6 inconvenient truths about Smart Cities

(When cities forget about people: La Defense, Paris, photographed by Phil Beard)

(I recently took the difficult decision to resign from IBM after nearly 20 years to become IT Director for Smart Data and Technology for Amey, one of the largest infrastructure and services companies in the UK, and a subsidiary of the Ferrovial Group. It’s a really exciting opportunity for me to build a team to create new Smart City services and infrastructures. If you’d like to work in the Smart Cities field, please have a look at the roles I’m hiring for. I’ll be continuing to write the Urban Technologist, and this seemed a good point to share my view of the current state of the Smart Cities movement.)

The last year has shown a huge acceleration of interest and action in the Smart Cities market – in the UK, and around the world. What has long been a topic of interest to technology companies, academics, urban designers and local authorities was covered extensively by mainstream media organisation such as the BBC, the Independent newspaper, New Statesman magazine and marketing magazine The Drum.

But what progress has been made implementing Smart Cities ideas?

In the UK, many local authorities have implemented Open Data portals, usually using Open Source platforms such as CKAN and investing a few £10,000s of resources. These are important first steps for building the ecosystems to share and build new service models using data. Some cities, notably Glasgow and Milton Keynes, have been successful deploying more sophisticated schemes supported by research and innovation grants – though as I pointed out last year, exciting as these initiatives are, research and innovation funds will not scale to support every city in the country.

Further afield, local authorities in Europe, the United States and Asia have constructed more substantial, multi-million Euro / Dollar business cases to invest their own funds in platforms that combine static open data with realtime data from sensors and infrastructure, and which use social media and smartphones to improve engagement between citizens, communities, businesses and both public- and private-sector service providers. The Center for Data Innovation recently wrote a nice summary of two reports explaining the financing vehicles that these cities are using.

This has not happened in the UK yet to the same extent. The highly centralised nature of public sector spending means that cities here have not yet been able to construct such ambitious business cases – Centre for Cities’ report “Outlook for Cities 2014” highlighted this as a general barrier to the UK’s cities carrying out initiatives to improve themselves, and reported that UK cities have autonomy over only about 17% of their funding as compared to an average of 55% across countries represented by the OECD.

As more city deals are signed and the city devolution agenda progresses, this will start to change – but I think that will still take a long time to happen.

(The London Underground is just one example of a transport operator using technology to help it operate more efficiently, safely and effectively)

Where similar technology platforms and channels of engagement are nevertheless starting to appear in the UK is through business cases based on efficiencies and increased customer satisfaction for private sector organisations that offer services such as transportation and asset management to cities, citizens and local authorities.

This approach means there’s even more of a need for collaboration between stakeholders in local ecosystems in order to establish and express common objectives – such as resilience, economic growth and social mobility – which can then guide the outcomes of those smart services through policy tools such as procurement practises and planning frameworks. Recent recommendations from the British Standards Institute on the adaptation of city planning policy to enable the Smart City agenda have highlighted the need for such collaboration.

As a consequence of this increased activity, more and more people and organisations of every type are becoming interested in Smart Cities – from oil companies to car manufacturers to politicians. This broadening of interest led to some extraordinary personal experiences for me last year, which included discussing Smart Cities with ex-US Vice President Al Gore (whose investment company Generation IM explores opportunities to invest in assets, technologies and developments that promote sustainability) and very briefly with the UK’s Princess Anne, a supporter of a leadership training scheme that will focus on Smart Cities this year.

But to be honest, I still don’t think we have really understood what a “Smart City” is; why it’s one of the most important concepts of our time; or how we can turn the concept into reality broadly and at scale.

I’ll explore six “inconvenient truths” in this article to describe why I think that’s the case; and what we can do about it:

  1. The “Smart City” isn’t a technology concept; it’s the political challenge of adapting one of the most powerful economic and social forces of our time to the needs of the places where most of us live and work.
  2. Cities won’t get smart if their leaders aren’t involved.
  3. We can’t leave Smart Cities to the market, we need the courage to shape the market.
  4. Smart cities aren’t top down or bottom up. They’re both.
  5. We need to tell honest stories.
  6. No-one will do this for us – we have to act for ourselves.

1. The “Smart City” isn’t a technology concept; it’s the political challenge of adapting one of the most powerful economic and social forces of our time to the needs of the places where most of us live and work

(Photograph of Macau in the evening by Michael Jenkin illustrating some the great complexity of cities: economic growth, social inequality and pollution)

One topic that’s endlessly revisited as more and more people encounter and consider the idea of a Smart City is just how we define that idea. The best definition I thought I had developed is this, updated slightly from the article “7 Steps to a Smarter City“:

A Smart City systematically creates and encourages innovations in city systems that are enabled by technology; that change the relationships between the creation of economic and social value and the consumption of resources; and that contribute to achieving a vision and clear objectives that are supported by a broad and active collaboration amongst city stakeholders.

But such definitions are contentious. Most obviously there’s the basic issue of whether “smart” implies a central role for digital technology – every technology company takes this approach, of course – or whether it’s simply about being more creative in the way that we manipulate the resources around us to achieve the outcomes we desire, whether that involves digital technology or not.

More broadly, a “city” is such a terrifically broad, complex and multi-disciplinary entity – and one whose behaviour is the aggregate of the millions of individual behaviours of its inhabitants, both enabled and constrained by the environment they experience – that it’s pretty much impossible to create any concise definition without missing out something important.

And of course those who live or work in towns and rural areas raise the challenge that limiting the discussion to “cities” omits important stakeholders from discussions about our future – as do those concerned with the national infrastructures that are not located wholly in cities, but without which neither cities nor any other habitations could survive as they do today.

I don’t think we’ll ever achieve a formal, functional definition of a “Smart City” that everyone will agree to. Much as the popularity of the term “Web 2.0” between (roughly) 2003 and 2010 marked the period in time when interest in the internet re-emerged following the “dot com crash“, rather than defining a specific architecture or group of technologies, I think our interest in “Smart Cities” is best understood as the consequence of a period in history in which a large number of people became aware of – and convinced by – a set of inter-related trends:

In this context, it’s less useful to attempt to precisely define the concept of a smart city, and more important to encourage and enable each of us – every community, city, government and organisation – to develop our own understanding of the changes needed to overcome the challenges and take the opportunities before us, and of the rapidly evolving role of technology in doing so.

Why is it so important that we do that?

In their report “Cities Outlook 1901“, Centre for Cities explored the previous century of urban development in the UK, examining why at various times some cities thrived and some did not. They concluded that the single most important influence on the success of cities was their ability to provide their citizens with the right skills and opportunities to find employment, as the skills required in the economy changed as technology evolved.

The challenges faced by cities and their residents in this century will be unlike any we have faced before; and technology is changing more quickly, and becoming more powerful, than it ever has before. Creating “Smart Cities” involves taking the right political, economic, social and engineering approaches to meeting those challenges.

Cities that do so will be successful. Cities that don’t, won’t be. That is the digital divide of the 21st Century, and for everyone’s sake, I hope we are all on the right side of it.

2. Cities won’t get smart if their leaders aren’t involved

(The Sunderland Software Centre, a multi-£million new technology startup incubation facility in Sunderland’s city centre. The Centre is supported by a unique programme of events and mentoring delivered by IBM’s Academy of Technology, and arising from Sunderland’s Smart City strategy)

Let me tell a short tale of two cities and their Smart transformations.

For a long time I’ve written occasional articles on this blog about Sunderland, a city whose leaders, people and social entrepreneurs have inspired me. Sunderland is one of the very few cities in the UK who have spent significant sums of their own money on Smart City projects and supporting technologies, justified by well-constructed business cases. They have publicised investments of well over £10 million, most recently including their visionary “City Intelligence Hub” initiative.

The seeds of the Intelligence Hub idea were apparent when I first worked with the Council, as can be seen from an article written at the time by the Council’s Chief Executive, Dave Smith, for the Guardian’s Local Government Network Blog, explaining why data and Open Data are crucial to the future of effective, transparent public services.

It is no coincidence at all that one of the cities that has been boldest in investing in technology to support its economic, social and environmental objectives has a Chief Executive who shows belief, leadership and engagement in the ideas of Smart Cities.

Milton Keynes have approached their Smart City agenda in a different way. Rather than making significant investments themselves to procure solutions, they have succeeded in attracting enormous investments from technology companies, universities and innovation bodies to develop and test new solutions in the city.

It is similarly no coincidence that – like Bristol, London and Glasgow, to name just three more – Milton Keynes Council have senior leadership figures – initially the then Chief Executive, Dave Hill, followed by Director of Strategy, Geoff Snelson – who regularly attend Smart Cities conferences and government bodies, and who actively convene Smart Cities collaborations. Their very visible presence demonstrates their belief in the importance of Smart City approaches to those organisations seeking to invest in developing them.

A strategy to transform the operations of a local authority (or any other organisation) using technology, and to re-invest the savings achieved by doing so into new services and initiatives that create economic growth, social mobility and resilience is not going to succeed without direct Executive leadership. Similarly, technology vendors, service providers and research funding bodies are most attracted to invest in developing new ideas and capabilities in cities whose most senior leaders are directly seeking them – they all need the outcomes of their investment to achieve real change, and it’s only through the leaders that such change will happen.

For the most part, where this level of leadership is not engaged I have not seen cities create business cases and issue procurements for Smart City solutions, and I have not seen them be successful winning research and innovation investments.

Finally, let’s be really clear about what most of those city leaders need to do: they need to follow Sunderland’s lead, not Milton Keynes’s.

The research and innovation funding from the EU and the UK that Milton Keynes has attracted will only fund  projects that explore for the first time the capabilities of new, technology-enabled approaches to urban challenges. Those funding sources will not support the widespread deployment of successful approaches in cities around the UK and around the world.

The vast majority of cities will only benefit from Smart Cities initiatives by financing them through robust business cases based on a combination of financial efficiency and social, environmental or economic value – as Sunderland and some cities outside the UK are already doing.

Cities won’t get smart if their leaders aren’t involved in actively driving their institutions to adopt new business cases and operating models. Those that don’t risk leaving the fate of their cities not to chance; but to “the market”.

3. We can’t leave Smart Cities to the market, we need the courage to shape the market

(Photograph by Martin Deutsche of plans to redevelop Queen Elizabeth Park, site of the 2012 London Olympics. The London Legacy Development’s intention, in support of the Smart London Plan, is “for the Park to become one of the world’s leading digital environments, providing a unique opportunity to showcase how digital technology enhances urban living. The aim is to use the Park as a testing ground for the use of new digital technology in transport systems and energy services.”)

As I wrote in my last article on this blog, as the price of digital technologies such as smartphones, sensors, analytics, open source software and cloud platforms reduces rapidly, market dynamics will drive their aggressive adoption to make construction, infrastructure and city services more efficient, and hence make their providers more competitive.

But those market dynamics do not guarantee that we will get everything we want for the future of our cities: efficiency and resilience are not the same as health, happiness and opportunity for every citizen.

If we are to achieve those objectives, then we need the right policy environment – at national and local level – to augment the business case for efficient, resilient “smart city” infrastructures to ensure that they are deployed in a way that makes them open to access and adaptation by ordinary people, businesses and communities; and so that they create the conditions and environment in which vibrant, fair digital cities grow from the successful innovations of their citizens, communities and businesses in the information economy.

In far too many discussions of Smart Cities I hear the argument that we can’t invest in these ideas because we lack the “normalised evidence base” that proves their benefits. I think that’s the wrong view. There are more than enough qualitative examples and stories that demonstrate that these ideas have real value and can make lives better. If we insist on moving no further until there’s a deeper, broader corpus of quantified evidence, then there’ll be no projects to deliver the evidence – a chicken and egg problem.

Writing in “The Plundered Planet”, the economist Paul Collier asserts that any proposed infrastructure of reasonable novelty and significant scale is effectively so unique – especially when considered in its geographic, political, social and economic context – that an accurate cost/benefit case simply cannot be constructed in advance based on comparable prior examples, because those examples don’t – and never will – exist.

Instead we need policy legislation to recognise the importance of digital infrastructure for cities so that it becomes a “given” in any public service or infrastructure business case, not something that has to be individually justified.

This is not a new idea. For example, the Economist magazine wrote recently about the efforts involved in distributing the benefits of the industrial revolution to society at large rather than solely to business owners and the professional classes.

More specifically to cities, in her seminal 1961 work “The Death and Life of Great American Cities“, Jane Jacobs wrote that:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

The “anti-city images” Jacobs was referring to were the vast urban highways built over the last half century to enable the levels of road traffic thought to be vital to economic growth. Since Jacobs’ time, a growing chorus of urbanists from Bogota’s ex-Mayor Enrique Penalosa to town planner Jeff Speck, architect Jan Gehl and London’s current Mayor Boris Johnson has criticised those infrastructures for the great harm they cause to human life – they create noise, pollution, a physical barrier to walking through our cities, and too often they injure or kill us.

Just as Jacobs reminded us to focus on the nature of individual human life in order to understand how cities should be built, Dan Hill of the Future Cities Catapult wrote as long ago as 2008 on the need to understand similar subtleties in the application of digital technology to cities.

Fifty years after she wrote, we should follow Dan’s example and take Jane Jacobs’ advice.

4. Smart cities aren’t top down or bottom up. They’re both.

(The SMS for Life project uses the cheap and widely used SMS infrastructure – very much the product of “top-down” investment – to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa – a “bottom-up” innovation. Photo by Novartis AG)

In case it wasn’t really clear last time I wrote about it (or the time before that), I am utterly fed up with the unconstructive argument about whether cities are best served by “top down” or “bottom up” thinking.

It’s perfectly obvious that we need both: the “bottom up” creativity through which everyone seeks to create a better life for themselves, their family, their business and their community from the resources available to them; and the top-down policies and planning that – when they work best – seek to distribute resources fairly so that everyone has the opportunity to innovate successfully.

It’s only by creating harmony between these two approaches that we will shape the market to create the cities we want and need.

Over the last few years I’ve been inspired by extraordinary thinkers from many disciplines who have tackled the need for this balance. Some of them are creating new ideas now; others created amazing ideas years or decades ago that are nevertheless imperative today. All of them are worth reading and learning from:

  • The economist E F Schumacher, who identified that investment in the distribution and accessibility of “appropriate technologies” was the best way to stimulate and support development in a way that gave rise to the broadest possible opportunities for people to be successful.
  • Andrew Zolli, head of the philanthropic PopTech foundation, who describes the inspiring innovators who synthesise top-down and bottom-up approaches to achieve phenomenal societal changes as “translational leaders” – people with the ability to engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.
  • Jan Gehl who inspired the “human scale cities” movement by relating the scale of city structures –  from pavements to housing blocks to skyscrapers – to the human senses, and the nature of our lives and movement.
  • And, of course, Jane Jacobs, whose book “The Death and Life of Great American Cities” was the first written in the context of modern society and cities to point out that cities, however vast their physical size and population, can only ever be understood by considering the banal minutiae of the daily lives of ordinary people like you and I – why we walk along this street or that; how well we know our neighbours; how far it is to walk to the nearest school, shop or park; and whether we and our families feel happy and safe.

5. We need to tell honest stories

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

Any “smart city” initiative that successfully uses digital technology to create a financially sustainable social, economic or environmental improvement, in a particular physical place and on behalf of a particular community, must draw together skills from a wide variety of disciplines such as architecture, economics, social science, psychology and technology. Experts from these disciplines use a vast and confusing array of language and terminology; and all of us are frequently guilty of focussing on the concerns of our discipline, rather than communicating the benefits of our work in plain language.

The leaders of city institutions and businesses, who we are asking to take the courageous and forward-looking decisions to invest in our ideas, are understandably not familiar with this torrent of technical terminology, which can easily appear to be (and too often is) jargon; and new ideas that appear to be presented in jargon are unlikely to be trusted.

Simon Giles of Accenture was quoted in an article on UBM’s Future Cities site as saying that the Smart Cities industry has not done a good enough job of selling the benefits of its ideas to a wide audience. Simon is a very smart guy, and I think that’s a challenge we need to face up to, and start to tell better stories about the differences Smart Cities will make to everyday lives.

In the Community Lover’s Guide to Birmingham, for example, Nick Booth describes the way his volunteer-led social media surgeries helped the Central Birmingham Neighbourhood Forum, Brandwood End Cemetery and Jubilee Debt Campaign to benefit from technology.

Another Birmingham initiative, the Northfield Ecocentre, crowdfunded £10,000 to support their “Urban Harvest” project. The funds helped the Ecocentre pick unwanted fruit from trees in domestic gardens in Birmingham and distribute it between volunteers, children’s centres, food bank customers and organisations promoting healthy eating; and to make some of it into jams, pickles and chutneys to raise money so that in future years the initiative can become self-sustaining.

In the village of Chale on the Isle of Wight, a community not served by the national gas power network and with significant levels of fuel poverty, my IBM colleague Andy Stanford-Clark has helped an initiative not only to deploy solar panels and smart meters to generate energy and measure its use by each household; but to co-design with residents how they will use that technology, so that the whole community feels a sense of ownership and inclusion in the initiative. The project has resulted in a significant drop in rent arrears as residents use the technology to reduce their utility bills, in some cases by up to 50 percent. Less obviously, the sense of shared purpose has extended to the creation of a communal allotment area in the village and a successful campaign to halve bus fares to nearby towns.

There are countless other examples. Play Fitnessgamify” exercise to persuade children to get fit, and work very hard to ensure that their products are accessible to children in communities of any level of wealth. Casserole Club use social media to introduce people who can’t cook for themselves to people who are prepared to volunteer to cook for others. The West Midlands Collaborative Commerce Marketplace uses analytics technology to help it’s 10,000 member businesses work together to win more than £4billion in new contracts each year. … and so on.

None of these initiatives are purely to do with technology. But they all use technologies that simply were not available and accessible as recently as a few years ago to achieve outcomes that are important to cities and communities. By understanding how the potential of technology was apparent to the stakeholders in such initiatives, why it was affordable and accessible to them, and how they acquired the skills to exploit it, we can learn how to design Smart Cities in a way that encourages widespread grass-roots, localised innovation.

It’s vital that these stories are honest and grounded in reality. London School of Economics Professor Adam Greenfield rightly criticised technology companies that have overstated (and misunderstood) the potential benefits of Smart Cities ideas by describing “autonomous, intelligently functioning IT systems that will have perfect knowledge of users’ habits”. No-one trusts such hyperbole, and it undermines our efforts to communicate sensibly the very real difference that sympathetically applied technology can make to real lives, businesses, communities and places.
BLANK

6. No-one will do this for us – we have to act for ourselves

Harborne Food School

(The Harborne Food School, started by Shaleen Meelu in 2014, as a community business initiative to promote healthy, sustainable approaches to food)

No single person or organisation can shape the Smart Cities market so that it delivers the cities that we need. Local governments have the ethics of civic duty and care but lack the expertise in financing and business model innovation to convert existing spending schemes into the outcomes they desire. Private sector corporations as institutions are literally amoral and strongly incentivised by the financial markets to maximise profits. Many social enterprises are enormously admirable attempts to fuse these two models, but often lack the resources and ability to scale.

Ultimately, though, all of these organisations are staffed and run by people like you and I; and we can choose to influence their behaviour. Hence my new employer Amey measures itself against a balanced scorecard that measures social, environmental and wellbeing performance in addition to financial profits; and my previous employer IBM has implemented a re-use and recycling system so sophisticated and effective that only 0.3% of the resources and assets that reach the end of their initial useful life are disposed of in landfill or by incineration: the vast majority are re-used, have their components re-manufactured or materials recycled.

Most of us won’t ever be in a position to determine the reporting model or approach to recycling of corporations as large as Amey or IBM. But all of us make choices every day about the products we buy, the organisations we work for, the politicians we vote for, the blog articles we read, share and write and the activities we prioritise our resources on.

Those choices have real effects, and digital technology gives us all the opportunity for our choices to have more impact than ever before. This blog, which costs me nothing to operate other than the time it takes me to write articles, now reaches thousands of readers in over 150 counties. Air BnB took 2 years to accumulate the same number of rentable rooms that it took the Hilton Hotel chain 50 years to build.

It has never been easier to express an opinion widely or create a new way of doing things. That’s exactly what Shaleen Meelu did when she started the Harborne Food School to promote healthier, more sustainable approaches to food, with the support of Birmingham’s Smart City community. It’s an opportunity all of us should seize; and it’s absolutely the best opportunity we have to create better cities and a better world for ourselves.

A design pattern for a Smarter City: Online Peer-to-Peer and Regional Marketplaces

(Photo of Moseley Farmers’ Market in Birmingham by Bongo Vongo)

(In “Do we need a Pattern Language for Smarter Cities” I suggested that “design patterns“, a tool for capturing re-usable experience invented by the town-planner Christopher Alexander, might offer a useful way to organise our knowledge of successful approaches to “Smarter Cities”. I’m now writing a set of design patterns to describe ideas that I’ve seen work more than once. The collection is described and indexed in “Design Patterns for Smarter Cities” which can be found from the link in the navigation bar of this blog).  

Design Pattern: Online Peer-to-Peer and Regional Marketplaces

Summary of the pattern:

A society is defined by the transactions that take place within it, whether their characteristics are social or economic, and whether they consist of material goods or communication. Many of those transactions take place in some form of marketplace.

As traditional business has globalised and integrated over the last few decades, many of the systems that support us – food production and distribution, energy generation, manufacturing and resource extraction, for example – have optimised their operations globally and consolidated ownership to exploit economies of scale and maximise profits. Those operations have come to dominate the marketplaces for the goods and services they consume and process; they defend themselves from competition through the expense and complexity of the business processes and infrastructures that support their operations; through their brand awareness and sales channels to customers; and through their expert knowledge of the availability and price of the resources and components they need.

However, in recent years dramatic improvements in information and communication technology – especially social mediamobile devicese-commerce and analytics – have made it dramatically easier for people and organisations with the potential to transact with each other to make contact and interact. Information about supply and demand has become more freely available; and it is increasingly easy to reach consumers through online channels – this blog, for instance, costs me nothing to write other than my own time, and now has readers in over 140 countries.

In response, online peer-to-peer marketplaces have emerged to compete with traditional models of business in many industries – Apple’s iTunes famously changed the music industry in this way; YouTube has transformed the market for video content and Prosper and Zopa have created markets for peer-to-peer lending. And as technologies such as 3D printing and small-scale energy generation improve, these ideas will spread to other industries as it becomes possible to carry out activities that previously required expensive, large-scale infrastructure at a smaller scale, and so much more widely.

(A Pescheria in Bari, Puglia photographed by Vito Palmi)

Whilst many of those marketplaces are operated by commercial organisations which exist to generate profit, the relevance of online marketplaces for Smarter Cities arises from their ability to deliver non-financial outcomes: i.e. to contribute to the social, economic or environmental objectives of a city, region or community.

The e-Bay marketplace in second hand goods, for example, has extended the life of over $100 billion of goods since it began operating by offering a dramatically easier way for buyers and sellers to identify each other and conduct business than had ever existed before. This spreads the environmental cost of manufacture and disposal of goods over the creation of greater total value from them, contributing to the sustainability agenda in every country in which e-Bay operates.

Local food marketplaces such as Big Barn and Sustaination in the UK, m-farm in Kenya and the fish-market pricing information service operated by the University of Bari in Puglia, Italy, make it easier for consumers to buy locally produced food, and for producers to sell it; reducing the carbon footprint of the food that is consumed within a region, and assisting the success of local businesses.

The opportunity for cities and regions is to encourage the formation and success of online marketplaces in a way that contributes to local priorities and objectives. Such regional focus might be achieved by creating marketplaces with restricted access – for example, only allowing individuals and organisations from within a particular area to participate – or by practicality: free recycling networks tend to operate regionally simply because the expense of long journeys outweighs the benefit of acquiring a secondhand resource for free. The cost of transportation means that in general many markets which support the exchange of physical goods and services in small-scale, peer-to-peer transactions will be relatively localised.

City systems, communities and infrastructures affected:

(This description is based on the elements of Smarter City ecosystems presented in ”The new Architecture of Smart Cities“).

  • Goals: all
  • People: employees, business people, customers, citizens
  • Ecosystem: private sector, public sector, 3rd sector, community
  • Soft infrastructures: innovation forums; networks and community forums
  • Hard infrastructures: information and communication technology, transport and utilities network

Commercial operating model:

The basic commercial premise of an online marketplace is to invest in the provision of online marketplace infrastructure in order to create returns from revenue streams within it. Various revenue streams can be created: for example, e-Bay apply fees to transactions conducted through their marketplace, as does the crowdfunding scheme Spacehive; whereas Linked-In charges a premium subscription fee to businesses such as recruitment agencies in return for the right to make unsolicited approaches to members.

More complex revenue models are created by allowing value-add service providers to operate in the marketplace – such as the payment service PayPal, which operated in e-Bay long before it was acquired; or the start-up Addiply, who add hyperlocal advertising to online transactions. The marketplace operator can also provide fee-based “white-label” or anonymised access to marketplace services to allow third parties to operate their own niche marketplaces – Amazon WebStore, for example, allows traders to build their own, branded online retail presence using Amazon’s services.

(Photo by Mark Vauxhall of public Peugeot Ions on Rue des Ponchettes, Nice, France)

Online marketplaces are operated by a variety of entities: entrepreneurial technology companies such as Shutl, for example, who offer services for delivering goods bought online through a marketplace provding access to independent delivery agents and couriers; or traditional commercial businesses seeking to “servitise” their business models, create “disruptive business platforms” or create new revenue streams from data.

(Apple’s iTunes was a disruptive business platform in the music industry when it launched – it used a new technology-enabled marketplace to completely change flows of money within the industry; and streaming media services such as Spotify have servitised the music business by allowing us to pay for the right to listen to any music we like for a certain period of time, rather than paying for copies of specific musical works as “products” which we own outright. Car manufacturers such as Peugeot are collaborating with car clubs to offer similar “pay-as-you-go” models for car use, particularly as an alternative to ownership for electric cars. Some public sector organisations are also exploring these innovations, especially those that possess large volumes of data.)

Marketplaces can create social, economic and environmental outcomes where they are operated by commercial, profit-seeking organisations which seek to build brand value and customer loyalty through positive environmental and societal impact. Many private enterprises are increasingly conscious of the need to contribute to the communities in which they operate. Often this results from the desire of business leaders to promote responsible and sustainable approaches, combined with the consumer brand-value that is created by a sincere approach. UniLever are perhaps the most high profile commercial organisation pursuing this strategy at present; and Tesco have described similar initiatives recently, such as the newly-launched Tesco Buying Club which helps suppliers secure discounts through collective purchasing. There is a clearly an opportunity for local communities and local government organisations to engage with such initiatives from private enterprise to explore the potential for online marketplaces to create mutual benefit.

In other cases, marketplaces are operated by not-for-profit organisations or social enterprises for whom creating social or economic outcomes in a financially and environmentally sustainable way is the first priority. The social enterprise approach is important if cities everywhere are to benefit from information marketplaces: most commercially operated marketplaces with a geographic focus operate in large, capital cities: these provide the largest customer base and minimise the risk associated with the investment in creating the market. If towns, cities and regions elsewhere wish to benefit from online marketplaces, they may need to encourage alternative models such as social enterprise to deliver them.

Finally, Some schemes are operated entirely on free basis, for example the Freecycle recycling network; or as charitable or donor-sponsored initiatives, for example the Kiva crowdfunding platform for charitable initiatives.

Soft infrastructures, hard infrastructures and assets required:

(The SMS for Life project uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa. Photo by Novartis AG)

The technology infrastructures required to implement online marketplaces include those associated with e-commerce technology and social media: catalogues of goods and services; pricing mechansims; support for marketing campaigns; networks of individuals and organisations and the ability to make connections between them; payments services and multi-channel support.

Many e-commerce platforms offer support for online payments integrated with traditional banking systems; or mobile payments schemes such as the M-Pesa scheme in Kenya can be used. Alternatively, the widespread growth in local currencies and alternative trading systems might offer innovative solutions that are particularly relevant for marketplaces with a regional focus.

In order to be successful, marketplaces need to create an environment of trust in which transactions can be undertaken safely and reliably. As the internet has developed over the past two decades, technologies such as certificate-based identity assurance, consumer reviews and reputation schemes have emerged to create trust in online transactions and relationships. However, many online marketplaces provide robust real-world governance models in addition to tools to create online trust: the peer-to-peer lender Zopa created “Zopa Safeguard“, for example, an independent, not-for-profit entity with funds to re-imburse investors whose debtors are unable to repay them.

Marketplaces which involve the transaction of goods and services with some physical component – whether in the form of manufactured goods, resources such as water and energy or services such as in-home care – will also require transport services; and the cost and convenience of those services will need to be appropriate to the value of exchanges in the marketplace. Shutl’s transportation marketplace is in itself an innovation in delivering more convenient, lower cost delivery services to online retail marketplaces. By contrast, community energy schemes, which attempt to create local energy markets that reduce energy usage and maximise consumption of power generated by local, renewable resources, either need some form of smart grid infrastructure, or a commercial vehicle, such as a shared energy performance contract.

Driving forces:

  • The desire of regional authorities and business communities to form supply chains, market ecosystems and trading networks that maximise the creation and retention of economic value within a region; and that improve economic growth and social mobility.
  • The need to improve efficiency in the use of assets and resources; and to minimise externalities such as the excessive transport of goods and services.
  • The increasing availability and reducing cost of enabling technologies providing opportunities for new entrants in existing marketplaces and supply chains.

Benefits:

  • Maximisation of regional integration in supply networks.
  • Retention of value in the local economy.
  • Increased efficiency of resource usage by sharing and reusing goods and services.
  • Enablement of new models of collaborative asset ownership, management and use.
  • The creation of new business models to provide value-add products and services.

Implications and risks:

(West Midlands police patrolling Birmingham’s busy Frankfurt Market in Christmas, 2012. Photo by West Midlands Police)

Marketplaces must be carefully designed to attract a critical mass of participants with an interest in collaborating. It is unlikely, for example, that a group of large food retailers would collaborate in a single marketplace in which to sell their products to citizens of a particular region. The objective of such organisations is to maximise shareholder value by maximising their share of customers’ weekly household budgets. They would have no interest in sharing information about their products alongside their competitors and thus making it easier for customers to pick and choose suppliers for individual products.

Small, specialist food retailers have a stronger incentive to join such marketplaces: by adding to the diversity of produce available in a marketplace of specialist suppliers, they increase the likelihood of shoppers visiting the marketplace rather than a supermarket; and by sharing the cost of marketplace infrastructure – such as payments and delivery services – each benefits from access to a more sophisticated infrastructure than they could afford individually.

Those marketplaces that require transportation or other physical infrastructures will only be viable if they create transactions of high enough value to account for the cost of that infrastructure. Such a challenge can even apply to purely information-based marketplaces: producing high quality, reliable information requires a certain level of technology infrastructure, and marketplaces that are intended to create value through exchanging information must pay for the cost of that infrastructure. This is one of the challenges facing the open data movement.

If the marketplace does not provide sufficient security infrastructure and governance processes to create trust between participants – or if those participants do not believe that the infrastructure and governance are adequate – then transactions will not be carried out.

Some level of competition is inevitable between participants in a marketplace. If that competition is balanced by the benefits of better access to trading partners and supporting services, then the marketplace will succeed; but if competitive pressures outweigh the benefits, it will fail.

Alternatives and variations:

  • Local currencies and alternative trading systems are in many ways similar to online marketplace; and are often a supporting component
  • Some marketplaces are built on similar principles, and certainly achieve “Smart” outcomes, but do not use any technology. The Dhaka Waste Concern waste recycling scheme in Bangladesh, for example, turns waste into a market resource, creating jobs in the process.

Examples and stories:

Sources of information:

I’ve written about digital marketplaces several times on this blog, including the following articles:

Industry experts and consultancies have published work on this topic that is well worth considering:

A design pattern for a Smarter City: Local Currencies and Alternative Trading Systems

(Photo of the Brixton Pound by Charlie Waterhouse)

(In “Do we need a Pattern Language for Smarter Cities” I suggested that “design patterns“, a tool for capturing re-usable experience invented by the town-planner Christopher Alexander, might offer a useful way to organise our knowledge of successful approaches to “Smarter Cities”. I’m now writing a set of design patterns to describe ideas that I’ve seen work more than once. The collection is described and indexed in “Design Patterns for Smarter Cities” which can be found from the link in the navigation bar of this blog).  

Design Pattern: Local Currencies and Alternative Trading Systems

Summary of the pattern:

There are many definitions of a “smart city”, but they all incorporate the concept of innovations, enabled by technology, that change the relationships between the creation of financial and social value and the consumption of resources.

Money is our universal system for quantifying the exchange of value; but most of the systems which measure value using money do not incorporate social or environmental factors – externalities as they are known by economists. Consequently a variety of alternative systems of trading and exchange have emerged amongst online communities and in local ecosystems that are exploring new ways to create sustainable regional economic and social improvement.

Some of these schemes use paper or electronic currencies that are issued and accepted within a particular place or region; and that have the effect of influencing people and businesses to spend the money that they earn locally, promoting regional economic synergies. Last year, Bristol became the 5th UK town or city to operate its own currency using this model, and “Droplet” operate a local smartphone payment scheme in Birmingham and London.

Other schemes are based on the bartering of goods, money, time and services, such as time banking. And some schemes combine both elements – In Switzerland, a complementary currency, the Wir , has contributed to economic stability over the last century by allowing some debt repayments to be bartered locally when they cannot be repaid in universal currency.

As these schemes develop – and in particular as they adopt technologies such as smartphones and offer open APIs to allow developers to incorporate their capabilities in new services – they are increasingly being used as an infrastructure for Smarter City projects in domains such as transport, food supply and energy.

(The SMS for Life project uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa. Photo by Novartis AG)

Such schemes exploit the potential for the combination of information technology and local currencies to calculate rates of exchange that compare the social, environmental and economic cost of goods and services to their immediate, contextual value to the participants in the transaction. The academic field of service science has evolved to study the ways in which such possibilities lead to business and service invocation.

This trend is particularly strong in some African nations where a lack of physical and transport infrastructure has led to a surge in business innovation supported by mobile payments schemes. For example, the Kilimo Salama scheme in Kenya provides affordable insurance to subsistence farmers by using remote weather monitoring to trigger payouts via mobile phones, rather than undertaking expensive site visits to assess claims.

City systems, communities and infrastructures affected:

(This description is based on the elements of Smarter City ecosystems presented in ”The new Architecture of Smart Cities“).

  • Goals: Wealth, health, opportunity, choice, sustainability
  • People: Any
  • Ecosystem: All
  • Soft infrastructures: Leadership and governance, networks and community organisations
  • City systems: Transport systems, health, culture, economy, retail, leisure; and potentially others
  • Hard infrastructures: Information and communication technology

Commercial operating models, alternatives and variations:

Four main types of commercial model exist, each constituting a variation of this pattern:

  • Local currencies operated as social enterprises within specific towns or cities, pursing local economic objectives, often issuing paper currencies. Examples include the Bristol, Brixton, Lewes, Stroud, and Totnes pounds. These schemes link to national and universal currency by offering defined processes and rates of exchange. Often the financial backing is provided by a credit union or other mutual financial organisation.
  • Smartphone payment schemes operated by private enterprises, usually entrepreneurial technology companies. These companies may not have local economic objectives as a primary focus, but will usually deploy their services and build businesses with a network of merchants in a specific city in order to create the critical mass necessary to persuade consumers to adopt the service. These schemes link to traditional payment systems either through direct integration to banking services, or though the billing systems offered by mobile network operators.
  • Recycling and bartering networks such as Freecycle which operate very informally and are locally focused as they involve people physically meeting to exchange goods or services. Such networks are often governed at least as much by codes of behaviour as they are by being legally constituted as formal bodies.
  • Local loyalty schemes operated by city councils or by businesses on behalf of local communities, and that encourage local businesses to collectively reward customers for using their products and services. Examples include the “Backing Birmingham” b-card; the not-for-profit “tag” scheme that operates in Durham, Manchester and Stockport; and Local Loyalty Powys.

In addition, it is likely that formal banking institutions and payments intermediaries will enter this market in some form. Many financial institutions started as or are now social enterprises, or express community objectives in their charters; credit unions, for example, or Hancock Bank, whose charter as a community bank led them to take powerful actions to assist the citizens of New Orleans to recover from hurricane Katrina in 2005 .

These institutions are increasingly exploring the role they can take in supporting Smarter Cities, both directly  or through supporting innovation facilities like the Future Cities programme at the Level39 incubator in London’s financial district.

Soft infrastructures, hard infrastructures and assets required:

Local currencies and trading schemes are formed where an entrepreneurial organisation – whether a private business or a social enterprise – works together with a community organisation – either an institution such as a city council, or a community such as a local business network. Trust and collaboration between the entrepreneur, institution and community are vital to success. In particular, city institutions can support the scheme by allowing employees to chose to be paid through it in whole or in part – Lambeth Council offers employees the choice to be paid in part in Brixton pounds; and Bristol’s mayor takes his entire salary in Bristol Pounds.

A Payments or billing service, or mechanisms to print local currency and govern its exchange for national currency are also required in order to integrate the local scheme with the traditional economy. The governance of these arrangements is crucial to convincing individuals and businesses to trust this new independent form of currency.

Schemes achieve the highest level of adoption where they are supported by strong local economic and business communities, such as Business Improvement Districts or campaigns such as Coffee Birmingham.

(The QR code that enabled Will Grant of Droplet to buy me a coffee at Birmingham Science Park Aston using Droplet’s local smartphone payment solution; and the receipt that documents the transaction)

Driving forces:

The factors that lead to the emergence of local currencies and alternative trading systems include:

  • The desire from local government, within local communities and amongst local businesses and entrepreneurs to support local economic and social growth.
  • Disillusion with traditional financial systems following the 2008 crash, recent banking scandals, and the reluctance of some banks to lend to small business; along with an awareness that alternative models are increasingly viable for some purposes.
  • The increasing availability of low-cost payment systems to support transactions in online marketplaces that exchange local resources, such as local food initiatives, community energy schemes, shared transport systems and timebanks.

Benefits:

Benefits of local currencies and alternative trading systems include:

  • The potential to link the formal economy with informal transactions, some of which are crucial to creating value in communities with the fewest resources.
  • The ability to include local externalities in the rate of exchange associated with transactions.
  • Reinforcement of local economic synergies.
  • The creation of brand value for towns and cities with flourishing local currencies.

Alternatives and variations:

Alternatives and variations of this pattern are described under “Commercial operating models, alternatives and variations” above.

Implications and risks:

Local currencies are not universally admired. Some merchants complain that it is inconvenient to accept payment in a currency with restrictions on spending, or that requires conversion to national currency; and some commentators have questioned whether they achieve anything that couldn’t be achieved through simpler means. Newspaper and BBC journalists have explored these issues in reports describing the Lewes Pound.

Local currency schemes must also offer some mechanism to protect the value of currency held by users of the scheme. This might be achieved if the currency is operated by a mutual financial organisation such as a credit union; or by depositing matching funds in national currency in a traditional bank account. Where printed notes are issued, steps must be taken to prevent them being easily reproduced fraudulently.

Finally, in order to succeed, local currencies need to achieve a critical mass of users and of accepting merchants. Lambeth Council accept payments of business rates in Brixton pounds, and allow employees to take part of their salaries in the currency. Both actions support growth in use of the currency. The presence of strong community groups amongst local businesses can also boost such schemes.

(George Ferguson, Bristol’s Mayor, whose salary is paid in Bristol Pounds . His red trousers are famous . Photo by PaulNUK)

Examples and stories:

The story of Hancock Bank’s actions to assist the citizens of New Orleans to recover from hurricane Katrina in 2005 is told in this video, and shares many of the values that local currencies are based on.

Hancock Bank’s actions were the result of senior management basing their decisions on the company’s purpose, expressed in its charter, to support the communities of the city. This is in contrast to the behaviour of Bob Diamond, who resigned as CEO of Barclays Bank following the Libor rate-manipulation scandal, who under questioning by parliamentary committee could not remember what the Bank’s founding principles, written by community-minded Quakers, stated.

Rose Goslinga tells the story of forming the Kilimo Salama micro-insurance scheme here.

Sources of information:

In addition to the sources already linked to in this pattern, Brett Scott’s “Heretic’s guide to global finance” explores a number of ways to adapt the traditional financial system to achieve social and environmental objectives.

Can Smarter City technology measure and improve our quality of life?

(Photo of Golden Gate Bridge, San Francisco, at night by David Yu)

Can information and technology measure and improve the quality of life in cities?

That seems a pretty fundamental question for the Smarter Cities movement to address. There is little point in us expending time and money on the application of technology to city systems unless we can answer it positively. It’s a question that I had the opportunity to explore with technologists and urbanists from around the world last week at the Urban Systems Collaborative meeting in London, on whose blog this article will also appear.

Before thinking about how we might approach such a challenging and complex issue, I’d like to use two examples to support my belief that we will eventually conclude that “yes, information and technology can improve the quality of life in cities.”

The first example, which came to my attention through Colin Harrison, who heads up the Urban Systems Collaborative, concerns public defibrillator devices – equipment that can be used to give an electric shock to the victim of a heart attack to restart their heart. Defibrillators are positioned in many public buildings and spaces. But who knows where they are and how to use them in the event that someone nearby suffers a heart attack?

To answer those questions, many cities now publish open data lists of the locations of publically-accessible Defibrillators. Consequently, SmartPhone apps now exist that can tell you where the nearest one to you is located. As cities begin to integrate these technologies with databases of qualified first-aiders and formal emergency response systems, it becomes more feasible that when someone suffers a heart attack in a public place, a nearby first-aider might be notified of the incidence and of the location of a nearby defibrillator, and be able to respond valuable minutes before the arrival of emergency services. So in this case, information and technology can increase the chancees of heart attack victims recovering.

(Why Smarter Cities matter: "Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(Why Smarter Cities matter: “Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy across London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

In a more strategic scenario, the Centre for Advanced Spatial Analysis (CASA) at University College London have mapped life expectancy at birth across London. Life expectancy across the city varies from 75 to 96 years, and CASA’s researchers were able to correlate it with a variety of other issues such as child poverty.

Life expectancy varies by 10 or 20 years in many cities in the developed world; analysing its relationship to other economic, demographic, social and spatial information can provide insight into where money should be spent on providing services that address the issues leading to it, and that determine quality of life. The UK Technology Strategy Board cited Glasgow’s focus on this challenge as one of their reasons for investing £24 million in Glasgow’s Future Cities Demonstrator project – life expectancy at birth for male babies in Glasgow varies by 26 years between the poorest and wealthiest areas of the city.

These examples clearly show that in principle urban data and technology can contribute to improving quality of life in cities; but they don’t explain how to do so systematically across the very many aspects of quality of life and city systems, and between the great variety of urban environments and cultures throughout the world. How could we begin to do that?

Deconstructing “quality of life”

We must first think more clearly about what we mean by “quality of life”. There are many needs, values and outcomes that contribute to quality of life and its perception. Maslow’s “Hierarchy of Needs” is a well-researched framework for considering them. We can use this as a tool for considering whether urban data can inform us about, and help us to change, the ability of a city to create quality of life for its inhabitants.

(Maslow’s Hierarchy of Needs, image by Factoryjoe via Wikimedia Commons)

But whilst Maslow’s hierarchy tells us about the various aspects that comprise the overall quality of life, it only tells us about our relationship with them in a very general sense. Our perception of quality of life, and what creates it for us, is highly variable and depends on (at least) some of the following factors:

  • Individual lifestyle preferences
  • Age
  • Culture and ethnicity
  • Social standing
  • Family status
  • Sexuality
  • Gender
  • … and so on.

Any analysis of the relationship between quality of life, urban data and technology must take this variability into account; either by allowing for it in the analytic approach; or by enabling individuals and communities to customise the use of data to their specific needs and context.

Stress and Adaptability

Two qualities of urban systems and life within them that can help us to understand how urban data of different forms might relate to Maslow’s hierarchy of needs and individual perspectives on it are stress and adaptability.

Jurij Paraszczak, IBM’s Director of Research for Smarter Cities, suggested that one way to improve quality of life is to reduce stress. A city with efficient, well integrated services – such as transport; availability of business permits etc. – will likely cause less stress, and offer a higher quality of life, than a city whose services are disjointed and inefficient.

One cause of stress is the need to change. The Physicist Geoffrey West is one of many scientists who has explored the roles of technology and population growth in speeding up city systems; as our world changes more and more quickly, our cities will need to become more agile and adaptable – technologists, town planners and economists all seem to agree on this point.

The architect Kelvin Campbell has explored how urban environments can support adaptability by enabling actors within them to innovate with the resources available to them (streets, buildings, spaces, technology) in response to changes in local and global context – changes in the economy of cultural trends, for example.

Service scientists” analyse the adaptability of systems (such as cities) by considering the “affordances” they offer to actors within them. An “affordance” is a capability within a system that is not exercised until an actor chooses to exercise it in order to create value that is specific to them, and specific to the time, place and context within which they act.

An “affordance” might be the ability to start a temporary business or “pop-up” shop within a disused building by exploiting a temporary exemption from planning controls. Or it might be the ability to access open city data and use it as the basis of new information-based business services. (I explored some ideas from science, technology, economics and urbanism for creating adaptability in cities in an article in March this year).

(Photo by lecercle of a girl in Mumbai doing her homework on whatever flat surface she could find. Her use of a stationary tool usually employed for physical mobility to enhance her own social mobility is an example of the very basic capacity we all have to use the resources available to us in innovative ways)

Stress and adaptability are linked. The more personal effort that city residents must exert in order to adapt to changing circumstances (i.e. the less that a city offers them useful affordances), then the more stress they will be subjected to.

Stress; rates of change; levels of effort and cost exerted on various activities: these are all things that can be measured.

Urban data and quality of life in the district high street

In order to explore these ideas in more depth, our discussion at the Urban Systems Collaborative meeting explored a specific scenario systematically. We considered a number of candidate scenarios – from a vast city such as New York, with a vibrant economy but affected by issues such as flood risk; through urban parks and property developments down to the scale of an individual building such as a school or hospital.

We chose to start with a scenario in the middle of that scale range that is the subject of particularly intense debate in economics, policy and urban design: a mixed-demographic city district with a retail centre at its heart spatially, socially and economically.

We imagined a district with a population of around 50,000 to 100,000 people within a larger urban area; with an economy including the retail, service and manufacturing sectors. The retail centre is surviving with some new businesses starting; but also with some vacant property; and with a mixture of national chains, independent specialist stores, pawnshops, cafes, payday lenders, pubs and betting shops. We imagined that local housing stock would support many levels of wealth from benefits-dependent individuals and families through to millionaire business owners. A district similar to Kings Heath in Birmingham, where I live, and whose retail economy was recently the subject of an article in the Economist magazine.

We asked ourselves what data might be available in such an environment; and how it might offer insight into the elements of Maslow’s hierarchy.

We began by considering the first level of Maslow’s hierarchy, our physiological needs; and in particular the availability of food. Clearly, food is a basic survival need; but the availability of food of different types – and our individual and cultural propensity to consume them – also contributes to wider issues of health and wellbeing.

(York Road, Kings Heath, in the 2009 Kings Heath Festival. Photo by Nick Lockey)

Information about food provision, consumption and processing can also give insights into economic and social issues. For example, the Economist reported in 2011 that since the 2008 financial crash, some jobs lost in professional service industries such as finance in the UK had been replaced by jobs created in independent artisan industries such as food. Evidence of growth in independent businesses in artisan and craft-related sectors in a city area may therefore indicate the early stages of its recovery from economic shock.

Similarly, when a significant wave of immigration from a new cultural or ethnic group takes place in an area, then it tends to result in the creation of new, independent food businesses catering to preferences that aren’t met by existing providers. So a measure of diversity in food supply can be an indicator of economic and social growth.

So by considering a need that Maslow’s hierarchy places at the most basic level, we were able to identify data that describes an urban area’s ability to support that need – for example, the “Enjoy Kings Heath” website provides information about local food businesses; and furthermore, we identified ways that the same data related to needs throughout the other levels of Maslow’s hierarchy.

We next considered how economic flows within and outside an area can indicate not just local levels of economic activity; but also the area’s trading surplus or deficit. Relevant information in principle exists in the form of the accounts and business reports of businesses. Initiatives such as local currencies and loyalty schemes attempt to maximise local synergies by minimising the flow of money out of local economies; and where they exploit technology platforms such as Droplet’s SmartPhone payments service, which operates in London and Birmingham, the money flows within local economies can be measured.

These money flows have effects that go beyond the simple value of assets and property within an area. Peckham high street in London has unusually high levels of money flow in and out of its economy due to a high degree of import / export businesses; and to local residents transferring money to relatives overseas. This flow of money makes business rents in the area disproportionally high  compared to the value of local assets.

Our debate also touched on environmental quality and transport. Data about environmental quality is increasingly available from sensors that measure water and air quality and the performance of sewage systems. These clearly contribute insights that are relevant to public health. Transport data provides perhaps more subtle insights. It can provide insight into economic activity; productivity (traffic jams waste time); environmental impact; and social mobility.

My colleagues in IBM Research have recently used anonymised data from GPS sensors in SmartPhones to analyse movement patterns in cities such as Abidjan and Istanbul on behalf of their governments and transport authorities; and to compare those movement patterns with public transport services such as bus routes. When such data is used to alter public transport services so that they better match the end-to-end journey requirements of citizens, an enormous range of individual, social, environmental and economic benefits are realised.

(The origins and destinations of end-to-end journeys made in Abidjan, identified from anonymised SmartPhone GPS data)

(The origins and destinations of end-to-end journeys made in Abidjan, identified from anonymised SmartPhone GPS data)

Finally, we considered data sources and aspects of quality of life relating to what Maslow called “self-actualisation”: the ability of people within the urban environment of our scenario to create lifestyles and careers that are individually fulfilling and that reward creative self-expression. Whilst not direct, measurements of the registration of patents, or of the formation and survival of businesses in sectors such as construction, technology, arts and artisan crafts, relate to those values in some way.

In summary, the exercise showed that a great variety of data is available that relates to the ability of an urban environment to provide Maslow’s hierarchy of needs to people within it. To gain a fuller picture, of course, we would need to repeat the exercise with many other urban contexts at every scale from a single building up to the national, international and geographic context within which the city exists. But this seems a positive start.

Recognising the challenge

Of course, it is far from straightforward to convert these basic ideas and observations into usable techniques for deriving insight and value concerning quality of life from urban data.

What about the things that are extremely hard to measure but which are often vital to quality of life – for example the cash economy? Physical cash is notoriously hard to trace and monitor; and arguably it is particularly important to the lives of many individuals and communities who have the most significant quality of life challenges; and to those who are responsible for some of the activities that detract from quality of life – burglary, mugging and the supply of narcotics, for example.

The Urban Systems Collaborative’s debate also touched briefly on the question of whether we can more directly measure the outcomes that people care about – happiness, prosperity, the ability to provide for our families, for example. Antti Poikola has written an article on his blog, “Vital signs for measuring the quality of life in cities“, based on the presentation on that topic by Samir Menon of Tata Consulting Services. Samir identified a number of “happiness indices” that have been proposed by the UK Prime Minister, David Cameron, the European Quality of Life Survey, the OECD’s Better Life Index, and the Social Progress Index created by economist Michael Porter. Those indices generally attempt to correlate a number of different quantitative indicators with qualitative information from surveys into an overall score. Their accuracy and usefulness is the subject of contentious debate.

As an alternative, Michael Mezey of the Royal Society for the Arts recently collected descriptions of attempts to measure happiness more directly by identifying the location of issues or events associated with positive or negative emotions – such as parks and pavements fouled by dog litter or displays of emotion in public. It’s fair to say that the results of these approaches are very subjective and selective so far, but it will be interesting to observe what progress is made.

There is also a need to balance our efforts between creating value from the data that is available to us – which is surely a resource that we should exploit – with making sure that we focus our efforts on addressing our most important challenges, whether or not data relevant to them is easily accessible.

And in practise, a great deal of the data that describes cities is still not very accessible or useful. Most of it exists within IT systems that were designed for a specific purpose – for example, to allow building owners to manage the maintenance of their property. Those systems may not be very good at providing data in a way that is useful for new purposes – for example, identifying whether a door is connected to a pavement by a ramp or by steps, and hence how easy it is for a wheelchair user to enter a building.

(Photo by Closed 24/7 of the Jaguar XF whose designers used “big data” analytics to optimise the emotional response of potential customers and drivers)

Generally speaking, transforming data that is useful for a specific purpose into data that is generally useful takes time, effort and expertise – and costs money. We may desire city data to be tidied up and made more readily accessible; just as we may desire a disused factory to be converted into useful premises for shops and small businesses. But securing the investment required to do so is often difficult – this is why open city data is a “brownfield regeneration” challenge for the information age.

We don’t yet have a general model for addressing that challenge, because the socio-economic model for urban data has not been defined. Who owns it? What does it cost to create? What uses of it are acceptable? When is it proper to profit from data?

Whilst in principle the data available to us, and our ability to derive insight and knowledge from it, will continue to grow, our ability to benefit from it in practise will be determined by these crucial ethical, legal and economic issues.

There are also more technical challenges. As any mathematician or scientist in a numerate discipline knows, data, information and analysis models have significant limitations.

Any measurement has an inherent uncertainty. Location information derived from Smartphones is usually accurate to within a few meters when GPS services are available, for example; but only to within a few hundred meters when derived by triangulation between mobile transmission masts. That level of inaccuracy is tolerable if you want to know which city you are in; but not if you need to know where the nearest defibrilator is.

These limitations arise both from the practical limitations of measurement technology; and from fundamental scientific principles that determine the performance of measurement techniques.

We live in a “warm” world – roughly 300 degrees Celsius above what scientists call “absolute zero“, the coldest temperature possible. Warmth is created by heat energy; that energy makes the atoms from which we and our world are made “jiggle about” – to move randomly. When we touch a hot object and feel pain it is because this movement is too violent to bear – it’s like being pricked by billions of tiny pins. This random movement creates “noise” in every physical system, like the static we hear in analogue radio stations or on poor quality telephone lines.

And if we attempt to measure the movements of the individual atoms that make up that noise, we enter the strange world of quantum mechanics in which Heisenberg’s Uncertainty Principle states that the act of measuring such small objects changes them in unpredictable ways. It’s hardly a precise analogy, but imagine trying to measure how hard the surface of a jelly is by hitting it with a hammer. You’d get an idea of the jelly’s hardness by doing so, but after the act of “measurement” you wouldn’t be left with the same jelly. And before the measurement you wouldn’t be able to predict the shape of the jelly afterwards.

(A graph from my PhD thesis showing experimental data plotted against the predictions of an analytic. Notice that whilst the theoretical prediction (the smooth line) is a good guide to the experimental data, that each actual data point lies above or below the line, not on it. In addition, each data point has a vertical bar expressing the level of uncertainty involved in its measurement. In most circumstances, data is uncertain and theory is only a rough guide to reality.)

Even if our measurements were perfect, our ability to understand what they are telling us is not. We draw insight into the behaviour of a real system by comparing measurements of it to a theoretical model of its behaviour. Weather forecasters predict the weather by comparing real data about temperature, air pressure, humidity and rainfall to sophisticated models of weather systems; but, as the famous British preoccupation with talking about the weather illustrates, their predictions are frequently inaccurate. Quite simply this is because the weather system of our world is more complicated than the models that weather forecasters are able to describe using mathematics; and process using today’s computers.

This may all seem very academic; and indeed it is – these are subjects that I studied for my PhD in Physics. But all scientists, mathematicians and engineers understand them; and whether our work involves city systems, motor cars, televisions, information technology, medicine or human behaviour, when we work with data, information and analysis technology we are very much aware and respectful of their limitations.

Most real systems are more complicated than the theoretical models that we are able to construct and analyse. That is especially true of any system that includes the behaviour of people – in other words, the vast majority of city systems. Despite the best efforts of psychology, social science and artificial intelligence we still do not have an analytic model of human behaviour.

For open data and Smarter Cities to succeed, we need to openly recognise these challenges. Data and technology can add immense value to city systems – for instance, IBM’s “Deep Thunder” technology creates impressively accurate short-term and short-range predictions of weather-related events such as flash-flooding that have the potential to save lives. But those predictions, and any other result of data-based analysis, have limitations; and are associated with caveats and constraints.

It is only by considering the capabilities and limitations of such techniques together that we can make good decisions about how to use them – for example, whether to trust our lives to the automated analytics and control systems involved in anti-lock braking systems, as the vast majority of us do every time we travel by road; or whether to use data and technology only to provide input into a human process of consideration and decision-making – as takes place in Rio when city agency staff consider Deep Thunder’s predictions alongside other data and use their own experience and that of their colleagues in determining how to respond.

In current discussions of the role of technology in the future of cities, we risk creating a divide between “soft” disciplines that deal with qualitative, subjective matters – social science and the arts for example; and “hard” disciplines that deal with data and technology – such as science, engineering, mathematics.

In the most polarised debates, opinion from “soft” disciplines is that “Smart cities” is a technology-driven approach that does not take human needs and nature into account, and does not recognise the variability and uncertainty inherent in city systems; and opinion from “hard” disciplines is that operational, design and policy decisions in cities are taken without due consideration of data that can be used to inform them and predict their outcomes. As Stephan Shakespeare wrote in the “Shakespeare Review of Public Sector Information“, “To paraphrase the great retailer Sir Terry Leahy, to run an enterprise without data is like driving by night with no headlights. And yet that is what government often does.”

There is no reason why these positions cannot be reconciled. In some domains “soft” and “hard” disciplines regularly collaborate. For example, the interior and auditory design of the Jaguar XF car, first manufactured in 2008, was designed by re-creating the driving experience in a simulator at the University of Warwick, and analysing the emotional response of test subjects using physiological sensors and data. Such techniques are now routinely used in product design. And many individuals have a breadth of knowledge that extends far beyond their core profession into a variety of areas of science and the arts.

But achieving reconciliation between all of the stakeholders involved in the vastly complex domain of cities – including the people who live in them, not just the academics, professionals and politicians who study, design, engineer and govern them – will not happen by default. It will only happen if we have an open and constructive debate about the capabilities and the limitations of data, information and technology; and if we are then able to communicate them in a way that expresses to everyone why Smarter City systems will improve their quality of life.

(“Which way to go?” by Peter Roome)

What’s next?
It’s astonishing and encouraging that we could use a model of individual consciousness to navigate the availability and value of data in the massively collective context of an urban scenario. To continue developing an understanding of the ability of information and technology to contribute to quality of life within cities, we need to expand that approach to explore the other dimensions we identified that affect perceptions of quality of life: culture, age and family status, for example; and within both larger and smaller scales of city context than the “district” scenario that we started with.

And we need to compare that approach to existing research work such as the Liveable Cities research collaboration between UK Universities that is establishing an evidence-based technique for assessing wellbeing; or the IBM Research initiative “SCRIBE” which seeks to define the meaning of and relationships between the many types of data that describe cities.

As a next step, the Urban Systems Collaborative attendees suggested that it would be useful to consider how people in different circumstances in cities use data, information and technology to take decisions:  for example, city leaders, businesspeople, parents, hostel residents, commuters, hospital patients and so forth across the incredible variety of roles that we play in cities. You can find out more about how the Collaborative is taking this agenda forward on their website.

But this is not a debate that belongs only within the academic community or with technologists and scientists. Information and technology are changing the cities, society and economy that we live in and depend on. But that information results from data that in large part is created by all of our actions and activities as individuals, as we carry out our lives in cities, interacting with systems that from a technology perspective are increasingly instrumented, interconnected and intelligent. We are the ultimate stakeholders in the information economy, and we should seek to establish an equitable consensus for how our data is used; and that consensus should include an understanding and acceptance between all parties of both the capabilities and limitations of information and technology.

I’ve written before about the importance of telling stories that illustrate ways in which technology and information can change lives and communities for the better. The Community Lovers’ Guide to Birmingham is a great example of doing this. As cities such as Birmingham, Dublin and Chicago demonstrate what can be achieved by following a Smarter City agenda, I’m hoping that those involved can tell stories that will help other cities across the world to pursue these ideas themselves.

(This article summarises a discussion I chaired this week to explore the relationship between urban data, technology and quality of life at the Urban Systems Collaborative’s London workshop, organised by my ex-colleague, Colin Harrison, previously an IBM Distinguished Engineer responsible for much of our Smarter Cities strategy; and my current colleague, Jurij Paraszczak, Director of Industry Solutions and Smarter Cities for IBM ResearchI’m grateful for the contributions of all of the attendees who took part. The article also appears on the Urban Systems Collaborative’s blog).

Death, life and place in great digital cities

("Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(“Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

At the recent Base Birmingham Conference, Scott Cain of the UK Technology Strategy Board (TSB) explained some of the reasons why Glasgow was awarded the TSB’s £24m Future Cities Demonstrator project this year.

Among them all, including the arrival of the Commonwealth Games in 2014 and the strength of the proposed delivery partnership, one stood out for me: the challenge of addressing the difference in life expectancy of 28 years between the wealthiest and poorest areas of the city.

That’s a deeply serious problem, and it’s inarguably worth supporting the city’s attempts to tackle it. Glasgow’s demonstrator project includes a variety of proposals to tackle life expectancy and other issues correlated with it – such as fuel poverty, public safety and health – using technology- and information-enabled approaches.

But whilst Glasgow has the widest variation in life expectancy in the UK, it is far from alone in having a significant one. The variation in life expectancy in London is about 20 years, and has been mapped against its tube network. Life expectancy in Birmingham ranges from 75 to 84 and has similarly been mapped against the local rail network; and in Plymouth it varies by 12.6 years across the city. Life expectancy in many cities varies by as much as 10 years, and is widely viewed as an unacceptable inequality between the opportunities for life offered to children born in different places.

Glasgow, Plymouth, London and Birmingham are just a few examples of cities with active strategies to address this inequality; but all of them are crafting and executing those strategies in an incredibly tough environment.

Many nations in the developed world are facing times of budget cuts and austerity as they tackle high levels of public, commercial and domestic debt built up in the decades leading to the 2008 financial crisis. At the same time, growth in the population, economies and middle classes of the emerging world are creating new wealth, and new demand for resources, across the world. So the cities of the developed world are seeking to rebalance inequalities in their own communities at a time when the resources available to them to do so are shrinking as a consequence of a rebalancing of inequalities that is, to an extent, taking place on a global scale (and quite rightly).

(Photo of Geoffery West describing the scaling laws that determine animal characteristics by Steve Jurvetson. Note that whilst the chart focusses on mammals, the scaling laws are more broadly applicable.)

The physicist Geoffrey West has analysed in detail the performance of city systems, and one interpretation of his work is that it demonstrates that this challenge is inevitable. He showed that larger cities create more wealth, more efficiently, than smaller cities. In doing so, they attract residents, grow bigger still, and accelerate wealth creation further. This self-reinforcing process results in an ever-increasing demand for resources. It powered the growth of cities in the developed world through the Industrial Revolution; and it is powering the growth of cities in emerging markets today.

In an interview with the New York Times, West described two possible ends to this process: a catastrophe caused by a failure in the supply of resources; or an intervention to alter the relationship between value creation and resource consumption.

Many would argue that we are already experiencing failures in supply – for example, the frightening effects of recent grain shortages caused by droughts that are probably attributable to climate change; or predictions that the UK will face regular blackouts by about 2015 due to a shortfall in power generation.

At the heart of the Smarter Cities movement is the belief that the use of engineering and IT technologies, including social media and information marketplaces, can create more efficient and resilient city systems. Might that idea offer a way to address the challenges of supporting wealth creation in cities at a sustainable rate of resource usage; and of providing city services to enable wellbeing, social mobility and economic growth at a reduced level of cost?

Many examples demonstrate that – in principle – Smarter Cities concepts can do that. Analytics technologies have been used to speed up convergence and innovation across sectors in city economies; individuals, communities and utility providers have engaged in the collective, sustainable use of energy and water resources, as has happened in Dubuque; local trading and currency systems are being used to encourage the growth of economic activity with local social and environmental benefits; information technology enables more efficient transportation systems such as California’s Smarter Traveller scheme or the local transport marketplaces created by Shutl and Carbon Voyage; and business-to-business and business-to-consumer marketplaces such as Big Barn and Sustaination are supporting local food initiatives.

But there are two problems with broadly applying these approaches to improve cities everywhere.

(The Dubuque water and energy portal, showing an individual household insight into it's conservation performance; but also a ranking comparing their performance to their near neighbours)

(The Dubuque water and energy portal, showing an individual household insight into it’s conservation performance; but also a ranking comparing their performance to their near neighbours)

Firstly, they do not always translate in a straightforward way from one place and system to another. For example, a neighbourhood in Dubuque achieved an overall reduction in water and energy usage when each household was given information comparing their own resource consumption to an anonymised average for those around them. Households with higher-than-average resource use were motivated to become better neighbours.

But a recycling scheme in London that adopted a similar approach found instead that it lowered recycling rates across the community: households who learned that they were putting more effort into recycling than their neighbours asked themselves “if my neighbours aren’t contributing to this initiative, then why should I?”

These are good examples of “Smarter City” initiatives that are enabled by technology; but that are more importantly dependent on changes in the behaviour of individuals and communities. The reasons that those changes take place cannot always be copied from one context to another. They are a crucial part of a design process that should be carried out within individual communities in order to co-create useful solutions for them.

Secondly, there is a truth about social media, information marketplaces and related “Smarter City” technologies that is far too rarely explored, but that has serious implications. It is that:

Rather than removing the need to travel and transport things, these technologies can dramatically increase our requirements to do so.

For example, since I began writing this blog about 18 months ago, I have added several hundred connections to my social media network. That’s hundreds of new people who I now know it’s worth my while to travel to meet in person. And sure enough, as my network has grown in social media, so have the demands of my traveling schedule.

Similarly, e-Bay CEO John Donahoe recently described the environmental benefits created by the online second-hand marketplace extending the life of over $100 billion of goods since it began, representing a significant reduction in the impact of manufacturing and disposing of goods. But such benefits of online marketplaces are offset by the carbon impact of the need to transport goods between the buyers and sellers who use them; and by the social and economic impact in cities that are too often dominated by road traffic rather than human life.

Increasing the demand for transport in cities could be very damaging. Some urbanists such as the architect and town planner Tim Stonor and Enrique Peñalosa, former mayor of Bogotá, assert that the single biggest cause of poorly functioning city environments today is the technology around which most of them have been built for the last century: the automobile. And whilst recent trends have started to address those challenges – “human scale” approaches to town planning and architecture; the cycling and walkability movements; and, in some cases, improvements in public transport – most cities still have congested transport systems that make cities more dangerous and unpleasant than we would like.

(Photo of pedestrian barriers in Hackney, London by mpromber, showing how they impede the movement of people engaging in local transactions at the expense of road traffic passing through the area)

We are opening Pandora’s box. These tremendously powerful technologies could indeed create more efficient, resilient city systems. But unless they are applied with real care, they could exacerbate our challenges. If they act simply to speed up transactions and the consumption of resources in city systems, then they will add to the damage that has already been done to urban environments, and that is one of the causes of the social inequality and differences in life expectancy that cities are seeking to address.

And as serious as these issues are today, they will be even more important in the future:

At this week’s Academy of Urbanism Congress in Bradford, economist Michael Ward, Chair of the Centre for Local Economic Strategies, expressed most succinctly a point that many speakers touched on:

“The key task facing civic leaders in the 21st Century is this: how, in a period of profound and continuing economic changes, will our citizens earn a living and prosper?”

For cities to provide jobs, they need successful businesses; and technology will have a dramatic effect on what it means to be a successful business in the 21st Century.

Over the last two decades, the internet, mobile phone and social media have redefined the boundaries of the communications, technology, media, publishing and technology industries. The companies that thrived through those changes were those who best understood how to use technology to merge capabilities from across those industries into new business models. In the coming decade as digitisation extends to industries such as manufacturing through technologies such as 3D printing and smart materials, more and more industry sectors will be redefined by similar levels of disruption and convergence.

So how are the economies of our cities placed to be successful in that world of change?

My home city Birmingham has many of the economic capabilities required to exploit those imminent changes successfully. It has a manufacturing base that includes advanced digital capability; it has a growing technology industry and a strong creative sector. Professional services companies offer financial and legal support, and local Universities have world-class research capability in disciplines such as healthcare and medical technology.

But as in many cities, those capabilities are concentrated in separate areas of the city. The collage of photographs below depicts some of Birmingham’s value-creating districts, placed in relation to some of the spatial characteristics of the city that divide them.

(A collage of photographs of some of Birmingham's value-creating districts, placed in relation to some of the spatial characteristics of the city that divide them).

(A collage of photographs of some of Birmingham’s value-creating districts, placed in relation to some of the spatial characteristics of the city that divide them. See the end of this article for attributions).

In the top left of the collage, the Jewellery Quarter, a centre of advanced manufacturing to the North of the City Centre, is separated from the digital technology incubation capability of Innovation Birmingham on the Aston University Campus, and from financial and legal expertise in the Colmore Row business district, by the four-lane Great Charles Street Queensway, part of the city-centre ringroad.

The Aston Campus is separated from the Eastside learning quarter, home to Millennium Point and Birmingham City University, by the Jennens Road dual carriageway. Eastside itself is separated from the creative media cluster around the Custard Factory and Fazeley Studios in Digbeth in the South East by the East Coast mainline from Birmingham to London; and by the semi-dereliction of some parts of the Digbeth manufacturing district.

To the South West, the enormous medical research capability around the University Hospital of Birmingham and University of Birmingham and it’s Research Park are three miles from the City Centre. And whilst the retail core of the city was dramatically transformed by the Bullring redevelopment over a decade ago, it lacks the independent shops, cafe and culture that might naturally attract those who work in the surrounding creative districts to congregate together.

The city’s Big City Plan and independent initiatives such as Coffee Birmingham are doing much to address these issues – and in particular, the city centre now boasts a number of fine cafes and delicatessens such as the Urban Coffee Company and York’s Bakery Cafe. But nevertheless these examples illustrate challenges many cities face in adapting their spatial structure to the needs of the new economy to bring their collective capabilities together to create new ideas and innovations.

(Visitors to Birmingham's new Eastside city park which connects the city centre and train stations to the Eastside learning district)

(Visitors to Birmingham’s new Eastside city park which connects the city centre and train stations to the Eastside learning district)

I took my family to Birmingham’s new Eastside City Park recently; the park is intended to address some of the challenges I have just described by better connecting the learning quarter to the city centre and train stations by providing a walking and cycling route between them, as well as an open space with value in its own right.

By coincidence, I had just read the chapter in Jane Jacobs’ seminal “Death and Life of Great American Cities” which addresses the factors which determine whether city parks and spaces work or fail; and describes how difficult it can be to make them successful. I was therefore delighted to see the Eastside park full of people – families with children playing; couples relaxing in the sun; students and workers stopping for food and coffee. This vibrancy, created by the proximity of mixed business, learning and leisure facilities, did not happen by accident. It is a product both of the careful design of the park; and of the context of the park’s creation within a multi-decade strategy for regenerating the surrounding district, which incorporates the expansion and re-location of two colleges and two universities in the area.

Birmingham’s Eastside park – like Bradford’s new City Park, winner of the Academy of Urbanism’s “Great Place 2013″ award – is a great example of reclaiming for people an important area that had previously been shaped by the requirements of cars, trucks and lorries.

But as a new generation of technology, digital technology, starts to shape our cities, how can we direct the deployment of that technology to be sympathetic to the needs of people and communities, rather than hostile to them, as too much of our urban transport infrastructure has been?

This is an urgent and vital issue. For example, privacy and security are perhaps the greatest current challenges of the digital age – as epitomised by the challenge issued to Google this week by United States politicians concerning the privacy implications of their latest innovation, “Google Glass”. But these concerns are not limited to the online world. Jane Jacobs based her understanding of city systems on privacy and safety. Google Glass epitomises the way that innovations in consumer technology are changing the relationship between physical and digital environments; with the consequence that a failure in privacy or security digital systems could affect community vitality or public safety in cities.

A particularly stark example is the 3D-printed gun, which I first mentioned last August. A reliable process for producing these is now being disseminated by the pro-firearms movement in the United States. As half a century of widespread sharing of music demonstrates, we cannot rely on Digital Rights Management technology for gun control. Other developments that I think need a similar level of consideration are the ability to create artificial meat in laboratories, which has been suggested as one way to feed a growing world population; and the increasing ability of information systems to interact directly with our own minds and bodies. To my mind these technologies challenge our fundamental assumptions about what it means to be human, and our relationship with nature.

(Google’s wearable computer, Google Glass. Photograph by Apostolos)

So how are we to resolve the dilemma that emerging technologies offer both the best chance to address our challenges and great potential to exacerbate them?

The first step is for us to collectively recognise what is at stake: the safety and resilience of our communities; and the nature of our relationship with the environment. Digital technology is not just supporting our world, it is beginning to transform it.

The second step is for the designers of cities and city services – architects, town planners, transport officers, community groups and social innovators –  to take control of the technology agenda in their cities and communities, rather than allow technologists to define it by default.

My role as a technologist is to create visions for what is possible; and to communicate those visions clearly to stakeholders in cities. In doing so it is important to communicate the whole story – the risks and uncertainties inherent in it, not just the great gadgets that make it possible. If I do that, I’m enabling the potential consumers of technology to make informed choices – for example, choosing whether or not to use certain online services or digital devices based on an understanding of their approaches to the use of personal information.

The truth, though, is that we are in the very earliest stages of considering these technologies in that way in the overall design, planning and governance of cities. A huge number of the initiatives that are currently exploring their use are individual projects focussed on their own goals; they are not city-wide strategic initiatives. And whilst some are led by city authorities, many more are community initiatives, such as the Social Media Surgeries which began in Birmingham but which now run internationally; or are led by business – technology corporations like IBM and Google, the developers of buildings such as the Greenhouse in Leeds, or small start-ups like Shutl.

In contrast, it is the role of policy-makers, town planners, and architects to understand how technology can help cities achieve their overall objectives such as economic growth, improvements in social mobility and reductions in the disparity in life expectancy. It is also their role to put in place any necessary constraints and governance to manage the impact of those technologies – for example, policies that oblige the developers of new buildings to make data from those buildings openly available as part of an overall “open data” strategy for a city.

As well as technologists, three crucial groups of advisers to that process are social scientists, design thinkers and placemakers. They have the creativity and insight to understand how digital technologies can meet the needs of people and communities in a way that contributes to the creation of great places, and great cities – places like the Eastside city park that are full of life.

Tina Saaby, Copenhagen’s City Architect, expressed a beautiful principle of placemaking in her address to the Academy of Urbanism Congress:

“Consider urban life before urban space; consider urban space before buildings”

In my view, we should apply a similar principle to technology:

 “Consider urban life before urban place; consider urban place before technology

(Tina Saaby, Copenhagen's City Architect, addressing the Academy of Urbanism Congress in Bradford)

(Tina Saaby, Copenhagen’s City Architect, addressing the Academy of Urbanism Congress in Bradford)

Without this perspective, I don’t personally believe that we’ll create the great digital places that we need.

That’s why I spent last week exploring this topic with placemakers, town planners and policy-makers in a “digital urbanism” workshop at the Academy of Urbanism Congress; and it’s why I’ll be exploring it in June with social scientists and researchers of city systems at the University of Durham. I’ll be writing again soon on this blog about what I’m learning from those meetings.

Not everything promised by technology will transpire or succeed, and it is often right to be sceptical of individual ideas until they’re proven. But there should be no question of the magnitude and impact of the changes that technology will create in the near future. And it’s down to us to take charge of those changes for our benefit as individuals and communities.

(The photographic collage of Birmingham involves some of my own photographs, but also the following images:

Better stories for Smarter Cities: three trends in urbanism that will reshape our world

(Stories of Mumbai: an exploration of Mumbai’s history of urban development, and its prospects for the future, using storytelling and puppetshows, by the BMW Guggenheim Lab)

Towards the end of last year, it became clearer how cities could take practical steps to position themselves to transform to meet the increasing economic, environmental and social challenges facing them; and to seek investment to support those transformations, as I described in “Smart Ideas for Everyday Cities“.

Equally important as those practical approaches to organisation, though, are the conceptual tools that will shape those transformations. Across fields as diverse as psychology, town planning, mathematics, construction, service-design and technology, some striking common themes have emerged that are shaping those tools.

Those themes imply that we will need to take radically different approaches to city systems driven by the astonishing, exciting and sometimes disturbing changes that we’re likely to see taking place increasingly rapidly in our world over the next decade.

To adopt the terminology of Irene Ng, a Researcher in new economic models and service science at the University of Warwick, these changes will create both “needs-led” and “capability-led” drivers to do things differently.

“Needs-led” changes will be driven by the massive growth taking place in the global middle class as economies across the world modernise. The impacts will be varied and widespread, including increasing business competition in a single, integrated economy; increasing competition for resources such as food, water and energy; and increasing fragility in the systems that supply those resources to a population that is ever more concentrated in cities. We are already seeing these effects in our everyday lives: many of us are paying more for our food as a proportion of our income than a few years ago.

At a recent lecture on behalf of the International Federation for Housing and Planning and the Association of European Schools of Planning, Sir Peter Hall, Professor of Planning and Regeneration at the Bartlett School of Planning, spoke of the importance of making the growth of cities sustainable through the careful design of the transport systems that support them. In the industrial revolution, as Edward Glaeser described in Triumph of the City, cities grew up around lifts powered by steam engines; Sir Peter described how more recently they have grown outwards into suburbs populated with middle-class car-owners who habitually drive to work, schools, shops, gyms and parks.

This lifestyle simply cannot be sustained – in the developed world or in emerging economies – across such an explosively growing number of people who have the immediate wealth to afford it, but who are not paying the full price of the resources it consumes. According to the exhibition in Siemens’ “Crystal” building, where Sir Peter’s lecture was held, today’s middle class is consuming resources at one-and-a-half times the rate the world creates them; unless something changes, the rate of growth of that lifestyle will hurl us towards a global catastrophe.

So, as the Collective Research Initiatives Trust (CRIT) observed in their study of the ongoing evolution of Mumbai, “Being Nicely Messy“, the structure of movement and the economy will have to change.

(Siemens’ Crystal building in London, a show case for sustainable technology in cities, photographed by Martin Deutsch)

Meanwhile, the evolution of technology is creating incredible new opportunities for “capability-led” change.

In the last two decades, we have seen the world revolutionised by information and communication technologies such as the internet and SmartPhones; but this is only the very start of a transformation that is still gathering pace. Whilst so far these technologies have created an explosion in the availability of information, recent advances in touch-screen technology and speech recognition are just starting to demonstrate that the boundary between the information world and physical, biological and neural systems is starting to disappear.

For example, a paralysed woman recently controlled a robotic arm by thought; and prosthetic limbs, a working gun and living biological structures such as muscle fibre and skin are just some of the things that can be 3D printed on demand from raw materials and digital designs.

What changes to our urban systems will these developments – and the ones that follow them – lead to?

Following the decline of industries such as manufacturing, resource-mining and ship-building,  many post-industrial cities in the developed world are rebuilding their economies around sectors with growth potential, such as environmental technology and creative media. They are also working with the education system to provide their citizens with access to the skills those sectors require.

Supplying the skills that today’s economy needs can be a challenge. Google’s Chairman Eric Schmidt lambasted the British Education system last year for producing insufficient computer programming skills; and a cross-industry report, “Engineering the Future“, laid out the need for increased focus on environmental, manufacturing, technology and engineering skills to support future economic growth in the UK. As the rate of change in science and technology increases, the skills required in a consequently changing economy will also change more rapidly; providing those skills will be an even bigger challenge.

Or will it? How much of a leap forward is required from the technologies I’ve just described, to imagining that by 2030, people will respond to the need for changing skills in the market by downloading expertise Matrix-style to exploit new employment opportunities?

Most predictions of the future turn out to be wrong, and I’m sure that this one will be, in part or in whole. But as an indication of the magnitude of changes we can expect across technology, business, society and our own physical and mental behaviour I expect it will be representative.

Our challenge is to understand how these needs-led and capability-led transformations can collectively create a world that is sustainable; and that is sympathetic to us as human beings and communities. That challenge will be most acute where both needs and capabilities are most concentrated – in cities. And across economics, architecture, technology and human behaviour, three trends in urban thinking have emerged – or, at least, become more prominent – in recent years that provide guiding principles for how we might meet that challenge.

The attraction of opposites, part 1: producer and consumer

20120605-005134.jpg

(Photograph of 3D printers by Rob Boudon)

In the Web 2.0 era (roughly 2003-2009), the middle classes of the developed world became connected by “always-on” broadband connections, turning these hundreds of millions of information-consumers into information-producers. That is why in 2007 (and every year since) more new information was created than in all of the previous 5 millenia. Industries such as publishing, music and telecommunications have been utterly transformed as a result.

The disappearance of the boundary between  information, physical and biological systems, and the explosive growth in the population with access to the technologies responsible for that disappearance, will transform every economic and social structure we can imagine through the same producer / consumer revolution.

We can already produce as well as consume transport resources by participating in car-sharing schemes; and energy by exploiting domestic solar power and bio-energy. The falling cost and increasing sophistication of 3D printers are just starting to make it feasible to manufacture some products in the home, particularly in specialist areas such as railway modelling; and platforms such as the Amazon Turk and Slivers of Time can quickly connect producers and consumers in the service industries.

Business-to-business and business-to-consumer marketplaces such as Big Barn and Sustaination provide the same service in local food systems. And the transport industry is evolving to serve these new markets: for instance, Shutl provide a marketplace for home delivery services through a community of independent couriers; and a handful of cities are deploying or planning recycling systems in which individual items of waste are distributed to processing centres through pneumatically powered underground transport networks.

Of course, from the earliest development of farming in human culture, we have all been both producers and consumers in a diversified economy. What’s new is the opportunity for technology to dramatically improve the flexibility, timeliness and efficiency of the value-chains that connect those two roles. Car-sharing not only reduces the amount of fuel used by our journeys; it could reduce the resources consumed by manufacturing vehicles that spend the majority of their lives stationary on drives or in car parks. Markets that more efficiently connect food production, processing and consumption could reduce the thousands of miles that food currently travels between farm and fork, often crossing its own path several times; they could create employment opportunities in small-scale food processing; not to mention reducing the vast quantity of food that is produced but not eaten, and goes to waste.

Irene Ng explores these themes wonderfully in her new book, “Value and Worth: Creating New Markets in the Digital Economy“; they offer us exciting opportunities for economic and social growth, and an evolution towards a more sustainable urban future – if we can harness them in that way.

The attraction of opposites, part 2: little and big

Some infrastructures can be “blunt” instruments: from roads and railway lines which connect their destinations but which cut apart the communities they pass through; to open data platforms which provide vast quantities of data “as-is” but little in the way of information and services customised to the needs of local individuals and communities.

Architects such as Jan Gehl have argued that the design process for cities should concentrate on the life between buildings, rather than on the structure of buildings; and that cities should be constructed at a “human-scale” – medium-sized buildings, not tower-blocks and sky-scrapers; and streets that are walkable and cycle-able, not dominated by cars. In transport, elevated cycleways and pedestrian roundabouts have appeared in Europe and Asia. These structures prevent road traffic infrastructures form impeding the fluid movement of cycling and walking – transport modes which allow people to stop and interact in a city more easily and often than driving.

At a meeting held in London last year to establish the UK’s chapter to the City Protocol Society, Keith Coleman of Capgemini offered a different view by comparing the growth in size of cities to the structure of the world’s largest biological organisms. In particular, Keith contrasted the need to provide infrastructure – such as the Pando forest in Utah, a single, long-lived and vastly extensive root system supporting millions of individual trees that live, grow and die independently – with the need to provide capabilities – such as those encoded in the genes of the Neptune sea grass, which is not a single organism, but rather a genetically identical colony which collectively covers 5% of the Mediterranean sea floor.

The Collective Research Initiatives Trust‘s study of Mumbai, “Being Nicely Messy“, Colin Rowe and Fred Koetter’s “Collage City“, Manu Fernandez’s “Human Scale Cities” project and CHORA’s Taiwan Strait Atlas project have all suggested an approach to urban systems that is more like the Neptune sea grass than the Pando forest: the provision of a “toolkit” for individuals and organisations to apply in their local context

My own work, initially in Sunderland, was similarly informed by the Knight Foundation’s report on the Information Needs of Communities, to which I was introduced by Conn Crawford of Sunderland City Council. It counsels for a process of engagement and understanding between city institutions and communities, in order that the resources of large organisations can be focused on providing the information and services that can be most effectively used by individual citizens, businesses and social organisations.

(The Bristol Pound, a local currency intended to encourage and reinforce local trading synergies.)

Kelvin Campbell of Urban Initiatives has perhaps taken this thinking furthest in the urban context in his concept of “Massive Small” and the “urban operating system”. Similar thinking appears throughout research on resilience in systems such as cities, coral reefs, terrorist networks and financial systems, as described by Andrew Zolli and Ann Marie Healy in “Resilience: Why Things Bounce Back“. And it is reflected in the work that many researchers and professionals across fields as diverse as city planning, economics and technology are doing to understand how institutional city systems can engage effectively with “informal” activity in the economy.

In IBM we have adapted our approach too. To take one example, a few years ago we launched our “Global Entrepreneur” programme, through which we engage directly with small, startup businesses using technology to develop what we call “Smarter Planet” and “Smarter Cities” solutions. These businesses are innovating in specific markets that they understand much better than we do; using operating models that IBM does not have. In turn, IBM’s resources can help them build more resilient solutions more quickly and cost-effectively, and reach a wider set of potential customers across the world.

A civic infrastructure that combines economics and technology and that, whilst it has a long history,  is starting to evolve rapidly, is the local currency. Last year Bristol became the fifth place in the UK to launch its own currency; whilst in Switzerland an alternative currency, the Wir, is thought to have contributed to the stability of the Swiss economy for the last century by providing an alternative, more flexible basis for debt, by allowing repayments to made in kind through bartering, as well as in currency.

Such systems can promote local economic synergy, and enable the benefits of capital fluidity to be adapted to the needs of local contexts. And from innovations in mobile banking in Africa to Birmingham’s DropletPay SmartPhone payment system, they are rapidly exploiting new technologies. They are a clear example of a service that city and economic institutions can support; and that can be harnessed and used by individuals and organisations anywhere in a city ecosystem for the purposes that are most important and valuable to them.

IMG-20121104-00606

(The Co-operative Society building at Avoncroft Museum of Historic Buildings)

Co-operative Governance

It’s increasingly obvious that on their own, traditional businesses and public and civic institutions won’t deliver the transformations that our cities, and our planet, need. The restructuring of our economy, cities and society to address the environmental and demographic challenges we face requires that social, environmental and long term economic goals drive our decisions, rather than short term financial returns alone.

Alternatives have been called for and proposed. In her speech ahead of the Rio +20 Summit, Christine Lagarde, Managing Director of the International Monetary Fund, said that one of the challenges for achieving a sustainable, equitably distributed return to growth following the recent economic challenges was that “externalities” such as social and environmental impacts are not currently included in the prices of goods and services.

I participated last year in a panel discussion at the World Bank’s “Rethinking Cities” conference which asked whether including those costs would incent consumers to chose to purchase sustainably provided goods and services. We examined several ways to create positive and negative incentives through pricing; but also examples of simply “removing the barriers” to making such choices. Our conclusion was that a combination of approaches was needed, including new ideas from game theory and technology, such as “open data”; and that evidence exists from a variety of examples to prove that consumer behaviour can and does adapt in response to well designed systems.

In “Co-op Capitalism“, Noreena Hertz proposed an alternative approach to enterprise based on social principles, where the objectives of collective endeavours are to return broad value to all of their stakeholders rather than to pay dividends to financial investors. This approach has a vital role in enabling communities across the entirety of city ecosystems to harness and benefit from technology in a sustainable way, and is exemplified by innovations such as MyDex in personal information management, Carbon Voyage in transport, and Eco-Island in energy.

New forms of cooperation have also emerged from resilience research, such as “constellations” and “articulations”. All of these approaches have important roles to play in specific city systems, community initiatives and new businesses, where they successfully create synergies between the financial, social and economic capabilities and needs of the participants involved.

But none of them directly address the need for cities to create a sustainable, cohesive drive towards a sustainable, equitable, successful future.

(Photo by Greg Marshall of the rocks known as “The Needles” just off the coast of the Isle of Wight; illustrating the potential for the island to exploit wave and tidal energy sources through the Eco-Island initiative)

In “Smart Ideas for Everyday Cities“, I described an approach that seems to be emerging from the cities that have made the most progress so far. It involves bringing together stakeholders across city systems – representatives of communities; city institutions; owners and operators of city systems and assets such as buildings, transportation and utilities; Universities and schools; and so on – into a group that can not only agree a vision and priorities for the city’s future; but that is empowered to take collective decisions accordingly.

The initiatives agreed by such a group will require individual “special purpose vehicles” (SPVs) to be created according to the specific set of stakeholder interests involved in each case – such as public/private partnerships to build infrastructure or Community Interest Companies and Energy Service Companies to operate local energy schemes. (There are some negative connotations associated with SPVs, which have been used in some cases by private organisations seeking to hide their debt or ownership; but in the Smarter Cities context they are frequently associated with more positive purposes).

Most importantly, though: where a series of such schemes and commercial ventures are initiated by a stable collaboration within a city, investors will see a reliable decision-making process and a mature understanding of shared risk and its management; making each individual initiative more likely to attract investment.

In his analysis of societal responses to critical environmental threats, Jared Diamond noted in his 2005 book “Collapse” that successful responses often emerge when choices are taken by leaders with long-term vested interests, working closely with their communities. In a modern economy, the interests of stakeholders are driven by many timescales – electoral cycles, business cycles, the presence of commuters, travellers and the transient and long-term residents of the city, for example. Bringing those stakeholders together can create a forum that transcends individual timescales, creating stability and the opportunity for a long-term outlook.

A challenge for 2013: better stories for Smarter Cities

Some cities are seizing the agenda for change that I have described in this article; and the very many of us across countries, professions and disciplines who are exploring that agenda are passionate about helping them to do so successfully.

In their report “Cities Outlook 1901“, Centre for Cities explored the previous century of urban development in the UK, examining why at various times some cities thrived and some did not. They concluded that actions taken by cities in areas such as planning, policy, skills development and economic strategy could have significant effects on their economic and social prosperity relative to others.

The need for cities to respond to the challenges and opportunities of the future using the old, new and evolving tools at their disposal is urgent. In the 20th Century, some cities suffered a gradual decline as they failed to respond successfully to the changes of their age. In the 21st Century those changes will be so striking, and take place so quickly, that failing to meet them could result in a decline that is catastrophic.

But there is a real impediment to our ability to apply these ideas in cities today: a lack of common understanding.

(Matthew Boulton, James Watt and William Murdoch, Birmingham’s three fathers of the Industrial Revolution, photographed by Neil Howard)

As the industrial and information revolutions have led our world to develop at a faster and faster pace, human knowledge has not just grown dramatically; it has fragmented to an extraordinary extent.

Consequently, across disciplines such as architecture, economics, social science, psychology, technology and all the many other fields important to the behaviour of cities, a vast and confusing array of language and terminology is used – a Tower of Babel, no less. The leaders of many city institutions and businesses are understandably not familiar with what they can easily perceive as jargon; and new ideas that appear to be presented in jargon are unlikely to be trusted.

To address the challenge, those of us who believe in these new approaches to city systems need to tell better stories about them; stories about individuals and their lives in the places where they live and work; how they will be more healthy, better equiped to support themselves, and able to move around freely in a pleasant urban environment.

Professor Miles Tight at the University of Birmingham and his colleagues in the “Visions 2030” project have applied this idea to the description of future scenarios for transportation in cities. They have created a series of visually appealing animated depictions of everyday scenes in city streets and places that could be the result of the various forces affecting the development of transport over the next 20 years. Malcolm Allan, a colleague in the Academy of Urbanism, helps cities to tell “stories about place” as a tool for envisaging their future development in a way that people can understand and identify with. And my colleagues in IBM Research have been exploring more generally how storytelling can enable the exchange of knowledge in situations where collaborative creativity is required across multiple domains of specialisation.

If we can bring our knowledge of emerging technologies and new approaches to urbanism into conversations about specific places in the form of stories, we will build trust and understanding in those places, as well as envisioning their possible futures. And that will give us a real chance of achieving the visions we create. This is what I’ll be concentrating on doing in 2013; and it looks like being an exciting year.

(It’s been much longer than usual since I last wrote an article for this blog; following an extended break over Christmas and the New Year, I’ve had a very busy start to 2013. I hope to resume my usual frequency of writing for the rest of the year.

And finally, an apology: in my remarks on the panel discussion following Sir Peter Hall’s lecture at the Crystal, I gave a very brief summary of some of the ideas described in this article. In particular, I used the term “Massive / Small” without attributing it to Kelvin Campbell and Urban Initiatives. My apologies to Kelvin, whose work and influence on my thinking I hope I have now acknowledged properly).

Zen and the art of messy urbanism

(Children playing in the “Science Garden” outside Birmingham’s Science Museum at Millenium Point; part of the new Eastside City Park, a vast urban space surrounded by education, culture and manufacturing.)

Over the past few months and weeks, some interesting announcements have been made concerning emerging frameworks and protocols for Smarter Cities.

Perhaps the highest profile was the formation of the “City Protocol” collaboration in Barcelona, which will be formally launched at the Smart City Expo later this month. The protocol has been established to identify and capture emerging practises and standards to promote interoperability across city systems and enable progress towards city-level goals to be stimulated, coordinated and measured.

More recently, UN-HABITAT, the United Nations agency for human settlements which promotes socially and environmentally sustainable towns and cities, and a source frequently referred to for statistics concerning the progress of urbanisation, published its “State of the World’s Cities 2012/2013” report, which includes extensive consultation with cities around the world. It proposes a number of new mechanisms which are intended to assist decision makers in cities.

These resources of knowledge and experience will be key to helping cities face the grand challenge of demographics, economics and sustainability that is becoming acute. In a paper published in the respected, peer-reviewed scientific journal Nature, Professors Geoffrey West and Luis Bettencourt described it as “the greatest challenge that the planet has faced since humans became social“; and we have already seen evidence of its urgency. The “Barnett graph of doom“, for example, famously predicted that within 20 years, unless significant changes in public services are made, cities will be unable to afford to provide any services except social care; the UK’s energy regulator Ofgem’s recently warned that the country could experience power shortages in the winter of 2015-2016; and there is concern that this year’s drought in the US will once again cause food shortages across the world.

However, we should not expect that cities will reach a sustainable future state through the process of city leaders and institutions adopting a deterministic framework or method. Such an approach may work when applied to the transformation of organisations and their formal relationships with partners; but cities are more fundamentally complex “systems of systems” incorporating vast numbers of autonomous agents and interrelationships.

The Collective Research Initiatives Trust (CRIT) recently produced a fascinating piece of research, “Being Nicely Messy“, about the evolution of Mumbai’s economy in this context. As a background for the transformative changes taking place, they state that:

“While the population in Mumbai grew by 25% between 1991 and 2010, the number of people traveling by trains during the same years increased by 66% and number of vehicles grew by 181%. At the same time, the number of enterprises in the city increased by 56%. All of this indicates a restructuring of the economy, where the nature of work and movement has changed.”

Rather than focus on the policies and approaches of the city’s institutions, CRIT’s research focussed on the activities of everyday entrepreneurs in Mumbai – average people, finding a way to make their livelihood within the city:

“… new patterns of work emerged as the new entrepreneurs struggled to survive and settle. they occupied varied locations and blurred the distinction between formality and informality; legality and illegality as all of them produced legitimate commodities and services.”

“… the entrepreneurs of Mumbai have innovatively occupied city spaces maximizing their efficiency …”

“… the blurry / messy condition … contributes to the high transactional capacity of the urban form.”

“… mumbai’s urbanism is like a froth with overlapping ecosystems of geographies, legislations, claims, powers, kinships, friendships & information.”

Crucially, CRIT relate this “messy” innovative activity to the ability of individuals within the city to access opportunities to create their own wealth and livelihood within the city and its changing economy:

“… mobility or to mobilize is the ability to navigate the complex urban ecosystem of geographies, legislations, claims, powers, relationships and information to construct one’s path for the future amidst these movements.”

(Photo by lecercle of a girl in Mumbai doing her homework on whatever flat surface she could find. Her use of a stationary tool usually employed for physical mobility to enhance her own social mobility is an example of the very basic capacity we all have to use the resources available to us in innovative ways)

This sort of organic innovation takes place continuously in cities, and increasingly exploits technology resources as well as the capacity of the physical urban environment and its transport systems. For example I wrote recently about the community innovation that’s taking place in Birmingham currently; including “social media surgeries” and “hacking” weekends. There is currently a considerable hope that this adoption of technology by community innovators will enable them to achieve an impact on cities as a whole.

But creating sustainable, scalable new enterprises and city services from these innovations is not straightforward. After analysing the challenges that have caused many such initiatives to achieve only temporary results, O’Reilly Radar wrote recently that cities seeking to sustainably exploit open data and hacktivism need to invest in “sustainability, community, and civic value”; and San Francisco announced a series of measures, including both legislation for open data and the appointment of a “Chief Data Officer” for the city, intended to achieve that. I have previously argued that in addition, cities should analyse the common technology services required to support these innovations in a secure and scalable way, and make them available to communities, innovators and entrpreneurs.

For this to happen, new relationships are required between city institutions, their service delivery and technology partners, communities, entrepreneurs, businesses, social enterprises and all of the other very varied stakeholders in the city ecosystem. I’ve previously described the conversations and creation of trust required to build these relationships as a “soft infrastructure” for cities; and new models of collaborative decision-making and activity such as “constellations” and “articulations” are emerging to describe them.

It’s very important to not be too structured in our thinking about soft infrastructure. There is a temptation to revert to thinking in silos, and assume that city communities can be segmented into areas of separate concern such as neighbourhoods, sectors such as “digital entrepreneurs”, or service user communities such as “commuters”. To do this is to forget where and how innovation and the creation of new value often occurs.

Michael Porter, creator of the famous “five forces” model of business, and his colleagues have written that new value is often created when capabilities – and technologies – are converged across sectors. In 2006,  IBM’s worldwide survey of CEOs in public and private sector carried out with The Economist’s Intelligence Unit identified several different areas of innovation: products and services, markets, operations and business models. In particular, innovations that use new business models to offer products and services that transcend and even disrupt existing market structures have the potential to create the most value.

The CRIT research recognised this need to blur boundaries; and went further to state that imposing formal boundaries inhibits the transactions that create value in the economy and society of cities. Tim Stonor has written and presented extensively on the idea that a city should be a “transaction engine”; and many urbanists have asserted that it is the high density of interactions that cities make possible that have led to the city becoming the predominant form of human habitation.

(Photo by Halans of volunteers collecting food for OzHarvest, who redistribute excess food from restaurants and hotels in Australian cities to charities supporting the vulnerable.)

Human thinking creates boundaries in the world; our minds recognise patterns and we impose those patterns on our perceptions and understanding. But this can inhibit our ability to recognise new possibilities and opportunities. Whilst many useful patterns do seem to be emerging from urban innovation – a re-emergence of bartering and local exchanges, social enterprises and community interest companies, sustainable districts, for example – it’s far too early for us to determine a market segmentation for the application of those models across city systems. Rather than seeking to stimulate innovation within specific sectors, CRIT argue instead for the provision of catalogues of “tools” that can be used by innovators in whatever context is appropriate for them.

The European Bio-Energy Research Institute in Birmingham, for example, is seeking to establish a regional supply chain of SMEs to support its work to develop small-scale, sustainable technology for recovering energy from waste food and sewage; in Mexico City, a new bartering market allows residents to exchange recyclable waste material for food; and in the UK the “Eco-Island” Community Interest Company is establishing a local smart-grid on the Isle of Wight to harness sustainable energy sources to enable the entire island to become self-sufficient in energy. These very different models are converging city systems such as food, waste and energy and disrupting the traditional models for supporting them.

In “The Way of Zen“, Alan Watts comments of Zen art that “the very technique involves the art of artlessness, or what Sabro Hasegawa has called the ‘controlled accident’, so that paintings are formed as naturally as the rocks and grasses which they depict”. Just as the relentless practise of technique can enable artists to have “beautiful accidents” when inspiration strikes; so cities should look to provide more effective tools to innovators for them to exploit in whatever context they can create new value. We should not expect the results always to be neat and tidy; and nor should our approach to encouraging them be.

%d bloggers like this: