occupied city spaces maximizing their efficiency …”

“… the blurry / messy condition … contributes to the high transactional capacity of the urban form.”

“… mumbai’s urbanism is like a froth with overlapping ecosystems of geographies, legislations, claims, powers, kinships, friendships & information.”

Crucially, CRIT relate this “messy” innovative activity to the ability of individuals within the city to access opportunities to create their own wealth and livelihood within the city and its changing economy:

“… mobility or to mobilize is the ability to navigate the complex urban ecosystem of geographies, legislations, claims, powers, relationships and information to construct one’s path for the future amidst these movements.”

(Photo by lecercle of a girl in Mumbai doing her homework on whatever flat surface she could find. Her use of a stationary tool usually employed for physical mobility to enhance her own social mobility is an example of the very basic capacity we all have to use the resources available to us in innovative ways)

This sort of organic innovation takes place continuously in cities, and increasingly exploits technology resources as well as the capacity of the physical urban environment and its transport systems. For example I wrote recently about the community innovation that’s taking place in Birmingham currently; including “social media surgeries” and “hacking” weekends. There is currently a considerable hope that this adoption of technology by community innovators will enable them to achieve an impact on cities as a whole.

But creating sustainable, scalable new enterprises and city services from these innovations is not straightforward. After analysing the challenges that have caused many such initiatives to achieve only temporary results, O’Reilly Radar wrote recently that cities seeking to sustainably exploit open data and hacktivism need to invest in “sustainability, community, and civic value”; and San Francisco announced a series of measures, including both legislation for open data and the appointment of a “Chief Data Officer” for the city, intended to achieve that. I have previously argued that in addition, cities should analyse the common technology services required to support these innovations in a secure and scalable way, and make them available to communities, innovators and entrpreneurs.

For this to happen, new relationships are required between city institutions, their service delivery and technology partners, communities, entrepreneurs, businesses, social enterprises and all of the other very varied stakeholders in the city ecosystem. I’ve previously described the conversations and creation of trust required to build these relationships as a “soft infrastructure” for cities; and new models of collaborative decision-making and activity such as “constellations” and “articulations” are emerging to describe them.

It’s very important to not be too structured in our thinking about soft infrastructure. There is a temptation to revert to thinking in silos, and assume that city communities can be segmented into areas of separate concern such as neighbourhoods, sectors such as “digital entrepreneurs”, or service user communities such as “commuters”. To do this is to forget where and how innovation and the creation of new value often occurs.

Michael Porter, creator of the famous “five forces” model of business, and his colleagues have written that new value is often created when capabilities – and technologies – are converged across sectors. In 2006,  IBM’s worldwide survey of CEOs in public and private sector carried out with The Economist’s Intelligence Unit identified several different areas of innovation: products and services, markets, operations and business models. In particular, innovations that use new business models to offer products and services that transcend and even disrupt existing market structures have the potential to create the most value.

The CRIT research recognised this need to blur boundaries; and went further to state that imposing formal boundaries inhibits the transactions that create value in the economy and society of cities. Tim Stonor has written and presented extensively on the idea that a city should be a “transaction engine”; and many urbanists have asserted that it is the high density of interactions that cities make possible that have led to the city becoming the predominant form of human habitation.

(Photo by Halans of volunteers collecting food for OzHarvest, who redistribute excess food from restaurants and hotels in Australian cities to charities supporting the vulnerable.)

Human thinking creates boundaries in the world; our minds recognise patterns and we impose those patterns on our perceptions and understanding. But this can inhibit our ability to recognise new possibilities and opportunities. Whilst many useful patterns do seem to be emerging from urban innovation – a re-emergence of bartering and local exchanges, social enterprises and community interest companies, sustainable districts, for example – it’s far too early for us to determine a market segmentation for the application of those models across city systems. Rather than seeking to stimulate innovation within specific sectors, CRIT argue instead for the provision of catalogues of “tools” that can be used by innovators in whatever context is appropriate for them.

The European Bio-Energy Research Institute in Birmingham, for example, is seeking to establish a regional supply chain of SMEs to support its work to develop small-scale, sustainable technology for recovering energy from waste food and sewage; in Mexico City, a new bartering market allows residents to exchange recyclable waste material for food; and in the UK the “Eco-Island” Community Interest Company is establishing a local smart-grid on the Isle of Wight to harness sustainable energy sources to enable the entire island to become self-sufficient in energy. These very different models are converging city systems such as food, waste and energy and disrupting the traditional models for supporting them.

In “The Way of Zen“, Alan Watts comments of Zen art that “the very technique involves the art of artlessness, or what Sabro Hasegawa has called the ‘controlled accident’, so that paintings are formed as naturally as the rocks and grasses which they depict”. Just as the relentless practise of technique can enable artists to have “beautiful accidents” when inspiration strikes; so cities should look to provide more effective tools to innovators for them to exploit in whatever context they can create new value. We should not expect the results always to be neat and tidy; and nor should our approach to encouraging them be.

%d bloggers like this: