Can Smarter City technology measure and improve our quality of life?

(Photo of Golden Gate Bridge, San Francisco, at night by David Yu)

Can information and technology measure and improve the quality of life in cities?

That seems a pretty fundamental question for the Smarter Cities movement to address. There is little point in us expending time and money on the application of technology to city systems unless we can answer it positively. It’s a question that I had the opportunity to explore with technologists and urbanists from around the world last week at the Urban Systems Collaborative meeting in London, on whose blog this article will also appear.

Before thinking about how we might approach such a challenging and complex issue, I’d like to use two examples to support my belief that we will eventually conclude that “yes, information and technology can improve the quality of life in cities.”

The first example, which came to my attention through Colin Harrison, who heads up the Urban Systems Collaborative, concerns public defibrillator devices – equipment that can be used to give an electric shock to the victim of a heart attack to restart their heart. Defibrillators are positioned in many public buildings and spaces. But who knows where they are and how to use them in the event that someone nearby suffers a heart attack?

To answer those questions, many cities now publish open data lists of the locations of publically-accessible Defibrillators. Consequently, SmartPhone apps now exist that can tell you where the nearest one to you is located. As cities begin to integrate these technologies with databases of qualified first-aiders and formal emergency response systems, it becomes more feasible that when someone suffers a heart attack in a public place, a nearby first-aider might be notified of the incidence and of the location of a nearby defibrillator, and be able to respond valuable minutes before the arrival of emergency services. So in this case, information and technology can increase the chancees of heart attack victims recovering.

(Why Smarter Cities matter: "Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(Why Smarter Cities matter: “Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy across London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

In a more strategic scenario, the Centre for Advanced Spatial Analysis (CASA) at University College London have mapped life expectancy at birth across London. Life expectancy across the city varies from 75 to 96 years, and CASA’s researchers were able to correlate it with a variety of other issues such as child poverty.

Life expectancy varies by 10 or 20 years in many cities in the developed world; analysing its relationship to other economic, demographic, social and spatial information can provide insight into where money should be spent on providing services that address the issues leading to it, and that determine quality of life. The UK Technology Strategy Board cited Glasgow’s focus on this challenge as one of their reasons for investing £24 million in Glasgow’s Future Cities Demonstrator project – life expectancy at birth for male babies in Glasgow varies by 26 years between the poorest and wealthiest areas of the city.

These examples clearly show that in principle urban data and technology can contribute to improving quality of life in cities; but they don’t explain how to do so systematically across the very many aspects of quality of life and city systems, and between the great variety of urban environments and cultures throughout the world. How could we begin to do that?

Deconstructing “quality of life”

We must first think more clearly about what we mean by “quality of life”. There are many needs, values and outcomes that contribute to quality of life and its perception. Maslow’s “Hierarchy of Needs” is a well-researched framework for considering them. We can use this as a tool for considering whether urban data can inform us about, and help us to change, the ability of a city to create quality of life for its inhabitants.

(Maslow’s Hierarchy of Needs, image by Factoryjoe via Wikimedia Commons)

But whilst Maslow’s hierarchy tells us about the various aspects that comprise the overall quality of life, it only tells us about our relationship with them in a very general sense. Our perception of quality of life, and what creates it for us, is highly variable and depends on (at least) some of the following factors:

  • Individual lifestyle preferences
  • Age
  • Culture and ethnicity
  • Social standing
  • Family status
  • Sexuality
  • Gender
  • … and so on.

Any analysis of the relationship between quality of life, urban data and technology must take this variability into account; either by allowing for it in the analytic approach; or by enabling individuals and communities to customise the use of data to their specific needs and context.

Stress and Adaptability

Two qualities of urban systems and life within them that can help us to understand how urban data of different forms might relate to Maslow’s hierarchy of needs and individual perspectives on it are stress and adaptability.

Jurij Paraszczak, IBM’s Director of Research for Smarter Cities, suggested that one way to improve quality of life is to reduce stress. A city with efficient, well integrated services – such as transport; availability of business permits etc. – will likely cause less stress, and offer a higher quality of life, than a city whose services are disjointed and inefficient.

One cause of stress is the need to change. The Physicist Geoffrey West is one of many scientists who has explored the roles of technology and population growth in speeding up city systems; as our world changes more and more quickly, our cities will need to become more agile and adaptable – technologists, town planners and economists all seem to agree on this point.

The architect Kelvin Campbell has explored how urban environments can support adaptability by enabling actors within them to innovate with the resources available to them (streets, buildings, spaces, technology) in response to changes in local and global context – changes in the economy of cultural trends, for example.

Service scientists” analyse the adaptability of systems (such as cities) by considering the “affordances” they offer to actors within them. An “affordance” is a capability within a system that is not exercised until an actor chooses to exercise it in order to create value that is specific to them, and specific to the time, place and context within which they act.

An “affordance” might be the ability to start a temporary business or “pop-up” shop within a disused building by exploiting a temporary exemption from planning controls. Or it might be the ability to access open city data and use it as the basis of new information-based business services. (I explored some ideas from science, technology, economics and urbanism for creating adaptability in cities in an article in March this year).

(Photo by lecercle of a girl in Mumbai doing her homework on whatever flat surface she could find. Her use of a stationary tool usually employed for physical mobility to enhance her own social mobility is an example of the very basic capacity we all have to use the resources available to us in innovative ways)

Stress and adaptability are linked. The more personal effort that city residents must exert in order to adapt to changing circumstances (i.e. the less that a city offers them useful affordances), then the more stress they will be subjected to.

Stress; rates of change; levels of effort and cost exerted on various activities: these are all things that can be measured.

Urban data and quality of life in the district high street

In order to explore these ideas in more depth, our discussion at the Urban Systems Collaborative meeting explored a specific scenario systematically. We considered a number of candidate scenarios – from a vast city such as New York, with a vibrant economy but affected by issues such as flood risk; through urban parks and property developments down to the scale of an individual building such as a school or hospital.

We chose to start with a scenario in the middle of that scale range that is the subject of particularly intense debate in economics, policy and urban design: a mixed-demographic city district with a retail centre at its heart spatially, socially and economically.

We imagined a district with a population of around 50,000 to 100,000 people within a larger urban area; with an economy including the retail, service and manufacturing sectors. The retail centre is surviving with some new businesses starting; but also with some vacant property; and with a mixture of national chains, independent specialist stores, pawnshops, cafes, payday lenders, pubs and betting shops. We imagined that local housing stock would support many levels of wealth from benefits-dependent individuals and families through to millionaire business owners. A district similar to Kings Heath in Birmingham, where I live, and whose retail economy was recently the subject of an article in the Economist magazine.

We asked ourselves what data might be available in such an environment; and how it might offer insight into the elements of Maslow’s hierarchy.

We began by considering the first level of Maslow’s hierarchy, our physiological needs; and in particular the availability of food. Clearly, food is a basic survival need; but the availability of food of different types – and our individual and cultural propensity to consume them – also contributes to wider issues of health and wellbeing.

(York Road, Kings Heath, in the 2009 Kings Heath Festival. Photo by Nick Lockey)

Information about food provision, consumption and processing can also give insights into economic and social issues. For example, the Economist reported in 2011 that since the 2008 financial crash, some jobs lost in professional service industries such as finance in the UK had been replaced by jobs created in independent artisan industries such as food. Evidence of growth in independent businesses in artisan and craft-related sectors in a city area may therefore indicate the early stages of its recovery from economic shock.

Similarly, when a significant wave of immigration from a new cultural or ethnic group takes place in an area, then it tends to result in the creation of new, independent food businesses catering to preferences that aren’t met by existing providers. So a measure of diversity in food supply can be an indicator of economic and social growth.

So by considering a need that Maslow’s hierarchy places at the most basic level, we were able to identify data that describes an urban area’s ability to support that need – for example, the “Enjoy Kings Heath” website provides information about local food businesses; and furthermore, we identified ways that the same data related to needs throughout the other levels of Maslow’s hierarchy.

We next considered how economic flows within and outside an area can indicate not just local levels of economic activity; but also the area’s trading surplus or deficit. Relevant information in principle exists in the form of the accounts and business reports of businesses. Initiatives such as local currencies and loyalty schemes attempt to maximise local synergies by minimising the flow of money out of local economies; and where they exploit technology platforms such as Droplet’s SmartPhone payments service, which operates in London and Birmingham, the money flows within local economies can be measured.

These money flows have effects that go beyond the simple value of assets and property within an area. Peckham high street in London has unusually high levels of money flow in and out of its economy due to a high degree of import / export businesses; and to local residents transferring money to relatives overseas. This flow of money makes business rents in the area disproportionally high  compared to the value of local assets.

Our debate also touched on environmental quality and transport. Data about environmental quality is increasingly available from sensors that measure water and air quality and the performance of sewage systems. These clearly contribute insights that are relevant to public health. Transport data provides perhaps more subtle insights. It can provide insight into economic activity; productivity (traffic jams waste time); environmental impact; and social mobility.

My colleagues in IBM Research have recently used anonymised data from GPS sensors in SmartPhones to analyse movement patterns in cities such as Abidjan and Istanbul on behalf of their governments and transport authorities; and to compare those movement patterns with public transport services such as bus routes. When such data is used to alter public transport services so that they better match the end-to-end journey requirements of citizens, an enormous range of individual, social, environmental and economic benefits are realised.

(The origins and destinations of end-to-end journeys made in Abidjan, identified from anonymised SmartPhone GPS data)

(The origins and destinations of end-to-end journeys made in Abidjan, identified from anonymised SmartPhone GPS data)

Finally, we considered data sources and aspects of quality of life relating to what Maslow called “self-actualisation”: the ability of people within the urban environment of our scenario to create lifestyles and careers that are individually fulfilling and that reward creative self-expression. Whilst not direct, measurements of the registration of patents, or of the formation and survival of businesses in sectors such as construction, technology, arts and artisan crafts, relate to those values in some way.

In summary, the exercise showed that a great variety of data is available that relates to the ability of an urban environment to provide Maslow’s hierarchy of needs to people within it. To gain a fuller picture, of course, we would need to repeat the exercise with many other urban contexts at every scale from a single building up to the national, international and geographic context within which the city exists. But this seems a positive start.

Recognising the challenge

Of course, it is far from straightforward to convert these basic ideas and observations into usable techniques for deriving insight and value concerning quality of life from urban data.

What about the things that are extremely hard to measure but which are often vital to quality of life – for example the cash economy? Physical cash is notoriously hard to trace and monitor; and arguably it is particularly important to the lives of many individuals and communities who have the most significant quality of life challenges; and to those who are responsible for some of the activities that detract from quality of life – burglary, mugging and the supply of narcotics, for example.

The Urban Systems Collaborative’s debate also touched briefly on the question of whether we can more directly measure the outcomes that people care about – happiness, prosperity, the ability to provide for our families, for example. Antti Poikola has written an article on his blog, “Vital signs for measuring the quality of life in cities“, based on the presentation on that topic by Samir Menon of Tata Consulting Services. Samir identified a number of “happiness indices” that have been proposed by the UK Prime Minister, David Cameron, the European Quality of Life Survey, the OECD’s Better Life Index, and the Social Progress Index created by economist Michael Porter. Those indices generally attempt to correlate a number of different quantitative indicators with qualitative information from surveys into an overall score. Their accuracy and usefulness is the subject of contentious debate.

As an alternative, Michael Mezey of the Royal Society for the Arts recently collected descriptions of attempts to measure happiness more directly by identifying the location of issues or events associated with positive or negative emotions – such as parks and pavements fouled by dog litter or displays of emotion in public. It’s fair to say that the results of these approaches are very subjective and selective so far, but it will be interesting to observe what progress is made.

There is also a need to balance our efforts between creating value from the data that is available to us – which is surely a resource that we should exploit – with making sure that we focus our efforts on addressing our most important challenges, whether or not data relevant to them is easily accessible.

And in practise, a great deal of the data that describes cities is still not very accessible or useful. Most of it exists within IT systems that were designed for a specific purpose – for example, to allow building owners to manage the maintenance of their property. Those systems may not be very good at providing data in a way that is useful for new purposes – for example, identifying whether a door is connected to a pavement by a ramp or by steps, and hence how easy it is for a wheelchair user to enter a building.

(Photo by Closed 24/7 of the Jaguar XF whose designers used “big data” analytics to optimise the emotional response of potential customers and drivers)

Generally speaking, transforming data that is useful for a specific purpose into data that is generally useful takes time, effort and expertise – and costs money. We may desire city data to be tidied up and made more readily accessible; just as we may desire a disused factory to be converted into useful premises for shops and small businesses. But securing the investment required to do so is often difficult – this is why open city data is a “brownfield regeneration” challenge for the information age.

We don’t yet have a general model for addressing that challenge, because the socio-economic model for urban data has not been defined. Who owns it? What does it cost to create? What uses of it are acceptable? When is it proper to profit from data?

Whilst in principle the data available to us, and our ability to derive insight and knowledge from it, will continue to grow, our ability to benefit from it in practise will be determined by these crucial ethical, legal and economic issues.

There are also more technical challenges. As any mathematician or scientist in a numerate discipline knows, data, information and analysis models have significant limitations.

Any measurement has an inherent uncertainty. Location information derived from Smartphones is usually accurate to within a few meters when GPS services are available, for example; but only to within a few hundred meters when derived by triangulation between mobile transmission masts. That level of inaccuracy is tolerable if you want to know which city you are in; but not if you need to know where the nearest defibrilator is.

These limitations arise both from the practical limitations of measurement technology; and from fundamental scientific principles that determine the performance of measurement techniques.

We live in a “warm” world – roughly 300 degrees Celsius above what scientists call “absolute zero“, the coldest temperature possible. Warmth is created by heat energy; that energy makes the atoms from which we and our world are made “jiggle about” – to move randomly. When we touch a hot object and feel pain it is because this movement is too violent to bear – it’s like being pricked by billions of tiny pins. This random movement creates “noise” in every physical system, like the static we hear in analogue radio stations or on poor quality telephone lines.

And if we attempt to measure the movements of the individual atoms that make up that noise, we enter the strange world of quantum mechanics in which Heisenberg’s Uncertainty Principle states that the act of measuring such small objects changes them in unpredictable ways. It’s hardly a precise analogy, but imagine trying to measure how hard the surface of a jelly is by hitting it with a hammer. You’d get an idea of the jelly’s hardness by doing so, but after the act of “measurement” you wouldn’t be left with the same jelly. And before the measurement you wouldn’t be able to predict the shape of the jelly afterwards.

(A graph from my PhD thesis showing experimental data plotted against the predictions of an analytic. Notice that whilst the theoretical prediction (the smooth line) is a good guide to the experimental data, that each actual data point lies above or below the line, not on it. In addition, each data point has a vertical bar expressing the level of uncertainty involved in its measurement. In most circumstances, data is uncertain and theory is only a rough guide to reality.)

Even if our measurements were perfect, our ability to understand what they are telling us is not. We draw insight into the behaviour of a real system by comparing measurements of it to a theoretical model of its behaviour. Weather forecasters predict the weather by comparing real data about temperature, air pressure, humidity and rainfall to sophisticated models of weather systems; but, as the famous British preoccupation with talking about the weather illustrates, their predictions are frequently inaccurate. Quite simply this is because the weather system of our world is more complicated than the models that weather forecasters are able to describe using mathematics; and process using today’s computers.

This may all seem very academic; and indeed it is – these are subjects that I studied for my PhD in Physics. But all scientists, mathematicians and engineers understand them; and whether our work involves city systems, motor cars, televisions, information technology, medicine or human behaviour, when we work with data, information and analysis technology we are very much aware and respectful of their limitations.

Most real systems are more complicated than the theoretical models that we are able to construct and analyse. That is especially true of any system that includes the behaviour of people – in other words, the vast majority of city systems. Despite the best efforts of psychology, social science and artificial intelligence we still do not have an analytic model of human behaviour.

For open data and Smarter Cities to succeed, we need to openly recognise these challenges. Data and technology can add immense value to city systems – for instance, IBM’s “Deep Thunder” technology creates impressively accurate short-term and short-range predictions of weather-related events such as flash-flooding that have the potential to save lives. But those predictions, and any other result of data-based analysis, have limitations; and are associated with caveats and constraints.

It is only by considering the capabilities and limitations of such techniques together that we can make good decisions about how to use them – for example, whether to trust our lives to the automated analytics and control systems involved in anti-lock braking systems, as the vast majority of us do every time we travel by road; or whether to use data and technology only to provide input into a human process of consideration and decision-making – as takes place in Rio when city agency staff consider Deep Thunder’s predictions alongside other data and use their own experience and that of their colleagues in determining how to respond.

In current discussions of the role of technology in the future of cities, we risk creating a divide between “soft” disciplines that deal with qualitative, subjective matters – social science and the arts for example; and “hard” disciplines that deal with data and technology – such as science, engineering, mathematics.

In the most polarised debates, opinion from “soft” disciplines is that “Smart cities” is a technology-driven approach that does not take human needs and nature into account, and does not recognise the variability and uncertainty inherent in city systems; and opinion from “hard” disciplines is that operational, design and policy decisions in cities are taken without due consideration of data that can be used to inform them and predict their outcomes. As Stephan Shakespeare wrote in the “Shakespeare Review of Public Sector Information“, “To paraphrase the great retailer Sir Terry Leahy, to run an enterprise without data is like driving by night with no headlights. And yet that is what government often does.”

There is no reason why these positions cannot be reconciled. In some domains “soft” and “hard” disciplines regularly collaborate. For example, the interior and auditory design of the Jaguar XF car, first manufactured in 2008, was designed by re-creating the driving experience in a simulator at the University of Warwick, and analysing the emotional response of test subjects using physiological sensors and data. Such techniques are now routinely used in product design. And many individuals have a breadth of knowledge that extends far beyond their core profession into a variety of areas of science and the arts.

But achieving reconciliation between all of the stakeholders involved in the vastly complex domain of cities – including the people who live in them, not just the academics, professionals and politicians who study, design, engineer and govern them – will not happen by default. It will only happen if we have an open and constructive debate about the capabilities and the limitations of data, information and technology; and if we are then able to communicate them in a way that expresses to everyone why Smarter City systems will improve their quality of life.

(“Which way to go?” by Peter Roome)

What’s next?
It’s astonishing and encouraging that we could use a model of individual consciousness to navigate the availability and value of data in the massively collective context of an urban scenario. To continue developing an understanding of the ability of information and technology to contribute to quality of life within cities, we need to expand that approach to explore the other dimensions we identified that affect perceptions of quality of life: culture, age and family status, for example; and within both larger and smaller scales of city context than the “district” scenario that we started with.

And we need to compare that approach to existing research work such as the Liveable Cities research collaboration between UK Universities that is establishing an evidence-based technique for assessing wellbeing; or the IBM Research initiative “SCRIBE” which seeks to define the meaning of and relationships between the many types of data that describe cities.

As a next step, the Urban Systems Collaborative attendees suggested that it would be useful to consider how people in different circumstances in cities use data, information and technology to take decisions:  for example, city leaders, businesspeople, parents, hostel residents, commuters, hospital patients and so forth across the incredible variety of roles that we play in cities. You can find out more about how the Collaborative is taking this agenda forward on their website.

But this is not a debate that belongs only within the academic community or with technologists and scientists. Information and technology are changing the cities, society and economy that we live in and depend on. But that information results from data that in large part is created by all of our actions and activities as individuals, as we carry out our lives in cities, interacting with systems that from a technology perspective are increasingly instrumented, interconnected and intelligent. We are the ultimate stakeholders in the information economy, and we should seek to establish an equitable consensus for how our data is used; and that consensus should include an understanding and acceptance between all parties of both the capabilities and limitations of information and technology.

I’ve written before about the importance of telling stories that illustrate ways in which technology and information can change lives and communities for the better. The Community Lovers’ Guide to Birmingham is a great example of doing this. As cities such as Birmingham, Dublin and Chicago demonstrate what can be achieved by following a Smarter City agenda, I’m hoping that those involved can tell stories that will help other cities across the world to pursue these ideas themselves.

(This article summarises a discussion I chaired this week to explore the relationship between urban data, technology and quality of life at the Urban Systems Collaborative’s London workshop, organised by my ex-colleague, Colin Harrison, previously an IBM Distinguished Engineer responsible for much of our Smarter Cities strategy; and my current colleague, Jurij Paraszczak, Director of Industry Solutions and Smarter Cities for IBM ResearchI’m grateful for the contributions of all of the attendees who took part. The article also appears on the Urban Systems Collaborative’s blog).

Better stories for Smarter Cities: three trends in urbanism that will reshape our world

(Stories of Mumbai: an exploration of Mumbai’s history of urban development, and its prospects for the future, using storytelling and puppetshows, by the BMW Guggenheim Lab)

Towards the end of last year, it became clearer how cities could take practical steps to position themselves to transform to meet the increasing economic, environmental and social challenges facing them; and to seek investment to support those transformations, as I described in “Smart Ideas for Everyday Cities“.

Equally important as those practical approaches to organisation, though, are the conceptual tools that will shape those transformations. Across fields as diverse as psychology, town planning, mathematics, construction, service-design and technology, some striking common themes have emerged that are shaping those tools.

Those themes imply that we will need to take radically different approaches to city systems driven by the astonishing, exciting and sometimes disturbing changes that we’re likely to see taking place increasingly rapidly in our world over the next decade.

To adopt the terminology of Irene Ng, a Researcher in new economic models and service science at the University of Warwick, these changes will create both “needs-led” and “capability-led” drivers to do things differently.

“Needs-led” changes will be driven by the massive growth taking place in the global middle class as economies across the world modernise. The impacts will be varied and widespread, including increasing business competition in a single, integrated economy; increasing competition for resources such as food, water and energy; and increasing fragility in the systems that supply those resources to a population that is ever more concentrated in cities. We are already seeing these effects in our everyday lives: many of us are paying more for our food as a proportion of our income than a few years ago.

At a recent lecture on behalf of the International Federation for Housing and Planning and the Association of European Schools of Planning, Sir Peter Hall, Professor of Planning and Regeneration at the Bartlett School of Planning, spoke of the importance of making the growth of cities sustainable through the careful design of the transport systems that support them. In the industrial revolution, as Edward Glaeser described in Triumph of the City, cities grew up around lifts powered by steam engines; Sir Peter described how more recently they have grown outwards into suburbs populated with middle-class car-owners who habitually drive to work, schools, shops, gyms and parks.

This lifestyle simply cannot be sustained – in the developed world or in emerging economies – across such an explosively growing number of people who have the immediate wealth to afford it, but who are not paying the full price of the resources it consumes. According to the exhibition in Siemens’ “Crystal” building, where Sir Peter’s lecture was held, today’s middle class is consuming resources at one-and-a-half times the rate the world creates them; unless something changes, the rate of growth of that lifestyle will hurl us towards a global catastrophe.

So, as the Collective Research Initiatives Trust (CRIT) observed in their study of the ongoing evolution of Mumbai, “Being Nicely Messy“, the structure of movement and the economy will have to change.

(Siemens’ Crystal building in London, a show case for sustainable technology in cities, photographed by Martin Deutsch)

Meanwhile, the evolution of technology is creating incredible new opportunities for “capability-led” change.

In the last two decades, we have seen the world revolutionised by information and communication technologies such as the internet and SmartPhones; but this is only the very start of a transformation that is still gathering pace. Whilst so far these technologies have created an explosion in the availability of information, recent advances in touch-screen technology and speech recognition are just starting to demonstrate that the boundary between the information world and physical, biological and neural systems is starting to disappear.

For example, a paralysed woman recently controlled a robotic arm by thought; and prosthetic limbs, a working gun and living biological structures such as muscle fibre and skin are just some of the things that can be 3D printed on demand from raw materials and digital designs.

What changes to our urban systems will these developments – and the ones that follow them – lead to?

Following the decline of industries such as manufacturing, resource-mining and ship-building,  many post-industrial cities in the developed world are rebuilding their economies around sectors with growth potential, such as environmental technology and creative media. They are also working with the education system to provide their citizens with access to the skills those sectors require.

Supplying the skills that today’s economy needs can be a challenge. Google’s Chairman Eric Schmidt lambasted the British Education system last year for producing insufficient computer programming skills; and a cross-industry report, “Engineering the Future“, laid out the need for increased focus on environmental, manufacturing, technology and engineering skills to support future economic growth in the UK. As the rate of change in science and technology increases, the skills required in a consequently changing economy will also change more rapidly; providing those skills will be an even bigger challenge.

Or will it? How much of a leap forward is required from the technologies I’ve just described, to imagining that by 2030, people will respond to the need for changing skills in the market by downloading expertise Matrix-style to exploit new employment opportunities?

Most predictions of the future turn out to be wrong, and I’m sure that this one will be, in part or in whole. But as an indication of the magnitude of changes we can expect across technology, business, society and our own physical and mental behaviour I expect it will be representative.

Our challenge is to understand how these needs-led and capability-led transformations can collectively create a world that is sustainable; and that is sympathetic to us as human beings and communities. That challenge will be most acute where both needs and capabilities are most concentrated – in cities. And across economics, architecture, technology and human behaviour, three trends in urban thinking have emerged – or, at least, become more prominent – in recent years that provide guiding principles for how we might meet that challenge.

The attraction of opposites, part 1: producer and consumer

20120605-005134.jpg

(Photograph of 3D printers by Rob Boudon)

In the Web 2.0 era (roughly 2003-2009), the middle classes of the developed world became connected by “always-on” broadband connections, turning these hundreds of millions of information-consumers into information-producers. That is why in 2007 (and every year since) more new information was created than in all of the previous 5 millenia. Industries such as publishing, music and telecommunications have been utterly transformed as a result.

The disappearance of the boundary between  information, physical and biological systems, and the explosive growth in the population with access to the technologies responsible for that disappearance, will transform every economic and social structure we can imagine through the same producer / consumer revolution.

We can already produce as well as consume transport resources by participating in car-sharing schemes; and energy by exploiting domestic solar power and bio-energy. The falling cost and increasing sophistication of 3D printers are just starting to make it feasible to manufacture some products in the home, particularly in specialist areas such as railway modelling; and platforms such as the Amazon Turk and Slivers of Time can quickly connect producers and consumers in the service industries.

Business-to-business and business-to-consumer marketplaces such as Big Barn and Sustaination provide the same service in local food systems. And the transport industry is evolving to serve these new markets: for instance, Shutl provide a marketplace for home delivery services through a community of independent couriers; and a handful of cities are deploying or planning recycling systems in which individual items of waste are distributed to processing centres through pneumatically powered underground transport networks.

Of course, from the earliest development of farming in human culture, we have all been both producers and consumers in a diversified economy. What’s new is the opportunity for technology to dramatically improve the flexibility, timeliness and efficiency of the value-chains that connect those two roles. Car-sharing not only reduces the amount of fuel used by our journeys; it could reduce the resources consumed by manufacturing vehicles that spend the majority of their lives stationary on drives or in car parks. Markets that more efficiently connect food production, processing and consumption could reduce the thousands of miles that food currently travels between farm and fork, often crossing its own path several times; they could create employment opportunities in small-scale food processing; not to mention reducing the vast quantity of food that is produced but not eaten, and goes to waste.

Irene Ng explores these themes wonderfully in her new book, “Value and Worth: Creating New Markets in the Digital Economy“; they offer us exciting opportunities for economic and social growth, and an evolution towards a more sustainable urban future – if we can harness them in that way.

The attraction of opposites, part 2: little and big

Some infrastructures can be “blunt” instruments: from roads and railway lines which connect their destinations but which cut apart the communities they pass through; to open data platforms which provide vast quantities of data “as-is” but little in the way of information and services customised to the needs of local individuals and communities.

Architects such as Jan Gehl have argued that the design process for cities should concentrate on the life between buildings, rather than on the structure of buildings; and that cities should be constructed at a “human-scale” – medium-sized buildings, not tower-blocks and sky-scrapers; and streets that are walkable and cycle-able, not dominated by cars. In transport, elevated cycleways and pedestrian roundabouts have appeared in Europe and Asia. These structures prevent road traffic infrastructures form impeding the fluid movement of cycling and walking – transport modes which allow people to stop and interact in a city more easily and often than driving.

At a meeting held in London last year to establish the UK’s chapter to the City Protocol Society, Keith Coleman of Capgemini offered a different view by comparing the growth in size of cities to the structure of the world’s largest biological organisms. In particular, Keith contrasted the need to provide infrastructure – such as the Pando forest in Utah, a single, long-lived and vastly extensive root system supporting millions of individual trees that live, grow and die independently – with the need to provide capabilities – such as those encoded in the genes of the Neptune sea grass, which is not a single organism, but rather a genetically identical colony which collectively covers 5% of the Mediterranean sea floor.

The Collective Research Initiatives Trust‘s study of Mumbai, “Being Nicely Messy“, Colin Rowe and Fred Koetter’s “Collage City“, Manu Fernandez’s “Human Scale Cities” project and CHORA’s Taiwan Strait Atlas project have all suggested an approach to urban systems that is more like the Neptune sea grass than the Pando forest: the provision of a “toolkit” for individuals and organisations to apply in their local context

My own work, initially in Sunderland, was similarly informed by the Knight Foundation’s report on the Information Needs of Communities, to which I was introduced by Conn Crawford of Sunderland City Council. It counsels for a process of engagement and understanding between city institutions and communities, in order that the resources of large organisations can be focused on providing the information and services that can be most effectively used by individual citizens, businesses and social organisations.

(The Bristol Pound, a local currency intended to encourage and reinforce local trading synergies.)

Kelvin Campbell of Urban Initiatives has perhaps taken this thinking furthest in the urban context in his concept of “Massive Small” and the “urban operating system”. Similar thinking appears throughout research on resilience in systems such as cities, coral reefs, terrorist networks and financial systems, as described by Andrew Zolli and Ann Marie Healy in “Resilience: Why Things Bounce Back“. And it is reflected in the work that many researchers and professionals across fields as diverse as city planning, economics and technology are doing to understand how institutional city systems can engage effectively with “informal” activity in the economy.

In IBM we have adapted our approach too. To take one example, a few years ago we launched our “Global Entrepreneur” programme, through which we engage directly with small, startup businesses using technology to develop what we call “Smarter Planet” and “Smarter Cities” solutions. These businesses are innovating in specific markets that they understand much better than we do; using operating models that IBM does not have. In turn, IBM’s resources can help them build more resilient solutions more quickly and cost-effectively, and reach a wider set of potential customers across the world.

A civic infrastructure that combines economics and technology and that, whilst it has a long history,  is starting to evolve rapidly, is the local currency. Last year Bristol became the fifth place in the UK to launch its own currency; whilst in Switzerland an alternative currency, the Wir, is thought to have contributed to the stability of the Swiss economy for the last century by providing an alternative, more flexible basis for debt, by allowing repayments to made in kind through bartering, as well as in currency.

Such systems can promote local economic synergy, and enable the benefits of capital fluidity to be adapted to the needs of local contexts. And from innovations in mobile banking in Africa to Birmingham’s DropletPay SmartPhone payment system, they are rapidly exploiting new technologies. They are a clear example of a service that city and economic institutions can support; and that can be harnessed and used by individuals and organisations anywhere in a city ecosystem for the purposes that are most important and valuable to them.

IMG-20121104-00606

(The Co-operative Society building at Avoncroft Museum of Historic Buildings)

Co-operative Governance

It’s increasingly obvious that on their own, traditional businesses and public and civic institutions won’t deliver the transformations that our cities, and our planet, need. The restructuring of our economy, cities and society to address the environmental and demographic challenges we face requires that social, environmental and long term economic goals drive our decisions, rather than short term financial returns alone.

Alternatives have been called for and proposed. In her speech ahead of the Rio +20 Summit, Christine Lagarde, Managing Director of the International Monetary Fund, said that one of the challenges for achieving a sustainable, equitably distributed return to growth following the recent economic challenges was that “externalities” such as social and environmental impacts are not currently included in the prices of goods and services.

I participated last year in a panel discussion at the World Bank’s “Rethinking Cities” conference which asked whether including those costs would incent consumers to chose to purchase sustainably provided goods and services. We examined several ways to create positive and negative incentives through pricing; but also examples of simply “removing the barriers” to making such choices. Our conclusion was that a combination of approaches was needed, including new ideas from game theory and technology, such as “open data”; and that evidence exists from a variety of examples to prove that consumer behaviour can and does adapt in response to well designed systems.

In “Co-op Capitalism“, Noreena Hertz proposed an alternative approach to enterprise based on social principles, where the objectives of collective endeavours are to return broad value to all of their stakeholders rather than to pay dividends to financial investors. This approach has a vital role in enabling communities across the entirety of city ecosystems to harness and benefit from technology in a sustainable way, and is exemplified by innovations such as MyDex in personal information management, Carbon Voyage in transport, and Eco-Island in energy.

New forms of cooperation have also emerged from resilience research, such as “constellations” and “articulations”. All of these approaches have important roles to play in specific city systems, community initiatives and new businesses, where they successfully create synergies between the financial, social and economic capabilities and needs of the participants involved.

But none of them directly address the need for cities to create a sustainable, cohesive drive towards a sustainable, equitable, successful future.

(Photo by Greg Marshall of the rocks known as “The Needles” just off the coast of the Isle of Wight; illustrating the potential for the island to exploit wave and tidal energy sources through the Eco-Island initiative)

In “Smart Ideas for Everyday Cities“, I described an approach that seems to be emerging from the cities that have made the most progress so far. It involves bringing together stakeholders across city systems – representatives of communities; city institutions; owners and operators of city systems and assets such as buildings, transportation and utilities; Universities and schools; and so on – into a group that can not only agree a vision and priorities for the city’s future; but that is empowered to take collective decisions accordingly.

The initiatives agreed by such a group will require individual “special purpose vehicles” (SPVs) to be created according to the specific set of stakeholder interests involved in each case – such as public/private partnerships to build infrastructure or Community Interest Companies and Energy Service Companies to operate local energy schemes. (There are some negative connotations associated with SPVs, which have been used in some cases by private organisations seeking to hide their debt or ownership; but in the Smarter Cities context they are frequently associated with more positive purposes).

Most importantly, though: where a series of such schemes and commercial ventures are initiated by a stable collaboration within a city, investors will see a reliable decision-making process and a mature understanding of shared risk and its management; making each individual initiative more likely to attract investment.

In his analysis of societal responses to critical environmental threats, Jared Diamond noted in his 2005 book “Collapse” that successful responses often emerge when choices are taken by leaders with long-term vested interests, working closely with their communities. In a modern economy, the interests of stakeholders are driven by many timescales – electoral cycles, business cycles, the presence of commuters, travellers and the transient and long-term residents of the city, for example. Bringing those stakeholders together can create a forum that transcends individual timescales, creating stability and the opportunity for a long-term outlook.

A challenge for 2013: better stories for Smarter Cities

Some cities are seizing the agenda for change that I have described in this article; and the very many of us across countries, professions and disciplines who are exploring that agenda are passionate about helping them to do so successfully.

In their report “Cities Outlook 1901“, Centre for Cities explored the previous century of urban development in the UK, examining why at various times some cities thrived and some did not. They concluded that actions taken by cities in areas such as planning, policy, skills development and economic strategy could have significant effects on their economic and social prosperity relative to others.

The need for cities to respond to the challenges and opportunities of the future using the old, new and evolving tools at their disposal is urgent. In the 20th Century, some cities suffered a gradual decline as they failed to respond successfully to the changes of their age. In the 21st Century those changes will be so striking, and take place so quickly, that failing to meet them could result in a decline that is catastrophic.

But there is a real impediment to our ability to apply these ideas in cities today: a lack of common understanding.

(Matthew Boulton, James Watt and William Murdoch, Birmingham’s three fathers of the Industrial Revolution, photographed by Neil Howard)

As the industrial and information revolutions have led our world to develop at a faster and faster pace, human knowledge has not just grown dramatically; it has fragmented to an extraordinary extent.

Consequently, across disciplines such as architecture, economics, social science, psychology, technology and all the many other fields important to the behaviour of cities, a vast and confusing array of language and terminology is used – a Tower of Babel, no less. The leaders of many city institutions and businesses are understandably not familiar with what they can easily perceive as jargon; and new ideas that appear to be presented in jargon are unlikely to be trusted.

To address the challenge, those of us who believe in these new approaches to city systems need to tell better stories about them; stories about individuals and their lives in the places where they live and work; how they will be more healthy, better equiped to support themselves, and able to move around freely in a pleasant urban environment.

Professor Miles Tight at the University of Birmingham and his colleagues in the “Visions 2030” project have applied this idea to the description of future scenarios for transportation in cities. They have created a series of visually appealing animated depictions of everyday scenes in city streets and places that could be the result of the various forces affecting the development of transport over the next 20 years. Malcolm Allan, a colleague in the Academy of Urbanism, helps cities to tell “stories about place” as a tool for envisaging their future development in a way that people can understand and identify with. And my colleagues in IBM Research have been exploring more generally how storytelling can enable the exchange of knowledge in situations where collaborative creativity is required across multiple domains of specialisation.

If we can bring our knowledge of emerging technologies and new approaches to urbanism into conversations about specific places in the form of stories, we will build trust and understanding in those places, as well as envisioning their possible futures. And that will give us a real chance of achieving the visions we create. This is what I’ll be concentrating on doing in 2013; and it looks like being an exciting year.

(It’s been much longer than usual since I last wrote an article for this blog; following an extended break over Christmas and the New Year, I’ve had a very busy start to 2013. I hope to resume my usual frequency of writing for the rest of the year.

And finally, an apology: in my remarks on the panel discussion following Sir Peter Hall’s lecture at the Crystal, I gave a very brief summary of some of the ideas described in this article. In particular, I used the term “Massive / Small” without attributing it to Kelvin Campbell and Urban Initiatives. My apologies to Kelvin, whose work and influence on my thinking I hope I have now acknowledged properly).

Inspirational Simpli-City

(Recycling bins in Curitiba, Brazil photographed by Ana Elisa Ribeiro)

In the past few years, terms such as “Smart Cities” and “Future Cities” have emerged to capture the widespread sense that the current decade is one in which trends in technology, the economy, demographics and the environment are coinciding in an exciting and meaningful way.

Common patterns have emerged in the technology platforms that enable us to address these economic, social and environmental challenges. For example, the “Digital Cities Exchange” research programme at Imperial College, London; the “FI-WARE” project researching the core platform for the “future internet”; the “European Platform for Intelligent Cities (EPIC)“; and IBM’s own “Intelligent Operations Centre” all share a similar architecture.

I think of these platforms as 21st Century “civic infrastructures”. They will provide services that can be composed into new city systems and local marketplaces. Those services will include the management of personal data and identity; authentication; local currencies; micro-payments; and the ability to access data about city systems, amongst others.

But whilst some trends in technology are technically cohesive and can be defined by a particular architecture – as was the case for client/server computing, distributed computing, the initial emergence of the mobile internet, or Service-Oriented Architecture (SOA) – other trends are more nebulous.

Five years ago, my role for IBM was to develop and evangelise the opportunities that social computing  and “Web 2.0” represented for our customers. Whilst various patterns emerged to express the ways in which technology at that time could provide new value to businesses, communities and individuals, no single technology or platform accompanied the trend. Rather, “Web 2.0” was the label for a period in time in which the internet and related technologies once again became a valuable source of innovation following the “dot.com crash”. Tim O’Reilly, widely credited with coining the term “Web 2.0”, acknowledged this interpretation in his “How to succeed in 2007” interview with CNN.

Cities are such complex systems of systems, and face such a multitude of challenges in a rich variety of contexts, that no single technology solution could possibly address them all. In fact an incredibly rich variety of technologies has already been used to create “Smart” systems in cities. But whilst I’m preparing an article that I hope to publish on this blog next week that lays out a framework for considering those technologies systematically, there’s a more fundamental observation that’s worth making:

Some of the technologies at the heart of urban innovations are incredibly simple.

15 years ago, I lived through the transformation of a city neighbourhood that illustrates this point. It involved community activism and crowdsourced information, enabled by an accessible technology – analogue photography.

As a University student in Birmingham, I lived in rented accommodation in the city’s Balsall Heath area. Balsall Heath has one of Birmingham’s largest Muslim communities, in addition to its substantial student population.

And, for the best part of half a century from the 1950s to the 1990s, it was Birmingham’s “red light” district, the centre of prostitution in the city.

At the time, Balsall Heath’s prostitution trade was so open that Cheddar Road – just across the street from the house that I lived in – was the only road in the UK with houses with “red light” front rooms.

Balsall Heath was clearly a district with substantial differences in culture – which were accommodated very peacefully, I should say. But in 1994, members of the Muslim community decided to change their neighbourhood. They put out old sofas and chairs on street corners, and sat on them each night, photographing anyone walking or driving around the area seeking prostitutes. Those simple steps tapped into the social motivations of those people and had a powerfully discouraging effect on them. Over the course of a year, prostitution was driven out of Balsall Heath for the first time in 50 years. It has never returned, and the district and its communities were strengthened as a result. The UK Prime Minister David Cameron has referred to the achievements of Balsall Heath’s community as an inspiration for his “Big Society” initiative.

I have just given a very simplified description of a complex set of events and issues; and in particular, I did not include the perspective of the working women who were perhaps the most vulnerable people involved. But this example of a simple technology (analogue photography) applied by a community to improve their district, with an understanding of the personal and social motivations that affect individual behaviour and choice, is an example that I have been regularly reminded of throughout my work in social media and Smarter Cities.

(Photo from Digital Balsall Heath of residents warning kerb-crawlers on Cheddar Road in the 1990s that they would be watched and recorded)

The city systems facing economic, demographic and environmental challenges today are immensely complex. They provide life-support for city populations – feeding, transporting, and educating them; providing healthcare; and supporting individuals, communities and businesses. As we continue to optimise their operation to support larger, more dense urban populations, maintaining their resilience is a significant challenge.

At the same time, though, the simplicity of Balsall Heath’s community action in the 1990s is inspirational; and there are many other examples.

Jaime Lerner started one of the earliest and most effective city recycling programmes in the world by harnessing the enthusiasm of children to influence the behaviour of their parents. In Mexico City a new “bartering market” allows residents to exchange recyclable waste material for food. In Kenya, SMS messages are used to optimise the distribution of malaria medication between local pharmacists; and in Australia, OzHarvest redistribute excess food from restaurants and hotels to charities supporting the vulnerable.

These innovations will not always be simply transferable from one city to another; but they could form the basis of a catalogue or toolkit of re-usable ideas, as was suggested by the Collective Research Initiatives Trust (CRIT) in their research on urban innovation in Mumbai, “Being Nicely Messy“, echoing Colin Rowe and Fred Koetter’s “Collage City“.

As I wrote recently in the article “Zen and the art of messy urbanism“, many of the Smart systems of tomorrow will be surprising innovations that cut across and disrupt the industry sectors and classifications of city systems that we understand today; and in order to provide food, energy, water, transport and other services to city populations, they will need to be robustly engineered. But drawing inspiration from good, simple ideas with their roots in human behaviour rather than new technology is surely a good starting point from which to begin our journey towards discovering them.

Four avatars of the metropolis: technologies that will change our cities

(Photo of Chicago by Trey Ratcliff)

Many cities I work with are encouraging clusters of innovative, high-value, technology-based businesses to grow at the heart of their economies. They are looking to their Universities and technology partners to assist those clusters in identifying the emerging sciences and technologies that will disrupt existing industries and provide opportunities to break into new markets.

In advising customers and partners on this subject, I’ve found myself drawn to four themes. Each has the potential to cause significant disruptions, and to create opportunities that innovative businesses can exploit. Each one will also cause enormouse changes in our lives, and in the cities where most of us live and work.

The intelligent web

(Diagram of internet tags associated with “Trafalgar” and their connections relevant to the perception of London by visitors to the city by unclesond)

My colleague and friend Dr Phil Tetlow characterises the world wide web as the biggest socio-technical information-computing space that has ever been created; and he is not alone (I’ve paraphrased his words slightly, but I hope he’ll agree I’ve kept the spirit of them intact).

The sheer size and interconnected complexity of the web is remarkable. At the peak of “web 2.0” in 2007 more new information was created in one year than in the preceding 5000 years. More important, though, are the number and speed of  transactions that are processed through the web as people and automated systems use it to exchange information, and to buy and sell products and services.

Larger-scale emergent phenomena are already resulting from this mass of interactions. They include universal patterns in the networks of links that form between webpages; and the fact that the informal collective activity of “tagging” links on social bookmarking sites tends to result in relatively stable vocabularies that describe the content of the pages that are linked to.

New such phenomena of increasing complexity and significance will emerge as the ability of computers to understand and process information in the forms in which it is used by humans grows; and as that ability is integrated into real-world systems. For example, the IBM “Watson” computer that competed successfully against the human champions of the television quiz show “Jeopardy” is now being used to help healthcare professionals identify candidate diagnoses based on massive volumes of research literature that they don’t have the time to read. Some investment funds now use automated engines to make investment decisions by analysing sentiments expressed on Twitter; and many people believe that self-driving cars will become the norm in the future following the award of a driving license to a Google computer by the State of Nevada.

As these astonishing advances become entwined with the growth in the volume and richness of information on the web, the effects will be profound and unpredictable. The new academic discipline of “Web Science” attempts to understand the emergent phenomena that might arise from a human-computer information processing system of such unprecedented scale. Many believe that our own intelligence emerges from complex information flows within the brain; some researchers in web science are considering the possibility that intelligence in some form might emerge from the web, or from systems like it.

That may seem a leap too far; and for now, it probably is. But as cities such as Birmingham, Sunderland and Dublin pursue the “open data” agenda and make progress towards the ideal of an “urban observatory“, the quantity, scope and richness of the data available on the web concerning city systems will increase many-fold. At the same time, the ability of intelligent agents such as Apple’s “Siri” smartphone technology, and social recommendation (or “decision support”) engines such as FourSquare will evolve too. Indeed, the domain of Smarter Cities is in large part concerned with the application of intelligent analytic software to data from city systems. Between the web of information and analytic technologies that are available now, and the possibilities for emergent artificial intelligence in the future, there lies a rich seam of opportunity for innovative individuals, businesses and communities to exploit the intelligent analysis of city data.

Things that make themselves

(Photo of a structure created by a superparamagnetic fluid containing magnetic nanoparticles in suspension, by Steve Jurvetson)

Can you imagine downloading designs for chocolate, training shoes and toys and then making them in your own home, whenever you like? What if you could do that for prosthetic limbs or even weapons?

3D printing makes all of this possible today. While 3D printers are still complex and expensive, they are rapidly becoming cheaper and easier to use. In time, more and more of us will own and use them. My one-time colleague Ian Hughes has long been an advocate; and Staffordshire University make their 3D printer available to businesses for prototyping and exploratory use.

Their spread will have profound consequences. Gun laws currently control weapons which are relatively large and need to be kept somewhere; and which leave a unique signature on each bullet they fire. But if guns can be “printed” from downloadable designs whenever they are required  – and thrown away afterwards because they are so easy to replace – then forensics will rarely in future have the opportunity to match a bullet to a gun that has been fired before. Enforcement of gun ownership will require the restriction of access to digital descriptions of gun designs. The existing widespread piracy of music and films shows how hard it will be to do that.

3D printers, combined with technologies such as social media, smart materials, nano- and bio-technology and mass customisation, will create dramatic changes in the way that physical products are designed and manufactured – or even grown. For example CocoWorks, a collaboration involving Warwick University, uses a combination of social media and 3D printing to allow groups of friends to collectively design confectionery that they can then “print out” and eat.

These changes will have significant implications for city economies. The reduction in wage differentials between developed and emerging economies already means that in some cases it is more profitable to manufacture locally in rapid response to market demand than to manufacture globally at lowest cost. In the near-future technology advances will accelerate a convergence between the advanced manufacturing, design, communication and information technology industries that means that city economic strategies cannot afford to focus on any of them separately. Instead, they should look for new value at the evolving intersections between them.

Of mice, men and cyborgs

(Professor Kevin Warwick, who in 2002 embedded a silicon chip with 100 spiked electrodes directly into his nervous system. Photo by M1K3Y)

If the previous theme represents the convergence of the information world and products and materials in the physical world; then we should also consider convergence between the information world and living beings.

The “mouse” that defined computer usage from the 1980s through to the 2000s was the first widely successful innovation in human/computer interaction for decades; more recently, the touchscreen has once again made computing devices accessible or acceptable to new communities. I have seen many people who would never choose to use a laptop become inseparable from their iPads; and two-year-old children understand them instinctively. The world will change as these people interact with information in new ways.

More exciting human-computer interfaces are already here – Apple’s intelligent agent for smartphones, “Siri”; Birmingham City University’s MotivPro motion-capture and vibration suit; the Emotiv headset that measures thoughts and can interpret them; and Google’s augmented reality glasses.

Even these innovations have been surpassed by yet more intimate connections between ourselves and the information world. Professor Kevin Warwick at Reading University has pioneered the embedding of technology into the human body (his own body, to be precise) since 2002; and in the effort to create ever-smaller pilotless drone aircraft, control technology has been implanted into insects. There are immense ethical and legal challenges associated with these developments, of course. But it is certain that boundaries will crumble between the information that is processed on a silicon substrate; information that is processed by DNA; and the actions taken by living people and animals.

Historically, growth in Internet coverage and bandwidth and the progress of digitisation technology led to the disintermediation of value chains in industries such as retail, publishing and music. As evolving human/computer interfaces make it possible to digitise new aspects of experience and expression, we will see a continuing impact on the media, communication and information industries. But we will also see unexpected impacts on industries that we have assumed so far to be relatively immune to such disruptions: surgery, construction, waste management, landscape gardening and arbitration are a few that spring to mind as possibilities. (Google futurist Thomas Frey speculated along similar lines in his excellent article “55 Jobs of the Future“).

Early examples are already here, such as Paul Jenning’s work at Warwick University on the engineering of the emotional responses of drivers to the cars they are driving. Looking ahead, there is enormous scope amidst this convergence for the academic, entrepreneurial and technology partners within city ecosystems to collaborate to create valuable new ideas and businesses.

Bartering 2.0

(Photo of the Brixton Pound by Matt Brown)

Civilisation has grown through the specialisation of trades and the diversification of economies. Urbanisation is defined in part by these concepts. They are made possible by the use of money, which provides an abstract quantification of the value of diverse goods and services.

However, we are increasingly questioning whether this quantification is complete and accurate, particularly in accounting for the impact of goods and services on the environments and societies in which they are made and delivered.

Historically, money replaced bartering,  a negotiation of the comparative value of goods and services within an immediate personal context, as the means of quantifying transactions. The abstraction inherent in money dilutes some of the values central to the bartering process. The growing availability of alternatives to traditional bartering and money is making us more conscious of those shortcomings and trade-offs.

Social media, which enables us to make new connections and perform new transactions, combined with new technology-based local currencies and trading systems, offer the opportunity to extend our personalised concepts of value in space and time when negotiating exchanges; and to encourage transactions that improve communities and their environments.

It is by no means clear what effect these grass-roots innovations will have on the vast system of global finance; nor on the social and environmental impact of our activities. But examples are appearing everywhere; from the local, “values-led” banks making an impact in America; to the widespread phenomenon of social enterprise; to the Brixton and Bristol local currencies; and to Droplet, who are aiming to make Birmingham the first city with a mobile currency.

These local currency mechanisms have the ability to support marketplaces trading goods and services such as food, energy, transport, expertise and many of the other commodities vital to the functioning of city economies; and those marketplaces can be designed to promote local social and environmental priorities. They have an ability that we are only just beginning to explore to augment and accelerate existing innovations such as the business-to-consumer and business-to-business markets in sustainable food production operated by Big Barn and Sustaination; or what are so far simply community self-help networks such as Growing Birmingham.

As Smarter City infrastructures expose increasingly powerful and important capabilities to such enterprises – including the “civic hacking” movement – there is great potential for their innovations to contribute in significant ways to the sustainable growth and evolution of cities.

Some things never change

Despite these incredible changes, some things will stay the same. We will still travel to meet in person. We like to interact face-to-face where body language is clear and naturally understood, and where it’s pleasant to share food and drink. And the world will not be wholly equal. Humans are competitive, and human ingenuity will create things that are worth competing for. We will do so, sometimes fairly, sometimes not.

It’s also the case that predictions are usually wrong and futurologists are usually mistaken; so you have good cause to disregard everything you’ve just read.

But whether or not I have the details right, these trends are real, significant, and closer to the mainstream than we might expect. Somewhere in a city near you, entrepreneurs are starting new businesses based on them. Who knows which ones will succeed, and how?

How cities can exploit the Information Revolution

(This post was first published as part of the “Growth Factory” report from the thinktank TLG Lab).

(Graphic of New York’s ethnic diversity from Eric Fischer)

Cities and regions in the UK face ever-increasing economic, social and environmental challenges. They compete for investment in what is now a single global economy. Demographics are changing with more than 90% of the population now living in urban areas, and where the number of people aged over 65 will double to 19 million by 2050. The resources we consume are becoming more expensive, with cities especially vulnerable to disruptions in supply.

The concept of “Smarter systems” has captured the imagination of experts as an approach to turn these challenges into opportunities for more sustainable economic and social growth; particularly in cities, where most of us live and work. Smarter systems – in cities, transportation, government and industry –can analyse the vast amounts of data being generated around us to help make more informed decisions, operate more efficiently or even predict the future.

These systems enable city planners around the world to design urban environments that promote safety, community vitality and economic growth. They can bring real-time information together from city transportation, social media, emergency services and leisure facilities to better enable cities, such as Rio de Janeiro, to manage major public events. They can enable transport systems to better manage traffic flow and reduce congestion, as in Singapore. They can stimulate economic growth by enabling small businesses to better compete for business in collaboration with regional trading partners, in systems such as that operated by the University of Warwick.

Government policies such as Open Data, personal care budgets and open public services will dramatically increase the information available to citizens to help them take well-informed decisions. This information will be rich, complex and associated with caveats and conditions. Making it usable by the broad population is an immense challenge which will not be addressed by technology alone. Data needs not only to be made available, but understandable so that it can inform better decision-making.

Where does Smarter city data come from?

Raw data for Smarter systems is derived from three sources: the city’s inhabitants, existing IT systems and readings from the physical environment.

Information from people has become more accessible with the continued spread of connected mobile devices, such as smartphones. Open Street Map, for example, provides a global mapping information service sourced from the activities of volunteers with portable satellite navigation devices. However, the quality and availability of crowd-sourced information depends on the availability and resources of volunteers, who cannot be held accountable for whether information is accurate, complete or up-to-date.

It is also important to understand data ownership and the associated privacy concerns. There is a difference between data freely and knowingly contributed by an individual for a specific purpose and information created as a side-effect of their activity – for example, the record of a person’s movements created by the GPS sensor in their smartphone.

The Open Data movement, supported by central government, will dramatically increase the availability of data from public systems. For example, efforts are underway to make NHS healthcare data available, with appropriate security measures, to Life Sciences organisations to reinforce the UK’s pre-eminent position in drug discovery research. However, the infrastructure required to make large volumes of data widely and rapidly available in a usable form will not be created for free. Until their cost is included in future government procurements – or until commercial systems of funding are created – then much data will likely only be made open on a more limited “best efforts” basis.

Furthermore, not all city data is held by public bodies. Many transportation and utility systems are owned and operated by the private sector, and it is not generally established what information they should make available, and how. Many Smarter city systems that use data from such sources are private partnerships rather than open systems.

Meanwhile, certain kinds of data are becoming far more accessible through the advancing ability of computer systems to understand human language. IBM’s Watson computer demonstrated this recently by competing and winning against world champions in the American television quiz show, Jeopardy! Wellpoint is using this kind of technology to draw insight from medical information held in similar forms. Its aim is to better tackle diseases such as cancer by empowering physicians to rapidly evaluate potential diagnoses and explore the latest supporting medical evidence. Similar technology can draw insight from case notes in social care systems, as Medway Youth Trust is doing, or from the reports of engineers maintaining roads, sewers, and other city systems.

An early “mashup” application using open data from Chicago’s police force

Information is also becoming more readily available from the physical environment. In Galway Bay, a network of underwater microphones is connected to a system that can identify and locate the sounds of dolphins and porpoises. Their location provides a dynamic indication of which parts of the Bay have the cleanest water. That information is made available to companies in the Bay to allow them to control their discharges of water; and to the fishing and leisure industries who are dependent on marine life. This Open Data approach is being used by cities across the world such as Dublin, Chicago and London as a resource for citizens and businesses.

Whilst advances in technology have lowered the cost of generating information from physical environments, challenges remain. From the perspective of a mobile telephone user, much of the UK has signal coverage. However, telephones are used one metre or more above ground level; at ground level, where many parts of our transport and utility infrastructures are located, coverage is much poorer. Additionally, mobile transmitters and receivers are relatively expensive and power-hungry. Cheaper, lower power technologies are needed to improve coverage, such as the “Weightless” standard being developed to use transmission bandwidth no-longer needed by analogue television.

Using and combining data appropriately

In order to make information from multiple sources available appropriately and usefully, several issues need to be tackled.

When computer systems are used to analyse information and take decisions, then the data formats and protocols used by those systems need to be matched. Information as simple as locations and dates may need to be converted between formats. At an engineering level, the protocols used to transmit data across cities using wired or wireless communications behave differently and require systems that integrate them.

The meaning of information from related sources also needs to be understood and adapted to context. Citizens who go shopping in wheelchairs need to know how to get between car-parks and shops with lifts, accessible public toilets and cash points. However, the computer systems of the organisations who own those facilities will encode the information separately, in ways that support their efficient management, not that support journey-planning between them.

The City of Portland in Oregon has gone further in a project to understand how information from systems across the city is related. They are now able to better predict the impact that key decisions will have on the entire city, years in advance.

Privacy and ownership of data may affect its subsequent use, often with terms and conditions in place for governing its access. Furthermore, safeguards are required to ensure that sensitive information cannot be inferred from a combination of sources. For example the location of a safe house or shelter being identified from building usage, building ownership and /or information concerning taxi journeys by the employees of particular council agencies.

The human dimension

Smarter systems will only succeed in improving cities if there is wide consumer engagement. To be of value, information will likely need to be timely and presented in a manner appropriate to consumer context. Individual behaviour will only change where personal value is derived as a result of new information being presented – a saving in time or money, or access to something of value to their family.

(Photo of traffic in Dhaka, Bangladesh, from Joisey Showa)

Many cities are experimenting with technologies that predict the future build up of traffic, by comparing real-time measurements to databases of past patterns of traffic flow. In Stockholm, this information is used by a road-use charging system that supports variable pricing. In California, commuters in a pilot project were given personalised predictions of their commuting time each day. Both systems encourage individuals to make choices based on new information.

Utility providers are exploring how information from smart meters can encourage water and energy users to change behaviour. A recent study in Dubuque, Iowa, showed that when householders were shown how their water usage compared to the average for their neighbours, they became better at conserving water – by fixing leaks, or using domestic appliances more efficiently. Skills across artistic and engineering disciplines are helping us understand how this type of information can be communicated more effectively. Many people will not want to study figures and charts on a smart meter or website; instead “ambient” information sources may be more effective – such as a glow-globe that changes colour from green to orange to red depending on household electricity use.

Systems that improve the sustainability of cities could also affect economic development. Lowering congestion through Smarter transportation schemes can improve productivity by reducing time lost by workers delayed by traffic. By making information and educational resources widely available, Smarter systems could improve access to opportunity across city communities. A city with vibrant communities of well-informed citizens may appear a more forward-looking and attractive place to live for educated professionals and, in turn, for businesses considering relocation. New York has improved its attractiveness since the 1970s by lowering the fear of crime. One of its tools is a “real-time crime centre” that brings information together from across the city in order to better react to crime and public order incidents. The system can even help to prevent crime by intelligently deploying police resources to the areas most likely to experience incidents based on past patterns of activity – on days with similar weather, transportation conditions or public events.

Success in delivering against these broader objectives is much more likely to be achieved where the cities themselves are more clearly accountable for them.

So where do we start?

Investments in Smarter systems often cut across organisations and budgets and many have objectives that are macro-economic, social and environmental, as well as financial. As such, they challenge existing accounting mechanisms. Whilst central government and the financial markets offer new investment solutions such as ethical funds, social impact bonds and city deals, so far these have not been used to fund the majority of Smarter solutions – many of which are supported by research programmes. The Technology Strategy Board’s investment in areas such as “Future Cities” and the “Connected Digital Economy” will provide a tremendous boost, but there is much to be done to assist cities in using new investment sources to fund Smarter initiatives – or to develop sustainable commercial or social-enterprise business models to deliver them.

Although progress can be driven by strong leadership, the issues of governance and fragmented budgets will need to be overcome if we are to take full advantage of the benefits technology can bring.

We live in an era of major global challenges – well described in the recent “People and the Planet” report by the Royal Society. At the same time, we have access to powerful new technologies and ideas to address them, such as those proposed by the 100 Academics who contributed essays to the book “The New Optimists”. When we focus those resources on cities, we focus on the structures in which we can have the greatest impact on the most people.

Already many forward-looking cities in the UK such as Sunderland and Birmingham are joining others around the world by investing in Smarter systems. If we can meet the technical, organisational and investment challenges, we will not only provide citizens, businesses and agencies with new choices and exciting opportunities; we’ll also position the UK economy to succeed as the Information Revolution gathers pace.

Who will be the next generation of technology millionaires?

(Image: “IT is innovation” by Frank Allan Hansen)

A few years ago I attended a dinner debate hosted by the British Computer Society about the future of technology careers in the UK. At the time, I’d recently written a report for IBM UK on the subject. The common motivation was to explore the effect of globalisation on the UK’s IT industry.

Despite the continuing emergence of high quality technology industries around the world, the local demand for technology skills in the UK was then, and is now, increasing. The secret to understanding the seeming contradiction is twofold.

Firstly, consider which specific skills are required, and why. To cut a long story short, the ones that are needed on-shore in countries with high wages such as the UK are the ones most closely tied to agile innovation in local economic and cultural markets, or to the operation of critical infrastructures (such as water, roads and energy) or operations (such as banking and law enforcement).

Secondly, the more fundamental point is that we’re living through an Information Revolution that is increasing in pace and impact. That means the demand for science, technology, mathematics and information skills is going through the roof across the board. As  evidence, consider this article from McKinsey on the hidden “Information Economy”; or the claim that 90% of the information in the world was created in the last two years (widely referenced, e.g. by this article in Forbes); or that IBM now employs more mathematics PhD holders than any other organisation in the world.

At the BCS debate, a consultant from Capgemini introduced the evening by describing his meeting that morning with a group of London-based internet entrepreneurs. These people were young (20-25), successful (owning and running businesses worth £millions), and fiercely technology literate.

Today, I wonder if the same meeting would be held with internet entrepreneurs? In ten years time, I certainly don’t think it will be – they’ll be genetic engineers, nano-technologists, or experts in some field we can’t imagine yet. Of course, there are already many early entrepreneurs exploring those fields, as was shown in Adam Rutherford’s recent BBC Horizon documentary “Playing God”  (see this video or this review).

I’ve blogged recently about the importance of skills, education and localism to the future of our cities’ and country’s economies. This leads me to believe that more important than addressing the UK’s shortfall in IT skills (as reported by e-Skills last year) is understanding how to systematically integrate the teaching of technology, science, creative and business skills across schools, universities and vocational education. Further, that needs to be done in a way that’s responsive to the changes that will come to the sciences and technologies that have the most power to compliment the unique economy, geography and culture of the British isles.

This is already a problem for the UK economy. The e-Skills report found that UK businesses are nearly 10% less productive than US ones; and that 80% of that gap is down to less effective use of technology. Their research predicts that closing the technology gap could contribute £50bn to the UK economy over 5-7 years. But their finding that the British Education system provides less than 20% of the technology skills we need today means that closing the gap will be hard.

As the information revolution proceeds, the problem will get worse. And unless we do something about it in an enlightened way that recognises that the science and technology skills we’ll need in 10 years time are not the IT skills that are familiar to us today, we’ll fail to address it.

I was born in 1970; for me, the Tandy TRS80 computer my family bought in 1980 was a technological marvel, with its 16k RAM and graphic resolution of 128×48 pixels (all of them green). Today, my 3 year old son is growing up with a high resolution smartphone touchscreen as an unremarkable part of his world. By the time he’s of working age, the world will be unrecognisable – as will the skills he’ll require to be successful in it.

From the earliest years, we need to be exciting children in the mixture of creativity; abstract thinking and modelling; mathematics, technology, art and entrepreneurialism that are apparent now in such forums as TED. (www.ted.com). Whatever their interest and acumen, we need to give them the opportunity to find their own niche in that range of cross-disciplinary skills that will be economically valuable in the future. If we don’t, they won’t be ready to find jobs in the industries of the future when the computer programming industry, and others as we know them today, disappear.

Localism and economic regeneration in cities

(Photo by Jorene Rene)

Through the course of this year, I’ve spoken with stakeholders from a lot of cities in the UK about their goals for economic stimulus and regeneration. Often, those discussions start around how cities can use technology to boost economic growth, particularly for small and medium enterprise – in Sunderland, for example.

In very many cases, cities today have a focus on the “digital economy” as a source of economic growth. That’s not at all surprising given the digital economy is a significant and growing part of the UK’s GDP.

However, the digital economy is a very transferable economy; in his frankly titled 2007 paper “How Many U.S. Jobs might Be Offshorable?“, Alan Blinder of Princeton University concluded that “computer programming” was the easiest form of work to transfer from one physical location to another. So if cities want to build sustainable economic growth in the digital economy, we clearly need to think carefully about exactly what forms of “digital” activity that entails.

There are a number of ways to do that; for instance I  met a very interesting company recently, Lamasatech, who provide multi-touch screen solutions. Their technology is slick, exciting and leading edge. And whilst they do provide software, they also provide unique hardware technology. Their multi-touch surface is much more flexible and portable than other solutions I’ve seen. Access to science and leading edge manufacturing and materials are important elements of a successful digital economy.

In a similar vein, there’s a very interesting cluster of wireless technology expertise in Cambridge, epitomised by the Cambridge Wireless Network, and that encompasses science, design, engineering and technology. Some of the developments they’re working on in low-power, long-range wireless communication technologies such as the proposed “Weightless” standard could have a dramatic effect on the cost and feasibility of Smarter City and Smarter Planet solutions.

What’s particularly interesting about the Cambridge example is that it represents a self-reinforcing regional cluster; the critical mass of expertise in the region leads to innovative interactions which continually generate new value. Any other region attempting to stimulate economic growth in the same area of technology would have a significant challenge in developing to the point where it could compete against the Cambridge cluster.

Jay Bal from Warwick University wrote a very interesting paper in 2007 describing his work building online marketplaces to stimulate the formation and growth of such clusters. His West Midlands Collaborative Commerce Marketplace now drives contracts worth billions of pounds sterling every year into a cluster of small and medium enterprises in the West Midlands.

What’s key in Cambridge and in the West Midlands example is that one way or another the specific capabilities available in a particular region are being brought together in ways that create synergies. By design or by history, such regional clusters also have synergy with their physical environments, nearby academic institutions, the skills base created by the local education system, and other factors to do with “place”. In Sunderland, for example, there’s a long cultural tradition of social enterprise which will probably influence the future economic development of the city.

An interesting organisation seeking to exploit and enable these local synergies is Addiply. Addiply offer online advertising content – but they do it by enabling local businesses to sell online advertising space to other local businesses with whom they share complimentary markets and customer bases. By using advertising to create those local linkages, Addiply’s approach is one way to stimulate synergistic growth in local economies. Addiply’s CEO, Rick Waghorn, recently blogged about how he came up with the Addiply model, and how he thinks Addiply can compete against the big players such as Google Adwords by offering a more focussed value proposition.

As we go into 2012 with no let-up in sight from the tough and competitive economic environment we’ve been in for some time, I think these ideas will be crucial in shaping successful economic strategies in our cities and regions. It will be important to all of us that the cities that we live and work in use them well.

The need for technology and mathematical skills in a Smarter Planet with Open Data

In amongst all the great discussions of Smarter Water, Smarter Transportation, Open Data and other themes at this week’s Science of Smarter Cities Colloquium in IBM’s new Research Lab in Dublin, an interesting theme has emerged that’s been on my mind for some time.

Many discussions have focussed on the huge importance of processing, analysis and acting on data and information in the Smarter Planet that’s gradually emerging around us as more and more of the physical world is instrumented, interconnected and automated. Imperial College’s work on disruptive business platforms includes the new commercial opportunities – some of them highly disruptive – that this information is making possible. And McKinsey recently wrote a fascinating paper on a similar subject – the emerging “Information Economy”.

A vital consequence of this is renewed – or even wholly new – demand for the skills required to manipulate and understand information. I’m talking about mathematics, statistics and computer programming here, amongst others. Unless it’s prepared by a numerate communication expert, data is often very difficult to understand and interpret. And communication experts may also have their own agenda in determining how they prepare data. And quite simply, we need more people able to undertake that sort of work – people with mathematical and technical skills. Some of the speakers from transport organisations at the colloquium this week have spoken directly of needing more of those skills.

The problem is that in the UK, we’re not producing enough of them. Google’s Chairman Eric Schmidt recently lambasted the British Education system for not producing enough computer programmers to feed demand in the creative industries vital for economic growth; and the recent Nesta report on the UK’s computer gaming industry cited the same issue as a reason for that industry’s recent decline in the global market.

City leaders understand this; Hanna Zdanowska, the Mayor of Lodz in Poland, spoke this morning of the importance of young skilled people to city economies, particularly as european populations age. (Lodz have amazing plans for regenerating their physical infrastructure and optimising their city systems, by the way, it was a great talk).

So what can we do about this? In yesterday’s Open Data discussion, Christopher Gutteridge, who’s behind Southampton University’s Open Data programme, said that we needed to encourage more “playful coding”. I think that phrase hit the nail on the head.

Our world is at the stage where technologies that can be manipulated by any human being who learns the basics of computing programming are becoming terrifically powerful. At the same time, the information that those technologies control is the lifeblood of our economy and society. For us to educate people without giving them the ability to participate in that system is surely a terrible folly for our children and our economy.

A fellow visiting academic at the University of Warwick, Jonnie Turpie who’s the Digital Media Director of Maverick TV, introduced me recently to the Birmingham Ormiston Academy. BOA is a new school that’s intended to teach creative and digital arts by exposing young people directly to small enterprises in that industry. I think it’s a great idea, and an example of the sort of way we could teach young people the skills to exploit information and technology in a way that’s exciting, challenging – and directly builds the skills we will need for the future.

%d bloggers like this: