How to Achieve Smart City Outcomes

Public space in the Kings Cross development which transformed the area

In my last blog, I wrote about the importance of focussing smart city initiatives on outcomes, not technology. The challenge, of course, is that that’s often easier to say than to do.

Firstly, what are the outcomes we want from a smart city initiative?

The most extensive co-operative exercise I’m aware of to discover the outcomes we collectively want for our places and communities was the establishment of the United Nations’ Sustainable Development Goals. Over the years, I’ve found them to be pretty representative of the actual goals of specific places and developments I’ve worked with, albeit each is obviously individual and locally rooted. They include objectives such as equality, wellbeing, growth and sustainability that it’s hard to argue with.

However: smart city initiatives are intended to create change, and doing so requires the commitment of individual, institutional or community resources, and usually the investment of money. Are the types of goal represented by the UN SDG’s likely to make those commitments happen?

Sometimes, yes, usually when government or charitable investments are made. However, those funds do not exist at sufficient scale to transform cities. For that, we need private sector investment too. And that means we need to generate profits.

Finding mechanisms that align profitability with the delivery of social, economic and environmental outcomes is the central challenge of the smart city idea. It’s only when we recognise and address this challenge that significant programmes to create change will take place.

Jane Jacobs’ words in 1961  about delivering her vision for mixed-use, human-scale environments developed from a citizen-centric perspective rings equally true about delivering smart cities: “Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machine is adapted to turn out that image.”

The good news is that there are a variety of ways to do that.

Firstly, this is a challenge that is often addressed in large-scale property developments and regeneration schemes. These are always a negotiation between planning authorities, developers, investors and communities. Commercial developers and investors are required to make a return, whereas planning authorities are the custodians of healthy places, communities and economies. The result is that rather than simply maximising profitability, such schemes usually generate reasonable profitability whilst investing in public space, infrastructure and community assets alongside commercial property.

In the digital masterplanning process we’ve developed over the past few years, we apply that principle to investment in digital infrastructure and services. As well as  basic fixed and mobile connectivity, that might include smart energy, water and transport infrastructure that operates efficiently and monitors environmental quality, apps to support active mobility and communities, skills initiatives and support for business digitalisation.

The vision for the Gilston Park Estate, the digital masterplan for which illustrates how digital services such as personal mobility and skills programmes will help the Estate achieve social, economic and environmental objectives agreed with the Local Authority

Increasingly, developers and investors realise that these investments are more than a sacrifice they make in short-term profitability – they are an investment in long-term success. In the long term, communities that are better connected, with better skills and facilities are more successful economically, and so the value of assets rises. The developer of Kings Cross commented at a conference a couple of years ago that it was important to have included high quality public space in the development in order to attract the companies and institutions that have transformed the area – “the open spaces at Kings Cross are delightful and make it a place people want to be, but they were expensive”.

In some cases, negotiation through the planning process isn’t sufficient to achieve this, however, and special purpose vehicles are needed, such as Slough Urban Renewal, a joint venture between Slough Borough Council and Muse, or the Birmingham Innovation Quarter, a joint venture between Birmingham City Council, Aston University and Bruntwood SciTech.

Another approach is the packaging of multiple asset classes and use of blended financing. We used this approach recently to secure pension-fund development backing for a new special purpose vehicle to provide fibre-to-the-premise connectivity to social housing in a major UK city. The vehicle was made investible by a combination of a long return-on-investment period with over-the-top services including preventative maintenance of domestic heating equipment and remote delivery of health and social care, the latter complementing commercial revenues from connectivity infrastructure with operational cost savings.

We have been helping the Cities Commission on Climate Investment apply similar approaches to unlocking financing for sustainable infrastructure, combining both public and private financing for schemes that combine obviously investible opportunities such as electric vehicle charging infrastructure with more challenging schemes such as the retrofit of buildings.

In all these cases, it takes patient development and investment and collaboration between the right partners to see that short-term compromises can lead to long-term optimisation.

The public and private institutions and communities in a place, particularly those who take a long-term view, share their prospects for success with each other through the prospects for success of the place they’re based in. Where their leaders are so minded or can be persuaded to be, that leads to collaboration to improve social, economic and environmental outcomes. For example, the structure of the social housing fibre initiative was not created in isolation as a single idea. It was developed in iterative discussions with local stakeholders discovering how challenges and opportunities in the area could be brought together with different financing streams to create synergies and a practical model for investment and delivery.

Which brings us finally back to the starting point: people and communities. Cities only change when people are given the opportunity to change, and when that change achieves something they want, and is important to them.

This will be a huge aspect of the changes we will need to make to mitigate and adapt to climate change. The way we insulate, heat and cool our homes will need to change. The way we shop and travel will need to change. The way we meet for work will change. This transformation will be most effective if we deploy co-creative, user-centric design techniques, that put people at the heart of change from the start, and that put their interests first.

That’s where another long-established tool should be our starting point: Maslowe’s Hierarchy of Needs. The Hierarchy essentially says people will only prioritise long term objectives such as climate change when their short-term needs are taken care of. In the cost of living crisis, people struggling to feed their families and heat their homes are prioritising those challenges. It is only if we help them to address those at the same time as creating improvements in sustainability and economic growth that smart cities will succeed. 

Our education system is not fit for the Information Revolution

We – or more accurately our children – face an uncertain future.

There are many causes of uncertainty that we can do little to prevent – global economic competition, and the increasingly disruptive impact of digital technology on our society and economy, for example.

But there is one cause of uncertainty that we can and should influence:  the funding of our state schools is in crisis; especially in the Primary Schools that begin our childrens’ education.

From the University of Oxford, to MIT, to the blue-chip Management Consultancy McKinsey to mainstream media publications such as the Economist, there is widespread concern that ongoing, and increasingly rapid, developments in digital technologies such as Machine Learning and Robotics will lead to the increasing automation of a significant proportion of jobs over the next few decades. McKinsey suggest that up to half of the activities that people are currently employed to perform will be automated within the next 30 years.

In fact, these challenges are already with us today. Since the arrival of the personal computer in the 1980s first ushered in the age of mass use of digital technology, whilst US GDP has nearly doubled, median household income hasn’t risen at all. Unemployment amongst young people in many European countries is between 20% and 50%. In the UK, there has been no increase in average earnings so far this decade, and young people in particular have become worse off. The situation is unlikely to improve for many years.

Many economists and observers of the technology industry believer that we are part-way through a decades-long “Information Revolution” that will transform our society and economy just as much as – if not more than – the Industrial Revolution .

Those experts disagree whether the dominant impact of the technologies of the Information Revolution will be to remove existing jobs through automation, or to create even more new jobs that exploit the capabilities of those new technologies (which was ultimately the effect of the Industrial Revolution).

What they all agree on, though, is that the jobs of the future will require vastly different skills than the jobs of today; and that we can barely conceive what those skills might be. Again, this trend is already visible today: for example, whilst the number of manufacturing jobs in the USA is currently rising, prospective employees need increasingly sophisticated technical skills in order to manage the robotic machinery that now performs most of the work.

So one thing we can be sure of is that our schools today are not teaching our children the skills they will need to be successful in the future.

(United States GDP plotted against median household income from 1953 to present. Until about 1980, growth in the economy correlated to increases in household wealth. But from 1980 onwards as digital technology has transformed the economy, household income has remained flat despite continuing economic growth)

(United States GDP plotted against median household income from 1953 to present. Until about 1980, growth in the economy correlated to increases in household wealth. But from 1980 onwards as digital technology has transformed the economy, household income has remained flat despite continuing economic growth. From “The Second Machine Age“, by MIT economists Andy McAfee and Erik Brynjolfsson, summarised in this article.)

Government, industry and our professional societies and institutions recognise that challenge and are responding to it. But the majority of their focus is on the teaching of advanced technical skills in Secondary, Higher and Further Education – for example, the UK Government recently announced the establishment of new “Institutes of Technology” amongst a series of measures to improve STEM (Science, Technology, Engineering and Mathematics) skills in the UK workforce.

But children and students are only able to benefit from those opportunities when their Primary Education prepares them with excellent basic mathematical, lingual and technological skills.

Further, as digital technology, Artificial Intelligence and robotics transform our society and economy, not only will those skills become more sophisticated and important, but our children will also need improved skills in the areas that technology is less likely to automate: artistic creativity, entrepreneurial and commercial flair, and the empathy and social skills that create value in human interactions .

Our Primary Schools are not in a position to teach our children those skills to the degree that they are required today; let alone in a position to transform their approach to deliver the skills of the future .

Funding for Primary Schools is falling due to a combination of Government policies. Funding has been frozen since 2015 and no longer rises with inflation; Primary Schools in cities have had their funding cut in order to increase funds for rural Schools; Schools face increased liabilities for staff pensions, National Insurance and the Apprenticeship Levy; and funding for children with Special Education Needs and Disabilities has been reduced. The effects of these policies will be exacerbated by the increase in inflation caused by the devaluation of Sterling following the vote to leave the European Union.

As a result, class sizes are increasing, and the number of teachers and teaching assistants is falling, as is the availability of extra-curricular activities. This dramatically reduces the ability of Primary Schools to address the specific learning needs of individual children, whatever those needs may be.

I and my local MP, Roger Godsiff, have written letters asking for help to address this critical challenge to Ms. Justine Greening MP, Minister of State for Universities, Science, Research and Innovation; Mr. Nick Hobb MP, Minister of State for School Standards; and Mr. Jo Johnson MP, Minister of State for Universities and Science.

So far, their responses have been dismissive of the extent of the challenge. They have referred us to the Stage 2 Consultation on the Schools National Funding Formula. The proposed new Schools national funding formula would result in 54% of all schools receiving increased funding; with 13.5% receiving an increase of more than 5.5%.

That’s just not enough. Inflation alone will wipe out those increases, even for the relatively small number of schools that receive more than a token increase in funds.

The proposal also claims that “no school will face reductions of more than 1.5% per year or 3% overall per pupil”.

That statement bears no relation to reality – especially when inflation is taken into account. Schools in Hall Green in Birmingham, for example, will see a 10% reduction in funding per pupil in real terms by the 2019/2020 school year. The Government’s Manifesto promise to maintain funding per pupil in cash terms has been broken for 34 out of 35 schools in the Constituency.

And this debate really, really should not be about 1.5% here and 5.5% there. We need dramatic increases in funding and resources for Primary Schools if they are to help our children face the challenges of the future.

(Teaching assistants are vital to the ability of Primary Schools to spend time with individual children addressing their individual learning needs. The present funding crisis is leading some schools to cut the number of teaching assistants they employ by 50%)

(Teaching assistants are vital to the ability of Primary Schools to spend time with individual children addressing their individual learning needs. The present funding crisis is leading some schools to cut the number of teaching assistants they employ by 50%)

The task of our Primary Schools is to prepare our children to possess skills and to seek jobs in 20 years’ time that we cannot currently imagine. The magnitude of that challenge surely demands that we prioritise significant increases to their funding and resources.

They are simply not being given the resources to address this once-in-a-Century challenge that we – or more accurately our very young children – face.

I cannot imagine anything more important than investing in our children’s ability to make a success of their future. Our government is failing us in the most important way possible – undermining the future livelihood of our children – by continuing its current policy of reducing that investment.

I am working with a committed and passionate group of parents, staff and Governors at my son’s Primary School within the Hall Green constituency to address the School’s funding challenges in any way that we can, in large part through local initiatives to raise funding and to lobby our Local Authority, Birmingham City Council.

But the national debate is of crucial importance. In truth, Hall Green is a relatively middle-class, middle-income area. Our communities of parents will be able to provide a great deal of support to our schools.

Set aside, for a moment, that it is surely an insanity that we do not treat the education of our youngest children as a national priority for public funding. More urgently it is fundamentally wrong that the people who will be the biggest losers in this situation are the people who need the most help: the children and families who live in the poorest and most persistently deprived areas of our cities, where communities have the lowest level of local resources to compensate for the decline in funding from the national Government.

I will be campaigning vigorously on this issue both at a national level; and locally to support my son’s own school.

I would be delighted to hear from anybody who cares about these challenges, and who is either already campaigning to address them, or may  be interested in doing so.

 

A three step manifesto for a smarter, fairer economy

(United States GDP plotted against median household income from 1953 to present. Until about 1980, growth in the economy correlated to increases in household wealth. But from 1980 onwards as digital technology has transformed the economy, household income has remained flat despite continuing economic growth)

(United States GDP plotted against median household income from 1953 to present. Until about 1980, growth in the economy correlated to increases in household wealth. But from 1980 onwards as digital technology has transformed the economy, household income has remained flat despite continuing economic growth. From “The Second Machine Age“, by MIT economists Andy McAfee and Erik Brynjolfsson, summarised in this article.)

(Or, why technology created the economy that helped Donald Trump and Brexit to win, and why we have to fix it.)

The world has not just been thrown into crisis because the UK voted in June to leave the European Union, and because the USA has just elected a President whose campaign rhetoric promised to tear up the rulebook of international behaviour (that’s putting it politely; many have accused him of much worse) – including pulling out of the global climate accord that many believe is the bare minimum to save us from a global catastrophe.

Those two choices (neither of which I support, as you might have guessed) were made by people who feel that a crisis has been building for years or even decades, and that the traditional leaders of our political, media and economic institutions have either been ignoring it or, worse, are refusing to address it due to vested interests in the status quo.

That crisis – which is one of worklessness, disenfranchisement and inequality for an increasingly significant proportion of the world’s population – is real; and is evident in figures everywhere:

… and so on.

Brexit and Donald Trump are the wrong solutions to the wrong problems

Of course, leaving the EU won’t solve this crisis for the UK.

Take the supposed need to limit immigration, for example, one of the main reasons people in the UK voted to leave the EU.

The truth is that the UK needs migrants. Firstly, with no immigration, the UK’s birth rate would be much lower than that needed to maintain our current level of population. That means less young people working and paying taxes and more older people relying on state pensions and services. We wouldn’t be able to afford the public services we rely on.

Secondly, the people most likely to start new businesses that grow rapidly and create new jobs aren’t rich people who are offered tax cuts, they’re immigrants and their children. And of course, what will any country in the world, let alone the EU, demand in return for an open trade deal with the UK? Freedom of immigration.

So Brexit won’t fix this crisis, and whilst Donald Trump is showing some signs of moderating the extreme statements he made in his election campaign (like both the “Leave” and “Remain” sides of the abysmal UK Referendum campaign, he knew he was using populist nonsense to win votes, but wasn’t at all bothered by the dishonesty of it), neither will he.

[Update 29/01/17: I take it back: President Trump isn’t moderating his behaviour at all. What a disgrace.]

Whatever his claims to the contrary, Donald Trump’s tax plan will benefit the richest the most. Like most Republican politicians, he promotes policies that are criticised as “trickle-down” economics, in which wealth for all comes from providing tax cuts to rich people and large corporations so they can invest to create jobs.

But this approach does not stand up to scrutiny: history shows that – particularly in times of economic change –  jobs and growth for all require leadership, action and investment from public institutions – in other words they depend on the sensible use of taxation to redistribute the benefits of growth.

(Areas of relative wealth and deprivation in Birmingham as measured by the Indices of Multiple Deprivation. Birmingham, like many of the UK's Core Cities, has a ring of persistently deprived areas immediately outside the city centre, co-located with the highest concentration of transport infrastructure allowing traffic to flow in and out of the centre.)

(Areas of relative wealth and deprivation in Birmingham as measured by the Indices of Multiple Deprivation. Birmingham, like many of the UK’s Core Cities, has a ring of persistently deprived areas immediately outside the city centre, co-located with the highest concentration of transport infrastructure allowing traffic to flow in and out of the centre)

Similarly, scrapping America’s role in the Trans-Pacific Partnership trade deal is unlikely to bring back manufacturing jobs to the US economy at anything like the scale that some of those who voted for Donald Trump hope, and that he’s given the impression it will.

In fact, manufacturing jobs are already rising in the US as the need for agility in production in response to local market conditions outweighs the narrowing difference in manufacturing cost as the salaries of China’s workers have grown along with its economy.

However, the real challenge is that the skills required to secure and perform those jobs have changed: factory workers need increasingly technical skills to manage the robotic machinery that now performs most of the work.

Likewise, jobs in the US coal industry won’t return by changing the way the US trades with foreign countries. The American coal mined in some areas of the country has become an uncompetitive fuel compared to the American shale gas that is made accessible in other areas by the new technology of “fracking”. (I’m not in favour of fracking; I’d prefer we concentrate our resources developing genuinely low-carbon, renewable energy sources. My point is that Donald Trump’s policies won’t address the job dislocation it has caused).

So, if the UK’s choice to leave the EU and the USA’s choice to elect Donald Trump represent the wrong solutions to the wrong problems, what are the underlying problems that are creating a crisis? And how do we fix them?

The crisis begins in places that don’t work

When veteran BBC journalist John Humphreys travelled the UK to meet communities which have experienced a high degree of immigration, he found that immigration itself isn’t a problem. Rather, the rise in population  caused by immigration becomes a problem when it’s not accompanied by investment in local infrastructure, services and business support. Immigrants are the same as people everywhere: they want to work; they start businesses (and in fact, they’re more likely to do that well than those of us who live and work in the country where we’re born); and they do all the other things that make communities thrive.

But the degree to which people – whether they’re immigrants or not – are successful doing so depends on the quality of their local environment, services and economy. And the reality is that there are stark, place-based differences in the opportunity people are given to live a good life.

In UK cities, life expectancy between the poorest and richest parts of the same city varies by up to 28 years. Areas of low life expectancy typically suffer from “multiple deprivation“: poor health, low levels of employment, low income, high dependency on benefits, poor education, poor access to services … and so on. These issues tend to affect the same areas for decade after decade, and they occur in part because of the effects of the physical urban infrastructure around them.

eu-uk-regional-funding

(The UK’s less wealthy regions benefit enormously from EU investment; whilst it’s richer regions, made wealthy by London’s economy, are net contributors. The EU acts to redistribute UK taxes to the regions that need them most, in a way that the national Government in Westminster does not)

The failure to invest in local services and infrastructure to accommodate influxes of migrants isn’t the EU’s fault; it is caused by the failure of the UK national government to devolve spending power to the local authorities that understand local needs – local authorities in the UK control only 17% of local spending, as opposed to 55% on average across OECD countries.

Ironically, one of the crucial things the EU does (or did) with the UK’s £350 million per week contribution to its budget, a large share of which is paid for by taxes from London’s dominant share of the UK economy, is to give it back to support local infrastructure and projects which create jobs and improve communities. If the Remain campaign had done a better job of explaining the extent of this support, rather than trumpeting overblown scare stories about the national, London-centric economy from which many people feel they don’t benefit anyway, some of the regions most dependent on EU investment might not have voted to Leave.

Technology is exacerbating inequality

We should certainly try to improve urban infrastructure and services; and the “Smart City” movement argues for using digital technology to do so.

But ultimately, infrastructure and services simply support activity that is generated by the economy and by social activity, and the fundamental shift taking place today is not a technological shift that makes existing business models, services or infrastructure more effective. It is the transformation of economic and social interactions by new “platform” business models that exploit online transaction networks that couldn’t exist at all without the technologies we’ve become familiar with over the last decade.

Well known examples include:

  • Apple iTunes, exchanging music between producers and consumers
  • YouTube, exchanging video content between producers and consumers
  • Facebook, an online environment for social activity that has also become a platform for content, games, news, business and community activity
  • AirBnB – an online marketplace for peer-to-peer arrangement of accomodation
  • Über – an online marketplace for peer-to-peer arrangement of transport

… and so on. MIT economist Marshall Van Alstyne’s work shows that platform businesses are increasingly the most valuable and fastest growing in the world, across many sectors.

The last two examples in that list – AirBnB and Über – are particularly good examples of online marketplaces that create transactions that take place face-to-face in the real world; these business models are not purely digital as YouTube, for example, arguably is.

But whilst these new, technology-enabled business models can be extraordinarily successful – Airbnb has been valued at $30 billion only 8 years after it was founded, and Über recently secured investments that, 7 years after it was founded, valued the company at over $60 billion – many economists and social scientists believe that the impact of these new technology-enabled business models is contributing to increasing inequality and social disruption.

As Andy McAfee and Erik Bryjolfsson have explained in theory, and as a recent JP Morgan survey has demonstrated in fact (see graph and text in box below), as traditional businesses that provide permanent employment are replaced by online marketplaces that enable the exchange of casual labour and self-employed work, the share of economic growth that is captured by the owners of capital platforms – the owners and shareholders in companies like Amazon, Facebook and Über – is rising, and the share of economic growth that is distributed to people who provide labour – people who are paid for the work they do; by far the majority of us – is falling.

The impact of technology on the financial services sector is having a similar effect. Technology enables the industry to profit from the construction of increasingly complex derivative products that speculate on sub-second fluctuations in the value of stocks and other tradeable commodities, rather than by making investments in business growth. The effect again is to concentrate the wealth the industry creates into profits for a small number of rich investors rather than distributing it in businesses that more widely provide jobs and pay salaries.

Finally, this is also ultimately the reason why the various shifting forces affecting employment in traditional manufacturing industries – off-shoring, automation, re-shoring etc. – have not resulted in a belief that manufacturing industries are providing widespread opportunities for high quality employment and careers to the people and communities who enjoyed them in the past. Even whilst manufacturing activity grows in many developed countries, jobs in those industries require increasingly technical skills, at the same time that, once again, the majority of the profits are captured by a minority of shareholders rather than distributed to the workforce.

(Analysis by JP Morgan of 260,000 current account customers earnings from 30 sharing economy websites over 3 years. Customers using websites to sell labour do not increase their income; earnings from sharing economy websites simply replace earnings from other sources. Customers using sharing economy websites to exploit the value of capital assets they own, however, are able to increase their income. This evidence supports just one of the mechanisms explored by Andy McAfee and Erik Brynjolfsson through which it appears that the digital economy is contributing to increasing income inequality)

(Analysis by JP Morgan of 260,000 current account customers’ earnings from 30 sharing economy websites over 3 years. Customers using websites to sell labour do not increase their income; earnings from sharing economy websites simply replace earnings from other sources. Customers using sharing economy websites to exploit the value of capital assets they own, however, are able to increase their income. This evidence supports just one of the mechanisms explored by Andy McAfee and Erik Brynjolfsson through which it appears that the digital economy is contributing to increasing income inequality)

That is why inequality is rising across the world; and that is the ultimate cause of the sense of unfairness that led to the choice of people in the UK to leave the EU, and people in the USA to elect Donald Trump as their President.

I do not blame the companies at the heart of these developments for causing inequality – I do not believe that is their aim, and many of their leaders believe passionately that they are a force for good.

But the evidence is clear that their cumulative impact is to create a world that is becoming damagingly unequal, and the reason is straightforward. Our market economies reward businesses that maximise profit and shareholder return; and there is simply no direct link from those basic corporate responsibilities to wider social, economic and environmental outcomes.

There are certainly indirect links – successful businesses need customers with money to spend, and there are more of those when more people have jobs that pay good wages, for example. But technology is increasingly enabling phenomenally successful new business models that depend much less on those indirect links to work.

We’re about to make things worse

Finally, as has been frequently highlighted in the media recently, new developments in technology are likely to further exacerbate the challenges of worklessness and inequality.

After a few decades in which scientific and technology progress in Artifical Intelligence (AI) made relatively little impact on the wider world, in the last few years the exponential growth of data and the computer processing power to manipulate it have led to some striking accomplishments by “machine learning”, a particular type of AI technology.

Whilst Machine Learning works in a very different way to our own intelligence, and whilst the Artificial Intelligence experts I’ve spoken to believe that any technological equivalent to human intelligence is between 20 and 100 years away (if it ever comes at all), one thing that is obvious is that Machine Learning technologies have already started to automate jobs that previously required human knowledge. Some studies predict that nearly half of all jobs – including those in highly-skilled, highly-paid occupations such as medicine, the law and journalism- could be replaced over the next few decades.

(Population changes in Blackburn, Burnley and Preston from 1901-2001. In the early part of the century, all three cities grew, supported by successful manufacturing economies. But in the latter half, only Preston continued to grow as it transitioned successfully to a service economy. From Cities Outlook 1901 by Centre for Cities)


(Population changes in Blackburn, Burnley and Preston from 1901-2001. In the early part of the century, all three cities grew, supported by successful manufacturing economies. But in the latter half, only Preston continued to grow as it transitioned successfully to a service economy. If cities do not adapt to changes in the economy driven by technology, history shows that they fail. From “Cities Outlook 1901” by Centre for Cities)

Über is perhaps the clearest embodiment of these trends combined. Whilst several cities and countries have compelled the company to treat their drivers as employees and offer improved terms and conditions, their strategy is unapologetically to replace their drivers with autonomous vehicles anyway.

I’m personally convinced that what we’re experiencing through these changes – and what we’ve possibly been experiencing for 50 years or more – is properly understood to be an Information Revolution that will reshape our world every bit as significantly as the Industrial Revolution.

And history shows us we should take the economic and social consequences of that very seriously indeed.

In the last Century as automated equipment replaced factory workers, many cities in the UK such as Sunderland, Birmingham and Bradford, saw severe job losses, economic depression and social challenges as they failed to adapt from a manufacturing economy to new industries based on knowledge-working.

In this Century many knowledge-worker jobs will be automated too, and unless we knowingly and successfully manage this huge transition into an economy based on jobs we can’t yet predict, the social and economic consequences – the crisis that has already begun – will be just as bad, or perhaps even worse.

So if the problem is the lack of opportunity, what’s the answer?

If trickle-down economics doesn’t work, top-down public sector schemes of improvement won’t work either – they’ve been tried again and again without much improvement to those persistently, multiply-deprived areas:

“For three generations governments the world over have tried to order and control the evolution of cities through rigid, top-down action. They have failed. Masterplans lie unfulfilled, housing standards have declined, the environment is under threat and the urban poor have become poorer. Our cities are straining under the pressure of rapid population growth, rising inequality, inadequate infrastructure, and failing systems of urban planning, design and development.”

– from “The Radical Incrementalist” by Kelvin Campbell, summarised here.

One of the most forward-looking UK local authority Chief Executives said to me recently that the problem isn’t that a culture of dependency on benefits exists in deprived communities; it’s that a culture of doing things for and to people, rather than finding ways to support them succeeding for themselves, permeates local government.

This subset of findings from Sir Bob Kerslake’s report on Birmingham City Council reflects similar concerns:

  • “The council, members and officers, have too often failed to tackle difficult issues. They need to be more open about what the most important issues are and focus on addressing them;
  • Partnership working needs fixing. While there are some good partnerships, particularly operationally, many external partners feel the culture is dominant and over-controlling and that the council is complex, impenetrable and too narrowly focused on its own agenda;
  • The council needs to engage across the whole city, including the outer areas, and all the communities within it;
  • Regeneration must take place beyond the physical transformation of the city centre. There is a particularly urgent challenge in central and east Birmingham.”

One solution that’s being proposed to the challenges of inequality and the displacement of jobs by automation is the “Universal Basic Income” – an unconditional payment made by government to every citizen, regardless of income and employment status. The idea is that such a payment ensures a good enough standard of living for everyone, even if many people lose employment or see their salaries fall; or chose to work in less financially rewarding occupations that have strong social value – caring for others, for example. Several countries, including Finland, Canada and the Netherlands have already begun pilots of this idea.

I think it’s a terrible mistake for two reasons.

Firstly, the proposed level of income – about $1500 per month – isn’t at all sufficient to address the vast levels of inequality that our economy has created. Whilst it might allow a majority of people to live a basically comfortable life, why should we accept that a small elite should exist at such a phenomenally different level of technology-enabled wealth as to be reminiscent of a science fiction dystopia?

Andy McAfee and Erik Brynjofflsson best expressed the second problem with a Universal Basic Income by quoting Voltaire in “The Second Machine Age“:

“Work keeps at bay three great evils: boredom, vice, and need.”

A Universal Basic Income might address “need”, to a degree, but it will do nothing to address boredom and vice. Most people want to work because they want to be useful, they want their lives to make a difference and they want to feel fulfilled – this is the “self-actualisation” at the apex of Maslow’s Hierarchy of Needs. Surely enabling everyone to reach that condition should be our aspiration for society, not a subsidy that addresses only basic needs?

Our answer to these challenges should be an economy that properly rewards the application of effort, talent and courage to achieving the objectives that matter to us most; not one that rewards the amoral maximisation of profits for the owners of capital assets accompanied by a gesture of redistribution that’s just enough to prevent civil unrest.

(Maslow's

(Maslow’s “Hierarchy of Needs”)

Three questions that reveal the solution

There are three questions that I think define the way to answer these challenges in a way that neither the public, private nor third sectors have yet done.

The first is the question at the heart of the idea of a Smart City.

There are a million different definitions of a “Smart City”, but most of them are variations on the theme of “using digital technology to make cities better”. The most challenging part of that idea is not to do with how digital technology works, nor how it can be used in city systems; it is to do with how we pay for investments in technology to achieve outcomes that are social, economic and environmental – i.e. that don’t directly generate a financial return, which is usually why money is invested.

Of course, there are investment vehicles that translate achievement against social, economic or environmental objectives into a financial return – Social Impact Bonds and Climate Bonds, for example.

Using such vehicles to support the most interesting Smart City ideas can be challenging, however, due to the level of uncertainty in the outcomes that will be achieved. Many Smart City ideas provide people with information or services that allow them to make choices about the energy they use; how and when they travel; and the products and services they buy. The theory is that when given the option to improve their social, economic and environmental impact, people will chose to do so. But that’s only the theory; the extent to which people actually change their behaviour is notoriously unpredictable. That makes it very difficult to create an investment vehicle with a predictable level of return.

So the first key question that should be answered by any solution to the current crisis is:

  • QUESTION 1: How can we manage the risk of investing in technology to achieve uncertain social, economic or environmental aims such as improving educational attainment or social mobility in our most deprived areas?

The international Smart City community (of which I am a part) has so far utterly failed to answer that question. In the 20 years that the idea has been around, it simply hasn’t made a noticeable difference to economic opportunity, social mobility or resilience – if it had, I wouldn’t be writing this article about a crisis. Earlier this year, I described the examples of Smart City initiatives around the world that are finally starting to make an impact, and below I’ll describe some actions we can take to replicate them and drive them forward at scale.

The second question is inspired by the work of the architect and town planner Kelvin Campbell, whose “Smart Urbanism” is challenging the decades of orthodox thinking that has failed to improve those most deprived areas of our cities:

The solution lies in mobilising peoples’ latent creativity by harnessing the collective power of many small ideas and actions. This happens whenever people take control over the places they live in, adapting them to their needs and creating environments that are capable of adapting to future change. When many people do this, it adds up to a fundamental shift. This is what we call making Massive Small change.”

from “The Radical Incrementalist” by Kelvin Campbell, summarised here.

Kelvin’s concept of “Massive Small change” forms the second key question that defines the solution to our crisis:

  • QUESTION 2: What are the characteristics of urban environments and policy that give rise to massive amounts of small-scale innovation?

That’s one of the most thought-provoking and insightful questions I can think of. “Small-scale” innovation is what everybody does, every day, as we try to get by in life: fixing a leaky tap, helping our daughter with her maths homework, closing that next deal at work, losing another kilogram towards our weight target, becoming a trustee of a local charity … and so on.

For some people, what begin as small-scale innovations eventually amount to tremendously successful lives and careers. Mark Zuckerberg learned how to code, developed an online platform for friends to stay in touch with each other, and became the 6th richest man on the planet, worth approximately $40 billion. On the other hand, 15 million people around the world, including a vast number of children, show their resourcefulness by searching refuse dumps for re-usable objects.

Recent research on the platform economy by the not-for-profit PEW Research Centre confirms these vast gaps in opportunity; and most concerningly identifies clear biases based on race, class, wealth and gender.

The problem with small-scale innovation doesn’t lie in making it happen – it happens all the time. The problem lies in enabling it to have a bigger impact for those in the most challenging circumstances. Kelvin’s work has found ways to do that in the built environment; how do we translate those ideas into the digital economy?

The final question is more subtle:

  • QUESTION 3: How do we ensure that massive amounts of small-scale innovation create collective societal benefits, rather than lots of individual successes?

One way to explain what I mean by the difference between widespread individual success and societal success is in terms of resilience. Over the next 35 years, about 2 billion more people worldwide will acquire the level of wealth associated with the middle classes of developed economies. As a consequence, they are likely to dramatically increase their consumption of resources – eating more meat and less vegetables; buying cars; using more energy. Given that we are already consuming our planet’s resources at an unsustainable rate, such an increase in consumption could great an enormous global problem. So our concept of “success” should be collective as well as individual – it should result in us moderating our personal consumption in favour of a sustainable society.

One of the central tenets of economics for nearly 200 years, the “Tragedy of the Commons“, asserts that individual motives will always overwhelm societal motives and lead to the exhaustion of shared resources, unless those resoures are controlled by a system of private ownership or by government regulation – unless some people or organisations are able to own and control the use of resources by others. We’ll return to this subject shortly, and to its study in the field of Evolutionary Social Biology.

Calling out the failure of the free market: a Three Step Manifesto for Smart Community Economies

If we could answer those three questions, we’d have defined a digital economy in which individual citizens, businesses and communities everywhere would have the skills, opportunities and resources to create their own success on terms that matter to them; and in a way that was beneficial to us all.

That’s the only answer to our current crisis that makes sense to me. It’s not an answer that either Brexit or Donald Trump will help us to find.

So how do we find it?

(The White Horse Tavern in Greenwich Village, New York, one of the city’s oldest taverns. The rich urban life of the Village was described by one of the Taverns’ many famous patrons, the urbanist Jane Jacobs. Photo by Steve Minor).

I think the answers are at our fingertips. In one sense, they’re no more than “nudges” that influence what’s happening already; and they’re supported by robust research in technology, economics, social science, biology and urban design. They lay out a three step manifesto for successful community economies, enabled by technology and rooted in place.

But in another sense, this is a call for fundamental change. These “nudges” will only work if they are enacted as policies, regulations and laws by national and local governments. “Regulation” is a dirty word to the proponents of free markets; but free markets are failing us, and it’s time we admitted that, and shaped them to our needs.

A global-local economy

Globalisation is inevitable – and in many ways beneficial; but ironically the same technologies that enable it can also enable localism, and the two trends do not need to be mutually exclusive.

Many urban designers and environmental experts believe that the best path to a healthy, successful, sustainable and equitable future economy and society lies in a combination of medium density cities with a significant proportion of economic activity (from food to manufacturing to energy to re-use and recycling) based on local transactions supported by walking and cycling.

The same “platform” business models employed by Über, Airbnb and so on could in theory provide the new transaction infrastructure to stimulate and enable such economies. In fact, I believe that they are unique in their ability to do so. Examples already exist – “Borroclub“, for instance, whose platform business connects people who need tools to do jobs with near neighbours who own tools but aren’t using them at the time. A community that adopts Borroclub spends less money on tools; exchanges the money it does spend locally rather than paying it to importers; accomplishes more work using fewer resources; and undertakes fewer car journeys to out-of-town DIY stores.

This can only be accomplished using social digital technology that allows us to easily and cheaply share information with hundreds or thousands of neighbours about what we have and what we need. It could never have happened using telephones or the postal system – the communication technologies of the pre-internet age.

This could be a tremendously powerful way to address the crisis we are facing. Businesses using this model could create jobs, reinforce local social value, reduce the transport and environmental impact of economic transactions and promote the sustainable use of resources; all whilst tapping into the private sector investment that supports growing businesses.

But private sector businesses will only drive social outcomes at scale if we shape the markets they operate in to make that the most profitable business agenda to pursue. The fact that we haven’t shaped the market yet is why platform businesses are currently driving inequality.

There are three measures we could take to shape the market; and the best news is that the first one is already being taken.

1. Legislate to encourage and support social innovation with Open Data and Open Technology

The Director of one of the UK’s first incubators for technology start-up businesses recently told me that “20 years ago, the only way we could help someone to start a business was to help them write a better business plan in order to have a better chance of getting a bank loan. Today there are any number of ways to start a business, and lots of them don’t need you to have much money.”

Technologies such as smartphones, social media, cloud computing and open source software have made it possible to launch global businesses and initiatives almost for free, in return for little more than an investment of time and a willingness to learn new skills. Small-scale innovation has never before had access to such free and powerful tools.

(The inspirational Kilimo Salama scheme that uses

(The inspirational Kilimo Salama scheme that uses “appropriate technology” to make crop insurance affordable to subsistence farmers. Photo by Burness Communications)

These are all examples of what was originally described as “Intermediate Technology” by the economist Ernst Friedrich “Fritz” Schumacher in his influential work, “Small is Beautiful: Economics as if People Mattered“, and is now known as Appropriate Technology.

Schumacher’s views on technology were informed by his belief that our approach to economics should be transformed “as if people mattered”. He asked:

“What happens if we create economics not on the basis of maximising the production of goods and the ability to acquire and consume them – which ends up valuing automation and profit – but on the Buddhist definition of the purpose of work: “to give a man a chance to utilise and develop his faculties; to enable him to overcome his ego-centredness by joining with other people in a common task; and to bring forth the goods and services needed for a becoming existence.”

Schumacher pointed out that the most advanced technologies, to which we often look to create value and growth, are in fact only effective in the hands of those with the resources and skills required to use them – i.e. those who are already wealthy. Further, by emphasising efficiency, output and profit those technologies tend to further concentrate economic value in the hands of the wealthy – often specifically by reducing the employment of people with less advanced skills and roles.

His writing seems prescient now.

A perfect current example is the UK Government’s strategy to drive economic growth by making the UK an international leader in autonomous vehicles, to counter the negative economic impacts of leaving the European Union. That strategy is based on further increasing the number of highly skilled technology and engineering jobs at companies and research insitutions already involved in the sector; and on the UK’s relative lack of regulations preventing the adoption of such technology on the country’s roads.

The strategy will benefit those people with the technological and engineering skills needed to create improvements in autonomous vehicle technology. But what will happen to the far greater number of people who earn their living simply by driving vehicles? They will first see their income fall, and second see their jobs disappear, as technology firstly replaces their permanent jobs with casual labour through platforms such as Über, and secondly completely removes their jobs from the economy by replacing them with self-driving technology. The UK economy might grow in the process; but vast numbers of ordinary people will see their jobs and incomes disappear or decline.

From the broad perspective of the UK workforce, that strategy would be great if we were making a massive investment in education to enable more people to earn a living as highly paid engineers rather than an average or low-paid living as drivers. But of course we’re not doing that at all; at best our educational spend per student is stagnant, and at worst it’s declining as class-sizes grow and we reduce the number of teaching assistants we employ.

In contrast, Schumacher felt that the most genuine “development ” of our society would occur when the most possible people were employed in a way that gave them the practical ability to earn a living; and that also offered a level of human reward – much as Maslow’s “Hierarchy of Needs” first identifies our most basic requirements for food, water, shelter and security; but next relates the importance of family, friends and “self-actualisation” (which can crudely be described as the process of achieving things that we care about).

This led him to ask:

“What is that we really require from the scientists and technologists? I should answer:

We need methods and equipment which are:

    • Cheap enough so that they are accessible to virtually everyone;
    • Suitable for small-scale application; and
    • Compatible with man’s need for creativity”

These are precisely the characteristics of the Cloud Computing, social media, Open Source and smartphone technologies that are now so widely available, and so astonishingly powerful. What we need to do next is to provide more support to help people everywhere put them to use for their own purposes.

Firstly, Open data, open algorithms and open APIs should be mandatory for any publicly funded service or infrastructure. They should be included in the procurement criteria for services and goods procured on behalf of the public sector. Our public infrastructure should be digitally open, accessible and accountable.

Secondly, some of the proceeds from corporate taxation – whether at national level or from local business rates – should be used to provide regional investment funds to support local businesses and social enterprises that contribute to local social, economic and environmental objectives; and to support the regional social innovation communities such as the network of Impact Hubs that help such initiatives start, succeed and grow.

But perhaps most importantly, those proceeds should also be used to fund improvements to state education everywhere. People can only use tools if they are given the opportunity to acquire skills; and as tools and technologies change, we need the opportunity to learn new skills. If our jobs – or more broadly our roles in society – are not ultimately to be replaced by machines, we need to develop the creativity to use those tools to create the human value that technology will never understand.

It is surely insane that we are pouring billions of pounds and dollars into the development of technologies that mean we need to develop new skills in order to remain employable, and that those investments are making our economy richer and richer; but that at the same time we are making a smaller and smaller proportion of that wealth available to educate our children.

Just as some of the profits of the Industrial Revolution were spent on infrastructure with a social purpose, so should some of the profits of the Information Revolution be.

2. Legislate to encourage and support business models with a positive social outcome

(Hancock Bank’s vault, damaged by Hurricane Katrina. Photo by Social Stratification)

The social quality of the behaviour of private sector businesses varies enormously.

The story of Hancock Bank’s actions to assist the citizens of New Orleans to recover from hurricane Katrina in 2005 – by lending cash to anyone who needed it and was prepared to sign an IoU – is told in this video, and is an extraordinary example of responsible business behaviour. In an unprecedented situation, the Bank’s leaders based their decisions on the company’s purpose, expressed in its charter, to support the communities of the city. This is in contrast to the behaviour of Bob Diamond, who resigned as CEO of Barclays Bank following the LIBOR rate-manipulation scandal, and who under questioning by parliamentary committee could not remember what the Bank’s founding principles, written by community-minded Quakers, stated.

Barclays’ employees’ behaviour under Bob Diamond was driven purely by the motivation to earn bigger bonuses by achieving the Bank’s primary objective, to increase shareholder value.

But the overriding focus on shareholders as the primary stakeholder in private sector business is relatively new. Historically, customers and employees have been treated as equally important. Some leading economists now believe we should return to such balanced models.

There are already models of business – such as “social enterprise” – which promote more balanced corporate governance, and that even offer accreditation schemes. We could incentivise such models to be more successful in our economy by creating a preferential market for them – lower rates of taxation; preferential scoring in public sector procurements; and so on.

An alternative is to use technology to enable entirely new, entirely open systems. “Blockchains” are the technology that enable the digital currency “Bitcoin“. The Bitcoin Blockchain is a single, distributed ledger that records every Bitcoin transaction so that anyone in the world can see it. So unlike the traditional system of money in which we depend on physical tokens, banks and payment services to define the ownership of money and to govern transactions, Bitcoin transactions work because everybody can see who owns which Bitcoins and when they’re being exchanged.

This principle of a “distributed, open ledger” – implemented by a blockchain – is thought by many technology industry observers to be the most important, powerfully disruptive invention since the internet. The Ethereum “smart contracts” platfom adds behaviour to the blockchain – open algorithms that cannot be tampered with and that dictate how transactions take place and what happens as a consequence of them. It is leading to some strikingly different new business models, including the “Distributed Autonomous Organisation” (or “DAO” for short), a multi-$million investment fund that is entirely, democratically run by smart contracts on behalf of its investors.

By promoting distributed, non-repudiatable transparency in this way, blockchain technologies offer unprecedented opportunities to ensure that all of the participants in an economic system have the opportunity to influence the distribution of the benefits of the system in a fair way. This idea is already at the heart of an array of initiatives to ensure that some of the least wealthy people in the world benefit more fairly from the information economy.

Finally, research in economics and in evolutionary social biology is yielding prescriptive insights into how we can design business models that are as wildly successful as those of Über and Airbnb, but with models of corporate governance that ensure that the wealth they create is more broadly and fairly distributed.

In conversation with a researcher at Imperial College London a few years ago, I said that I thought we needed to find criteria to distinguish “platform” businesses like Casserole Club that create social value from those like Über that concentrate the vast majority of the wealth they create in the hands of the platform owners. (Casserole Club uses social media to match people who are unable to provide meals for themselves with neighbours who are happy to cook and share an extra portion of their meal).

The researcher told me I should consult Elinor Ostrom’s work in Economics. Ostrom, who won the Nobel prize in 2009, spent her life working with communities around the world who successfully manage shared resources (land, forests, fresh water, fisheries etc.) sustainably, and writing down the common features of their organisational models. Her Nobel prize was awarded for using this evidence to disprove the “tragedy of the commons” doctrine which economists previously believed proved that sustainable commons management was impossible.

(Elinor Ostrom working with irrigation management in Nepal)

(Elinor Ostrom working with irrigation management in Nepal)

Most of Ostrom’s principles for organisational design and behaviour are strikingly similar to the models used by platform businesses such as Über and Airbnb. But the principles she discovered that are the most interesting are the ones that Über and Airbnb don’t follow – the price of exchange being agreed by all of the participants in a transaction, for example, rather than it being set by the platform owner. Ostrom’s work has been continued by David Sloan Wilson who has demonstrated that the principles she discovered follow from evolutionary social biology – the science that studies the evolution of human social behaviour.

Elinor Ostrom’s design principles for commons organisations offer us not only a toolkit for the design of successful, socially responsible platform businesses; they offer us a toolkit for their regulation, too, by specifying the characteristics of businesses that we should preferentially reward through market regulation and tax policy.

3. Legislate for individual ownership of personal data, and a right to share in the profits it creates. 

Platform business models may depend less and less on our labour – or at least, may have found ways to pay less for it as a proportion of their profits; but they depend absolutely on our data.

Of course, we – usually – get some value in return for our data – useful search results, guidance to the quickest route to our journey, recommendations of new songs, films or books we might like.

But is massive inequality really a price worth paying for convenience?

The ownership of private property and intellectual property underpin the capitalist economy, which until recently was primarily based on the value of physical assets and closed knowledge, made difficult to replicate through being stored primarily in physical, analogue media (including our brains).

Our economy is now being utterly transformed by easy to replicate, easy to transfer digital data – from news to music to video entertainment to financial services, business models that had operated for decades have been swept away and replaced by models that are constantly adapting, driven by advances in technology.

But data legislation has not kept pace. Despite several revisions of data protection and privacy legislation, the ownership of digital data is far from clearly defined in law, and in general its exchange is subject to individual agreements between parties.

It is time to legislate more strongly that the value of the data we create by our actions, our movement and our communication belongs to us as individuals, and that in turn we receive a greater share of the profits that are made from its use.

That is the more likely mechanism to result in the fair distribution of value in the economy as the value of labour falls than a Universal Basic Income that rewards nothing.

One last plea to our political leaders to admit that we face a crisis

Whilst the UK and the USA argue – and even riot – about the outcomes of the European Union referendum and the US Presidential election, the issues of inequality, loss of jobs and disenfranchisement from the political system are finally coming to light in the media.

But it’s a disgrace that they barely featured at all in either of those campaigns.

Emotionally right now I want to castigate our politicians for getting us into this mess through all sorts of venality, complacency, hubris and untruthfulness. But two things I know they are not – including Donald Trump – are stupid or ignorant. They surely must be aware of these issues – why will they not recognise and address them?

Robert Wright’s mathematical analysis of the evolution of human society, NonZero, describes the emergence of our current model of nation states through the European Middle Ages as a tension between the ruling and working classes. The working classes pay a tax to the ruling classes, who they accept will live a wealthier life, in return for a safe and peaceful environment in which to live. Whenever the price paid for safety and peace grew unreasonably high, the working classes revolted and overthrew the ruling classes, resulting eventually in a new, better-balanced model.

Is it scaremongering to suggest we are close to a similar era of instability?

(Anti-Donald Trump protesters in San Jose, California in June. Trump supporters leaving a nearby campaign rally were attacked)

(Anti-Donald Trump protesters in San Jose, California in June. Trump supporters leaving a nearby campaign rally were attacked)

I don’t think so. At the same time that the Industrial Revolution created widespread economic growth and improvements in prosperity, it similarly exacerbated inequality between the general population and the property- and business-owning elite. Just as I have argued in this article, that inequality was corrected not by “big government” and grand top-down redistributive schemes, but by measures that shaped markets and investments in education and enablement for the wider population.

We have not yet taken those corrective actions for the Information Revolution – nor even realised and acknowledged that we need to take them. Inequality is rising as a consequence, and it is widely appreciated that inequality creates social unrest.

Brexit and the election of Donald Trump following a campaign of such obvious lies, misogyny and – at best – narrow-minded nationalism are unprecedented in modern times. They have already resulted in social unrest in the form of riots and increased incidents of racism – as has the rise in the price of staple food caused by severe climate events as a vast number of people around the world struggle to feed themselves when hurricanes and droughts affect the production of basic crops. It’s no surprise that the World Economic Forum’s 2016 Global Risks Report identifies “unemployment and underemployment” and “profound social instability” as amongst the top 10 most likely and impactful global risks facing the world.

Brexit and Donald Trump are not crises in themselves; but they are symptoms of a real crisis that we face now; and until we – and our political leaders – face up to that and start dealing with it properly, we are putting ourselves, our future and our childrens’ future at unimaginable risk.

Thankyou to the following, whose opinions and expertise, expressed in articles and conversations, helped me to write this post:

Why Smart Cities still aren’t working for us after 20 years. And how we can fix them.

(The futuristic "Emerald City" in the 1939 film "The Wizard of Oz". The "wizard" who controls the city is a fraud who uses theatrical technology to disguise his lack of real power.)

(The futuristic “Emerald City” in the 1939 film “The Wizard of Oz“. The “wizard” who controls the city is a fraud who uses theatrical technology to disguise his lack of real power.)

(I was recently asked to give evidence to the United Nations Commission on Science and Technology for Development during the development of their report on Smart Cities and Infrastructure. This article is based on my presentation, which you can find here).

The idea of a “Smart City” (or town, or region, or community) is 20 years old now; but despite some high profile projects and a lot of attention, it has so far achieved relatively little.

The goal of a Smart City is to invest in technology in order to create economic, social and environmental improvements. That is an economic and political challenge, not a technology trend; and it is an imperative challenge because of the nature and extent of the risks we face as a society today. Whilst the demands created by urbanisation and growth in the global population threaten to outstrip the resources available to us, those resources are under threat from man-made climate change; and we live in a world in which many think that access to resources is becoming dangerously unfair.

Surely, then, there should be an urgent political debate concerning how city leaders and local authorities enact policies and other measures to steer investments in the most powerful tool we have ever created, digital technology, to address those threats?

In honesty, that debate is not really taking place. There are endless conferences and reports about Smart Cities, but very, very few of them tackle the issues of financing, investment and policy – they are more likely to describe the technology and engineering solutions behind schemes that appear to create new efficiencies and improvements in transport and energy systems, for example, but that in reality are unsustainable because they rely on one-off research and innovation grants.

Because Smart Cities are usually defined in these terms – by the role of technology in city systems rather than by the role of policy in shaping the outcomes of investment – the idea has not won widespread interest and support from the highest level of political leadership – the very people without whom the policy changes and investments that Smart Cities need will not be made.

And because Smart Cities are usually discussed as projects between technology providers, engineers, local authorities and universities, the ordinary people who vote for politicians, pay taxes, buy products, use public services and make businesses work are not even aware of the idea, let alone supportive of it.

("Visionary City" by William Robinson Leigh)

(William Robinson Leigh’s 1908 painting “Visionary City” envisaged future cities constructed from mile-long buildings of hundreds of stories connected by gas-lit skyways for trams, pedestrians and horse-drawn carriages. A century later we’re starting to realise not only that developments in transport and power technology have eclipsed Leigh’s vision, but that we don’t want to live in cities constructed from buildings on this scale.)

The fact that the Smart Cities movement confuses itself with inconsistent and contradictory definitions exacerbates this lack of engagement, understanding and support. From the earliest days, it has been defined in terms of either smart infrastructure or smart citizens; but rarely both at the same time.

For example, in “City of Bits” in 1996, William Mitchell, Director of the Smart Cities Research Group at MIT’s Media Lab, predicted the widespread deployment of digital technology to transform city infrastructures:

“… as the infobahn takes over a widening range of functions, the roles of inhabited structures and transportation systems are shifting once again, fresh urban patterns are forming, and we have the opportunity to rethink received ideas of what buildings and cities are, how they can be made, and what they are really for.”

Whilst in their paper “E-Governance and Smart Communities: A Social Learning Challenge“, published in the Social Science Computer Review in 2001, Amanda Coe, Gilles Paquet and Jeffrey Roy described the 1997 emergence of the idea of “Smart Communities” in which citizens and communities are given a stronger voice in their own governance by the power of internet communication technologies:

“A smart community is defined as a geographical area ranging in size from a neighbourhood to a multi-county region within which citizens, organizations and governing institutions deploy and embrace NICT [“New Information and Communication Technologies”] to transform their region in significant and fundamental ways (Eger 1997). In an information age, smart communities are intended to promote job growth, economic development and improve quality of life within the community.”

Because few descriptions of a Smart City reflect both of those perspectives in harmony, many Smart City discussions quickly create arguments between opposing camps rather than constructive ideas: infrastructure versus people; top-down versus bottom-up; technology versus urban design; proprietary technology versus open source; public service improvements versus the enablement of open innovation – and so on.

I haven’t seen many political leaders or the people who vote for them be impressed by proposals whose advocates are arguing with each other.

The emperor has no wearable technology … why we’re not really investing in Smart Cities

The consequence of this lack of cohesion and focus is that very little real money is being invested in Smart Cities to create the outcomes that cities, towns, regions and whole countries have set out for themselves in thousands of Smart City visions and strategies. The vast majority of Smart City initiatives to date are pilot projects funded by research and innovation grants. There are very, very few sustainable, repeatable solutions yet.

There are three reasons for this; and they will have serious economic and social consequences if we don’t address them.

Firstly, the investment streams available to most of those who are trying to shape Smart Cities initiatives – engineers, technologists, academics, local authority officers and community activists – are largely limited to corporate research and development funds, national and international innovation programmes and charitable or socially-focussed grants. Those are important sources of funding, but they are only available at a scale sufficient to prove that good new ideas can work through individual, time-limited projects. They are not intended to fund the deployment of those ideas across cities everywhere, or to construct new infrastructure at city scale, and they are not remotely capable of doing so.

(United States GDP plotted against median household income from 1953 to present. Until about 1980, growth in the economy correlated to increases in household wealth. But from 1980 onwards as digital technology has transformed the economy, household income has remained flat despite continuing economic growth)

(United States GDP plotted against median household income from 1953 to present. Until about 1980, growth in the economy correlated to increases in household wealth. But from 1980 onwards as digital technology has transformed the economy, household income has remained flat despite continuing economic growth. From “The Second Machine Age“, by MIT economists Andy McAfee and Erik Brynjolfsson, summarised in this article.)

Secondly and conversely, the massive investments that are being made in smart technology at a scale that is transforming our world are primarily commercial: they are investing in technology to develop new products and services that consumers want to buy. That’s guaranteed to create convenience for consumers and profit for companies; but it’s far from guaranteed to create resilient, socially mobile, vibrant and healthy cities. It’s just as likely to reduce our life expectancy and social engagement by making it easier to order high-fat, high-sugar takeaway food on our smartphones to be delivered to our couches by drones whilst we immerse ourselves in multiplayer virtual reality games.

That’s why whilst technology advocates praise the ingenuity of technology-enabled “sharing economy” business models such as Airbnb and Uber, most other commentators point out that far from being platforms for “sharing” many are simply profit-seeking transaction brokers. More fundamentally, some economists are seriously concerned that the economy is becoming dominated by such platform business models and that the majority of the value they create is captured by a small number of platform owners – world leaders discussed these issues at the World Economic Forum’s Davos summit this year. There is real evidence that the exploitation of technology by business is contributing to the evolution of the global economy in a way that makes it less equal and that concentrates an even greater share of wealth amongst a smaller number of people.

Finally, the similarly massive investments continually made in property development and infrastructure in cities are, for the most part, not creating investments in digital technology in the public interest. Sometimes that’s because there’s no incentive to do so: development investors make their returns by selling the property they construct; they often have no interest in whether the tenants of that property start successful digital businesses, and they receive no income from any connectivity services those tenants might use. In other cases, policy actively inhibits more socially-minded developers from providing digital services. One developer of a £1billion regeneration project told me that European Union restrictions on state aid had prevented them making any investment in connectivity. They could only build buildings without connectivity – in an area with no mobile coverage – and attempt to attract people and businesses to move in, thereby creating demand for telecommunications companies to subsequently compete to fulfil.

We’ll only build Smart Cities when we shape the market for investing in technology for city services and infrastructure

In her seminal 1961 work “The Death and Life of Great American Cities“, Jane Jacobs wrote that “Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image.”

Cities, towns, regions and countries around the world have set out their self-images of a Smart future, but we have not adapted the financial, regulatory and economic machinery – the policies, the procurement practises, the development frameworks, the investment models – to incentivise the private sector to create them.

I do not mean to be critical of the private sector in this article. I have worked in the private sector for my entire career. It is the engine of our economy, and without its profits we would not create the jobs needed by a growing global population, or the means to pay the taxes that sustain our public services, or the surplus wealth that creates an ability to invest in our future.

But one of the fallacies of large parts of the Smart Cities movement, and of a significant part of the overall debate concerning the enormous growth in value of the technology economy, is the assumption that economic growth driven by private sector investments in technology to improve business performance will create broad social, economic and environmental benefits.

There is no guarantee that it will. Outside philanthropy, charitable donations and social business models, private sector investments are made in order to make a profit, period. In doing so, social, economic and environmental benefits may also be created, but they are side effects which, at best, result from the informed investment choices of conscientious business leaders. At worst, they are simply irrelevant to the imperative of the profit motive.

Some businesses have the scale, vision and stability to make more direct links in their strategies and decision-making to the dependency between their success as businesses and the health of the society in which they operate – Unilever is a notable and high profile example. And all businesses are run by real people whose consciences influence their business decisions (with unfortunate exceptions, of course).

But those examples do not in any way add up to the alignment of private sector investment objectives with the aspirations of city authorities or citizens for their future. And as MIT economists Andy McAfee and Erik Brynjolfsson, amongst others, have shown, most current evidence indicates that the technology economy is exacerbating the inequality that exists in our society (see graph above). That is the opposite of the future aspirations expressed by many cities, communities and their governments.

This leads us to the political and economic imperative represented by the Smart Cities movement: to adapt the machinery of our economy to influence investments in technology so that they contribute to the social, economic and environmental outcomes that we want.

A leadership imperative to learn from the past

Those actions can only be taken by political leaders; and they must be taken because without them developments and investments in new technology and infrastructure will not create ubiquitously beneficial outcomes. Historically, there is plenty of evidence that investments in technology and infrastructure can create great harm if market forces alone are left to shape them.

(Areas of relative wealth and deprivation in Birmingham as measured by the Indices of Multiple Deprivation. Birmingham, like many of the UK's Core Cities, has a ring of persistently deprived areas immediately outside the city centre, co-located with the highest concentration of transport infrastructure allowing traffic to flow in and out of the centre.)

(Areas of relative wealth and deprivation in Birmingham as measured by the Indices of Multiple Deprivation. Birmingham, like many of the UK’s Core Cities, has a ring of persistently deprived areas immediately outside the city centre, co-located with the highest concentration of transport infrastructure allowing traffic to flow in and out of the centre)

For example, in the decades after the Second World War, cities in developed countries rebuilt themselves using the technologies of the time – concrete and the internal combustion engine. Networks of urban highways were built into city centres in the interests of connecting city economies with national and international transport links to commerce.

Those infrastructures supported economic growth; but they did not provide access to the communities they passed through.

The 2015 Indices of Multiple Deprivation in the UK demonstrate that some of those communities were greatly harmed as a result. The indices identify neighbourhoods with combinations of low levels of employment and income; poor health; poor access to quality education and training; high levels of crime; poor quality living environments and shortages of quality housing and services. An analysis of these areas in the UK’s Core Cities (the eight economically largest cities outside London, plus Glasgow and Cardiff) show that many of them exist in rings surrounding relatively thriving city centres. Whilst clearly the full causes are complex, it is no surprise that those rings feature a concentration of transport infrastructure passing through them, but primarily serving the interests of those passing in and out of the centre. (And this is without taking into account the full health impacts of transport-related pollution, which we’re only just starting to appreciate).

Similar effects can be seen historically. In their report “Cities Outlook 1901“, Centre for Cities explored the previous century of urban development in the UK, examining why at various times some cities thrived and some did not. They concluded that the single most important influence on the success of cities was their ability to provide their citizens with the right skills and opportunities to find employment, as the skills required in the economy changed as technology evolved. (See the sample graph below). A recent short article in The Economist magazine similarly argued that history shows there is no inevitable mechanism that ensures that the benefits of economic growth driven by technology-enabled productivity improvements are broadly distributed. It cites huge investments made in the US education system in the late 19th and early 20th Centuries to ensure that the general population was in a position to benefit from the technological developments of the Industrial Revolution as an example of the efforts that may need to be made.

Why smart cities are a political leadership challenge

So, to summarise the arguments I’ve made so far:

From global urbanisation and population growth to man-made climate change we are facing some of the most serious and acute challenges in our history, as well as the persistent challenge of inequality. But the most powerful tool that is shaping a transformation of our society and economy, digital technology, is, for the most part, not being used to address those challenges. The vast majority of investments in it are being made simply in the interests of profitable returns. Our political leaders are not shaping the markets in which those investment are made, or influencing public sector procurement practises, in order to create broader social, economic and environmental outcomes.

So what can we do about that?

We need to persuade political leaders to act – the leaders of cities; of local authorities more generally; and national politicians. I’m trying to do that using the arguments set out in this article, approaching “Smart Cities” not as a technology initiative but as a political and economic issue made urgent by imperative challenges to society.

I can imagine three arguments against that proposition, which I’d like to tackle first, before going on to talk about the actions that we need those leaders to take.

(Population changes in Blackburn, Burnley and Preston from 1901-2001. In the early part of the century, all three cities grew, supported by successful manufacturing economies. But in the latter half, only Preston continued to grow as it transitioned successfully to a service economy. From Cities Outlook 1901 by Centre for Cities)


(Population changes in Blackburn, Burnley and Preston from 1901-2001. In the early part of the century, all three cities grew, supported by successful manufacturing economies. But in the latter half, only Preston continued to grow as it transitioned successfully to a service economy. If cities do not adapt to changes in the economy driven by technology, history shows that they fail. From “Cities Outlook 1901” by Centre for Cities)

The first argument is: why focus on cities? What about the rest of the world, and in particular the challenges of smaller towns, which are often overlooked; or rural regions, which are distinctive and deserve focus in their own right?

There are two replies to this argument. The first is that cities do represent the most sizeable challenge. Since 2010, more than half the world’s population has lived in urban areas, and that’s expected to rise to 70% by 2050. Cities drive the majority of the world’s economy, consume the majority of resources in the most concentrated way and create the majority of the pollution driving climate change. By focussing on cities we focus on most of our challenges at the same time, and in the places where they are most concentrated; and we focus on a unit of governance that is able to act decisively and with understanding of local context.

And that brings us to the second reply: most of the arguments I make in this article aren’t really about cities, they’re about the need for the leaders of local governments – cities, towns and regions – to take action. That applies to any local authority, not just to cities.

The second counter-argument is that my proposal is “top-down” and that instead we should focus on the “bottom-up” creativity that is the richest source of innovation and of practical solutions to problems that are rooted in local context.

My answer to this challenge is that I agree completely that it is bottom-up innovation that will create the majority of the answers to our challenges. But bottom-up innovation is already happening everywhere around us – it is what everyone does every day to create a better business, a better community, a better life. The problem with bottom-up innovation doesn’t lie in making it happen; it lies in enabling it to have a bigger impact. If bottom-up innovation on its own were the answer, then we wouldn’t have the staggering and increasing levels of inequality that we see today, and the economic growth created by the information revolution would be more broadly distributed.

Ultimately, it’s not the bottom-up innovators who need persuading to take action: they’re already acting. It’s the top-down leaders and policy-makers who are not doing what we need them to do: setting the policies that will influence investments in digital technology infrastructure to create better opportunities and support for citizen-led, community-led and business-led innovation. That’s why I’m focussing this article on those leaders and the actions we need them to take.

The third argument works similarly to the second argument, and it’s that we should be focussing on people, not on technology and policy.

Yes, of course we should be focussing on people: their creativity, the detail of their daily lives, and the outcomes that matter to them. But two central points to my argument are that digital technology is a new and revolutionary force reshaping our world, our society and our economy; and that the benefits of that revolution are not being equitably distributed. The main thing that’s not working for people right now is the impact of digital technology on society, and the main reason for that is the lack of action by political leaders. So that’s what we should concentrate on fixing.

Finally, I can summarise my response to all of those arguments in a simple statement: first we have to persuade political leaders to act, because many of them are not acting on these issues at the moment; and then we have to persuade them to act in the right way – to support bottom-up innovation through investment in open technology infrastructures and to put the interests of people at the heart of the policies that drive and shape that investment.

(Innovation Birmingham's £7m "iCentrum" facility will open in March 2016. It will small companies developing smart city products and services will have the opportunity to co-develop them with larger organisations such as RWE nPower, the Transport Systems Catapult and Centro (Birmingham’s Public Transport Executive) – see, e.g., https://ts.catapult.org.uk/-/centro-and-the-transport-systems-catapult-to-run-intelligent-mobility-incubator-within-innovation-birmingham-s-8m-icentrum-buildi-1 )

(Innovation Birmingham’s Chief Executive David Hardman describes the £7m “iCentrum” facility which will open in March 2016 to local stakeholders. It will offer entrepreneurial companies opportunities to co-develop smart city products and services with larger organisations such as RWE nPower, the Transport Systems Catapult and Centro, Birmingham’s Public Transport Executive)

Learning from what’s worked

This might all sound rather negative so far; and in a sense that’s intentional because I want to be very clear in my message that I do not think we are doing enough.

But I have a positive message too: if we can persuade our political leaders to act, then it’s increasingly clear what we need them to do. Whilst the majority of “Smart City” initiatives are unsustainable pilot and innovation projects, that’s not true of them all.

In the UK, from Sunderland to London to Newcastle to Birmingham there are examples of initiatives that are supported by sustainable funding sources and investment streams; that are not dependent on research and development grants from national or international innovation funds or technology companies; and that essentially could be applied by any city or community.

I summarised these repeatable models recently in the article “4 ways to get on with building Smart Cities. And the societal failure that stops us using them“:

1. Include Smart City criteria in the procurement of services by local authorities to encourage competitive innovation from private sector providers. Whilst local authority budgets are under pressure around the world, and have certainly suffered enormous cuts in the UK, local authorities nevertheless spend up to billions of pounds sterling annually on goods, services and staff time. The majority of procurements that direct that spending still procure traditional goods and services through traditional criteria and contracts. By contrast, Sunderland, a UK city, and Norfolk, a UK county, have shown that by emphasising city and regional aspirations in procurement scoring criteria it is possible to incentivise suppliers to invest in smart solutions that contribute to local objectives.

2. Encourage development opportunities to include “smart” infrastructure. Investors invest in infrastructure and property development because it creates returns for them – to the tune of billions of pounds sterling annually in the UK. Those investments are already made in the context of regulations – planning frameworks, building codes and energy performance criteria, for example. Those regulations can be adapted to demand that investments in property and physical infrastructure include investment in digital infrastructure in a way that contributes to local authority and community objectives. The East Wick and Sweetwater development in London – a multi-£100million development that is part of the 2012 Olympics legacy and that is financed by a pension fund investment – was awarded to it’s developer based in part on their commitments to invest in this way.

3. Commit to entrepreneurial programmes. There are many examples of new urban or public services being delivered by entrepreneurial organisations who develop new business and operating models enabled by technology – I’ve already cited Uber and Airbnb as examples that contribute to traveller convenience; Casserole Club, a service that uses social media to connect people who can’t provide their own food with neighbours who are happy to cook an extra portion of a meal for someone else, is an example that has more obviously social benefits. Many cities have local investment funds and support services for entrepreneurial businesses, and Sunderland’s Software Centre, Birmingham’s iCentrum development, Sheffield’s Smart Lab and London’s Cognicity accelerator are examples where those investments have been linked to local smart city objectives.

4. Enable and support Social Enterprise. The objectives of Smart Cities are analogous to the “triple bottom line” objectives of Social Enterprises – organisations whose finances are sustained by revenues from the products or services that they provide, but that commit themselves to social, environmental or economic outcomes, rather than to maximising their financial returns to shareholders. A vast number of Smart City initiatives are carried out by these organisations when they innovate using technology. Cities that find a way to systematically enable social enterprises to succeed could unlock a reservoir of beneficial innovation, as the Impact Hub network, a global community of collaborative workspaces, has shown.

How to lead a smart city: Commitment, Collaboration, Consistency and Community

Each of the approaches I’ve described is dependent on both political leadership from a local authority and collaboration with regional stakeholders – businesses, developers, Universities, community groups and so on.

So the first task for political leaders who wish to drive an effective Smart City programme is to facilitate the co-creation of regional consensus and an action plan (I’m not going to use the word “roadmap”. My experience of Smart Cities roadmaps is that they are, as the name implies, passive documents that don’t go anywhere).

I can sum up how to do that effectively using “four C’s”: Commitment, Collaboration, Consistency and Community:

Commitment: a successful approach to a Smart City or community needs the commitment, leadership and active engagement of the most senior local government leaders. Of course, elected Mayors, Council Leaders and Chief Executives are busy people with a multitude of responsibilities and they inevitably delegate; but this is a responsibility that cannot be delegated too far. The vast majority of local authorities that I have seen pursue this agenda with tangible results – through whichever approach, even those authorities who have been successful funding their initiatives through research and innovation grants – have appointed a dedicated Executive officer reporting directly to the Chief Executive and with a clear mandate to create, communicate and drive a collaborative smart strategy and programme.

Collaboration: a collaborative, empowered regional stakeholder forum is needed to convene local resources. Whilst a local authority is the only elected body with a mandate to set regional objectives, local authorities directly control only a fraction of regional resources, and do not directly set many local priorities. Most approaches to Smart Cities require coordinated activity by a variety of local organisations. That only comes about if those organisations decide to collaborate at the most senior level, mutually agree their objectives for doing so, and meet regularly to agree actions to achieve them. The local authority’s elected mandate usually makes it the most appropriate organisation to facilitate the formation and chair the proceedings of such fora; but it cannot direct them.

Consistency: in order to collaborate, regional stakeholders need to agree a clear, consistent, specific local vision for their future. Without that, they will lack a context in which to take decisions that reconcile their individual interests with shared regional objectives; and any bids for funding and investments they make, whether individually or jointly, will appear inconsistent and unconvincing.

Community: finally, the only people who really know what a smart city should look like are the citizens, taxpayers, voters, customers, business owners and employees who form its community; who will live and work in it; and who will ultimately pay for it through their taxes. It’s their bottom-up innovation that will give rise to the most meaningful and effective initiatives. Their voice – heard through events, consultation exercises, town hall meetings, social media and so on – should lead to the visions and policies to create an environment in which they can flourish.

(Birmingham's newly opened city centre trams are an example of a reversal of 20th century trends that prioritised car traffic over the public transport systems that we have realised are so important to healthy cities)

(Birmingham’s newly opened city centre trams are an example of a reversal of 20th century trends that prioritised car traffic over the public transport systems that we have re-discovered to be so important to healthy cities)

Beyond “top-down” versus “bottom-up”: Translational Leadership and Smart Digital Urbanism

Having established that there’s a challenge worth facing, argued that we need political leaders to take action to address it, and explored what that action should be, I’d like finally to return to one of the arguments I explored along the way.

Action by political leaders is, almost by definition, “top-down”; and, whilst I stand by my argument that it’s the most important missing element of the majority of smart cities initiatives today, it’s vitally important that those top-down actions are taken in such a way as to encourage, enable and empower “bottom-up” innovation by the people, communities and businesses from which real cities are made.

It’s not only important that our leaders take the actions that I’ve argued for; it’s important that they act in the right way. Smart cities are not “business as usual”; and they are also not “behaviour as usual”.

The smart cities initiatives that I have been part of or had the privilege to observe, and that have delivered meaningful outcomes, have taken me on a personal journey. They have involved meeting with, listening to and working with people, organisations and communities that I would not have previously expected to be part of my working life, and that I was not previously familiar with in my personal life – from social enterprises to community groups to individual people with unusual ideas.

Writing in “Resilience: Why Things Bounce Back”, Andrew Zolli observes that the leaders of initiatives that have created real, lasting and surprising change in communities around the world show a quality that he defines as “Translational Leadership“. Translational leaders have the ability to overcome the institutional and cultural barriers to engagement and collaboration between small-scale, informal innovators in communities and large-scale, formal institutions with resources. This is precisely the ability that any leaders involved in smart cities need in order to properly understand how the powerful “top-down” forces within their influence – policies, procurements and investments – can be adapted to empower and enable real people, real communities and real businesses.

Translational leaders understand that their role is not to direct change, but to create the conditions in which others can be successful.

We can learn how to create those conditions from the decades of experience that town planners and urban designers have acquired in creating “human-scale cities” that don’t repeat the mistakes that were made in constructing vast urban highways, tower blocks and housing projects from unforgiving concrete in the past century.

And there is good precedent to do so. It is not just that the experience of town planners and urban designers leads us unmistakably to design thinking that focusses on the needs of the millions of individual citizens whose daily experiences collectively create the behaviour of cities. That is surely the only approach that will succeed; and the designers of smart city technologies and infrastructures will fail unless they take it. But there is also a long-lasting and profound relationship between the design techniques of town planners and of software engineers. The basic architectures of the internet and mobile applications we use today were designed using those techniques in the last decade of the last millennium and the first decade of this one.

The architect Kelvin Campbell’s concept of “massive/small smart urbanism” can teach us how to join the effects of “top-down” investments and policy with the capacity for “bottom-up” innovation that exists in people, businesses and communities everywhere. In the information age, we create the capacity for “massive amounts of small-scale innovation” if digital infrastructures are accessible and adaptable through the provision of open data interfaces, and accessible from open source software on cloud computing platforms – the digital equivalent of accessible public space and human-scale, mixed-used urban environments.

I call this “Smart Digital Urbanism”, and many of its principles are already apparent because their value has been demonstrated time and again. These principles should be the starting point for adapting planning frameworks, procurement practises and the other policies that influence spending and investment in cities and public services.

Re-stating what Smart Cities are all about

Defining and re-defining the “Smart City” is a hoary old business – as I pointed out at the start of this article, we’ve been at it for 20 years now, and without much success.

But definitions are important: saying what you mean to do is an important first step in acting successfully, particularly in a collaborative, public context.

So I’ll end this article by offering another attempt to sum up a smart city – or community – in a way that emphasises what I know from experience are the important factors that will lead to successful actions and outcomes, rather than the endless rounds of debate that we can’t allow to continue any longer:

A Smart City or community is one which successfully harnesses the most powerful tool of our age – digital technology – to create opportunities for its citizens; to address the most severe acute challenges the human race has ever faced, arising from global urbanisation and population growth and man-made climate change; and to address the persistent challenge of social and economic inequality. The policies and investments needed to do this demand the highest level of political leadership at a local level where regional challenges and resources are best understood, and particularly in cities where they are most concentrated. Those policies and investments will only be successful if they are enabling, not directing; if they result from the actions of leaders who are listening and responding to the people and communities they serve; and if they shape an urban environment and digital economy in which individual citizens, businesses and communities have the skills, opportunities and resources to create their own success on their own terms.

That’s not a snappy definition; but I hope it’s a useful definition that’s inclusive of the major issues and clearly points out the actions that are required by city, political, community and business leaders … and why it’s vitally important that we finally start taking them.

 

4 ways to get on with building Smart Cities. And the societal failure that stops us using them.

(

(William Robinson Leigh’s 1908 painting “Visionary City” envisaged future cities constructed from mile-long buildings of hundreds of storeys connected by gas-lit skyways for trams, pedestrians and horse-drawn carriages. A century later we’re starting to realise not only that developments in transport and power technology have eclipsed Leigh’s vision, but that we don’t want to live in cities constructed from buildings on this scale.)

The Smart City refuses to go away
In 2013 Adam Greenfield wrote “Against the Smart City”  in criticism of the large-scale corporate- and government-led projects in cities such as Masdar, Songdo and Rio that had begun to co-opt the original idea of “Smart Communities” and citizens, given a more powerful voice in their own governance by Internet communication, into what he saw – and what some still see – as a “top-down” approach to infrastructure and services divorced from the interest of ordinary citizens.

But despite regular reprisals of this theme accompanied by assertions that the Smart City is a misguided idea that is doomed to die away, notably last year in the UK’s Guardian newspaper, the Smart City has neither been abandoned as mistaken nor faded from prominence as it would have done by now if it were nothing but a technology buzzword. (Whether they have disappeared entirely or simply become everyday parts of the landscape, ideas that once dominated the technology industry such as “Service Oriented Architecture“, “Web 2.0” and “e-business” have risen to prominence and disappeared again within the lifetime of “Smart Cities”).

Instead, the various industry, community, political, academic and design interests associated with the Smart City idea have gradually learned how to combine the large-scale, intelligent infrastructures needed to support the incredible level and speed of urbanisation around the world with the accessible technologies that allow citizens, communities and businesses to adapt those infrastructures to their own needs and create more successful lives for themselves. As a consequence, new cities and new media organisations are still adding to those already debating the idea – I’ve received invitations to new events in the UK, Ireland, Malaysia, China and the Middle East already this year, and mainstream reputable sources such as the Daily Telegraph, Fortune magazine, the Economist and Forbes have covered the trend.

Yet despite all of this interest from industry and the public sector, the reality is that we still haven’t seen significant investment in those ideas on a sustainable basis.

If you read this blog regularly then you’ll know that I don’t believe that our primary focus for funding Smart City initiatives should be through the innovation funds provided by bodies such as Innovate UK or programmes such as the European Union’s Horizon 2020. Those are both great vehicles for driving innovation out of research organisations into business and public services; but for any city facing an acute challenge the bidding processes take too long and consume too many resources; the high levels of competition mean there can be a relatively low chance of receiving funds; and projects funded in this way often don’t solve the challenge of paying for the resulting solution on an ongoing basis. Most of the sustainable solutions that result from them are new business products and services: once the initial funded pilot with a local authority has finished, where does the money come from to pay for an ongoing commercial solution?

There are, however, a clear set of routes to securing sustainable investment that the most forward-looking cities have demonstrated. They don’t require cities to attract flagship technology industries to invest in them as proving-grounds for new products and services; they don’t require the inward investment that comes from international sporting and cultural events; and they’re not the preserve of rich or fast-growing capital cities on the international stage.

They do require senior city leaders – Mayors, Council Leaders and their Executive officers – to adopt and drive them; and they also require collaboration and partnership with other city institutions and with private sector suppliers.

And they require bravery, integrity and commitment from those private sector suppliers – such as my employer Amey – to offer new partnerships to our customers. Smart Cities won’t come about through us selling our products and services in transactional exchanges; they’ll come about through new partnerships in which we agree to share not just the responsibility to invest in technology and innovation, but also responsibility for the risks involved in achieving the objectives that cities care about.

But while these approaches to delivering Smart Cities will require hard and careful work, and real investment in collaboration, they are all accessible to any city that chooses to use them; and there’s no reason at all why that process can’t begin today.

Getting started: agreeing on aspirations

The starting point to putting a Smart City strategy in place is to create a specific, aspirational vision rooted in the challenges, opportunities and capabilities of a particular place and its communities, and that can win support from local stakeholders. I have seen (broadly) two types of Smart Cities visions of this sort created over the last few years.

1. Local Authority visions for digital services and infrastructure

Many local authorities have developed plans for smart, digital local services, coupled with plans for regional investment in infrastructure (such as 4G and broadband connectivity), digital skills and business-enablement. A good example is Hampshire County Council’s “Digital Hampshire” plan (Hampshire is a relatively large and economically healthy County in the UK with a population of 1.3 million and GDP just over £30billion).

One of the earliest examples was Sunderland’s “Economic Masterplan”, which which has driven around £15m of investment by the City Council so far, with further and potentially more significant initiatives now underway. (Sunderland are a medium-sized city in the UK, with a population of approximately 300,000. The city has been focussed for many years on modernising and diversifying its economy following the decline of the shipbuilding and coalmining industries. They are genuine, if often unacknowledged, thought leaders in Smart Cities).

2. City-wide or region-wide collaborative visions

In some cities and regions a wide variety of stakeholders, usually facilitated by a Local Authority or University leader, have developed collaborative plans including commitments and initiatives from local businesses, Universities, transport organisations and service providers as well as government agencies. These visions tend to contain more ambitious plans, for example the provision of “Smart Home” connectivity in new affordable housing developments, multi-modal transport payment schemes, local renewable energy generation schemes etc. London and Birmingham are good examples of this type of plan; and London in particular have used it to drive significant investments in Smart infrastructure through property development.

In both cities, formal collaborations were established to create these visions and drive the strategies to implement them – Birmingham’s Smart City Commission (which I’ve recently re-joined after having been a member of its first incarnation) and London’s Smart London Board (on which I briefly represented IBM before joining Amey).

Whether the first or the second type of plan is the right approach for any specific city, region or community depends on the level of support and collaboration amongst stakeholders in the local authority and the wider city and region – and of course, many plans in reality are somewhere between those two types. If the enthusiasm and leadership are there, neither type of plan need be a daunting process – Oxford recently built a plan of the second type from scratch between the City Council, local Universities and businesses in around 6 months by working with existing local partnerships and networks.

Moving forward: focussing on delivery and practical funding mechanisms

The degree to which cities and regions have then implemented these strategies is determined by how well they’ve focussed on realistic sources of investment and funding. For example, whilst some cities – notably Sunderland and London – have secured significant investments from sustainable sources rather than from research and innovation funds, many others – so far – have not.

I have probably tested some of my relationships with local authorities and innovation agencies to the limit by arguing repeatedly that many Smart City initiatives and debates focus far too much on applying for central Government funds and grants from Research and Innovation funding agencies; and far too little on sustainable business and investment models for new forms of city infrastructure and services.

I make these arguments because there are at least four approaches that any city can use to exploit existing, ongoing streams of funding and investment to implement a Smart City vision in a sustainable way – if their leaders and stakeholders have the conviction to make them happen; and because I passionately believe that these are the mechanisms that can unlock the opportunity for cities across the country and around the world to realise the huge social, economic and environmental benefits that technology developments can enable if they are harnessed in the right way:

  1. Include Smart City criteria in the procurement of services by local authorities to encourage competitive innovation from private sector providers
  2. Encourage development opportunities to include “smart” infrastructure
  3. Commit to entrepreneurial programmes
  4. Enable and support Social Enterprise

(The Sunderland Software Centre, a multi-£million new technology startup incubation facility in Sunderland’s city centre. The Centre is supported by a unique programme of events and mentoring delivered by IBM’s Academy of Technology as a condition of the award of a contract for provision of IT services to the centre, and arising from Sunderland’s Smart City strategy)

1. Include Smart City criteria in the procurement of services by local authorities to encourage competitive innovation from private sector providers

Sunderland City Council are at the forefront of investing in Smart City technology simply by reflecting their aspirations in their procurement practises for the goods and services they need to operate as a Council. They have included objectives from their Economic Masterplan in four procurements for IT solutions now, totalling around £15m – for example, the transformation of their IT infrastructure from a traditional platform to a Cloud computing platform was awarded to IBM based on IBM’s commitment to help the Council to use the Cloud platform to help local businesses, social enterprises, charities and entrepreneurs to succeed.

Whilst specific procurement choices in any given service are different in every case – whether to procure support for in-house delivery or to outsource to an external provider; or whether to form a PFI, Joint Venture or other such partnership structure for example – the principle of using business-as-usual procurements to invest in the Smart agenda is one that can be applied by any local authority or other organisation responsible for the delivery of public or city services or infrastructure.

This approach is dependent on the procurement of outcomes – for example, the quality of road surfaces, the smoothness of traffic flow, contributions to social mobility and small business growth – rather than of capabilities or resources. Outcomes-based procurements between competing providers create the incentive from the release of the tender through to the completion of the contract for private sector providers to invest in innovation and technology to deliver the most competitive offer to the customer.

Over the last 10 months in Amey, where many of our customer relationships are outcomes-based, whether they are with local governments, other public sector organisations or regulated industries such as utilities, I’ve rapidly put together a portfolio of Smart City initiatives that are supported by very straightforward business cases based on those commitments to outcomes. These initiatives are not just making our own operations more cost effective (and safer) – although they are doing both of those, and that’s what guarantees our ongoing financial commitment to them; they are also delivering new social insights, new forms of citizen engagement and new opportunities for community collaboration for our customers.

The stakeholders whose commitment is needed to implement this approach include Local Authority Chief Executives, Council Leaders, Cabinet members and their Chief Financial Officers or Finance Directors, as well as procuring Executives in services such as highways management, parking services, social care, health and wellbeing and IT. They can also include representatives of local transport organisations for initiatives focussed on transport and mobility.

I won’t pretend that an outcomes-based approach is always easy to adopt, either for local government organisations or their suppliers. In particular, if we want to apply this approach to the highest-level Smart City aspirations for social mobility, economic growth and resilience, then there is a need for dialogue between all parties to establish how to express those outcomes in a way that incentivises the private sector to invest in innovation to deliver them; and to do so in a way that both rewards them appropriately for their achievements whilst giving local government and the citizens and communities they serve good value for money and exemplary service.

In discussions at the last meeting of the UK Government’s Smart Cities Forum, recently re-convened after the general election, there was clearly an appetite for that discussion on both sides: but it needs a neutral, trusted intermediary to facilitate it. That’s not a role that anyone is playing at the moment – neither in government, nor in industry, nor in academia, nor in the conference circuit, nor in the various innovation agencies that are active in Smart Cities. It’s a role that we badly need one – or all of them – to step up to.

(The Urban Sciences Building at Newcastle Science Central, a huge, University-driven regeneration project in central Newcastle that combines facilities for the research and development of new solutions for urban infrastructure with on-site smart infrastructure and services)

2. Encourage development opportunities to include “smart” infrastructure
In 2012 after completing their first Smart City Vision, Birmingham City Council asked what was both an obvious and a fundamentally important question – but one that, to my knowledge, no-one had thought to ask before:

“How should our Planning Framework be updated to reflect our Smart City vision?”

Birmingham’s insight has the potential to unlock an incredible investment stream – the British Property Federation estimates that £14billion is spent each year in the UK on new-build developments alone. Just a tiny fraction of that sum would dwarf the level of direct investment in Smart Cities we’ve seen to date.

Birmingham’s resulting “Digital Blueprint” contains 10 “best practise recommendations” for planning and development drawn in part from a wider set that resulted from a workshop that I facilitated for the Academy of Urbanism, a professional body of town planners, urban designers and architects in the UK. The British Standards Institute has recently taken these ideas forward and published guidance that is starting to be used by other cities.

But progress is slow. To my knowledge the only example of these ideas being put into practise in the UK (though I’d love to be proven wrong) is through the Greater London Authority (GLA) and London Legacy Development Corporation (LLDC) who included criteria from the Smart London Plan in their process last year to award the East Wick and Sweetwater development opportunity to the private sector. This is a multi-£100million investment from a private sector pension fund to build 1,500 new homes on the London Olympics site along with business and retail space.

On behalf of IBM last year I contributed several Smart City elements of the winning proposal; it was astonishing to see how straightforward it was to justify committing multi-£million technology investments from the private sector in the development proposal simply because they would enable the construction and development consortium to win the opportunity to generate long-term profits at a much more significant level. Crucially, the LLDC demanded that the benefits of those investments should be felt not just by residents and businesses in the new development; but by residents and businesses in existing, adjoining neighbourhoods.

There is not much information on this aspect of the development in the public domain, but you can get some idea from this blog by the Master Planner subcontracted to the development. A similar approach is now being taken to an even larger redevelopment in London at Old Oak and Park Royal.

If cities in the UK and beyond are to take advantage of this potentially incredibly powerful mechanism, then we need to win over some crucial stakeholders: Local Authority Directors of Planning, regional development agencies, property developers, financiers and construction companies. Local Universities can be ideal partners for this approach – if they are growing and investing in new property development, there is a clear opportunity for their research departments to collaborate with property and infrastructure developers to create Smart City environments that showcase the capabilities of all parties. Newcastle Science Central is an example of this approach; it’s a real shame that elsewhere in the UK some significant investments are being made to extend University property – often on the basis of increased revenues from student fees – with no incorporation of these possibilities, at the same time that those same Universities’ own research groups are making countless bids into competitive research and innovation funds.

3. Commit to entrepreneurial programmes

[Priya Prakash of the entrepreneurial company Design 4 Social Change describes a project she is leading on behalf of Amey to improve citizen engagement with the services that we deliver for our customers]

Many Smart City initiatives are fundamentally business model innovations – new ways of combining financial success and sustainability with social, economic or environmental improvements in services such as transport, utilities or food. And most business model innovations are created by startup companies, funded by Venture Capital investment. Air B’n’B and Uber are two often-cited examples at the moment of how quickly such businesses, based on new, technology-enabled operating models, can create an enormous impact.

What if you could align that impact with the objectives of a city or region?

The “Cognicity” programme run by the Level 39 technology incubator in London’s Canary Wharf financial district has achieved this alignment by linking Venture Capital- and Angel-backed startup companies to the infrastructure requirements of the next phase of development at Canary Wharf. The West Midlands Public Transport Executive Centro and Innovation Birmingham have agreed a similar initiative to advance transport priorities in Birmingham through externally-funded innovation. Oxford are pursuing the same approach through their “Smart Oxford Challenge” in partnership with Nominet, a trust that supports social innovation. And Amey and our parent company Ferrovial are similarly supporting a “Smart Lab” in collaboration with the University of Sheffield and Sheffield City Council.

A variety of stakeholders are vital to creating entrepreneurial programmes that succeed and that crucially can attract finance to support the ideas that they generate – endless unfunded civic hackathons create ideas but too often fail to have an impact due to a lack of funding and a lack of genuine engagement from local authorities to adopt the solutions they make possible. Innovation funding agencies, especially those with a local or social focus are vital; as are the local Universities, technology incubators and social enterprise support organisations that both attract innovators and have the resources to support them. Finally, where they exist, local Angel Investors or Venture Capital organisations have an obvious role to play.

(Casserole Club, a social enterprise developed by FutureGov uses social media to connect people who have difficulty cooking for themselves with others who are happy to cook an extra portion for a neighbour; a great example of a locally-focused “sharing economy” business model which creates financially sustainable social value.)

4. Enable and support Social Enterprise

The objectives of Smart Cities (which I’d summarise for this purpose as “finding ways to invest in technology to enable social, environmental and economic improvements”) are analogous to the “triple bottom line” objectives of Social Enterprises – organisations whose finances are often sustained by revenues from the products or services that they provide, but that commit themselves to social, environmental or economic outcomes, rather than to maximising their financial returns to shareholders. A vast number of Smart City initiatives are carried out by these organisations when they innovate using technology.

Cities that find a way to systematically enable social enterprises to succeed could unlock a reservoir of beneficial innovation. An international example that began in the UK is the Impact Hub network, a global community of collaborative workspaces. The Impact Hub network has worked with a variety of national and local governments to create support programmes to encourage the formation of socially innovative and responsible organisations.

Social Enterprise UK help and support authorities seeking to work with Social Enterprises in this way through their “Social Enterprise Place” initiative; Oxfordshire was the first County to be awarded “Social Enterprise County” under this initiative in recognition of their engagement programme with Social Enterprise.

Another possibility is for local authorities to work in partnership with crowdfunding organisations. Plymouth City Council, for example, offer to match-fund any money raised from crowdfunding for social innovations. This approach can be tremendously powerful: whilst the availability of match-funding from the local authority attracts crowdfunded donations, often sufficient funds are donated through crowdfunding that ultimately the match funding is not required. Given the sustained pressure we’re seeing on public sector finances, this ability to enable a small amount of local authority investment go a very long way is really powerful.

The stakeholders whose commitment is required to make this approach effective include local authorities – whose financial commitment to support new ideas is vital – as well as representatives of the Charitable and Social Enterprise sectors; businesses with support programmes for Social Enterprise (such as Deloitte Consulting’s Social Innovation Pioneers programme); and local incubators and business support services for Social Enterprise.

Why Smart Cities are a societal failure

Market dynamics guarantee that we’ll see massive investment in smart technology over the next few years – the meteoric rise of Uber and Air B’n’B is just one manifestation of that imperative. Consider also how astonishing your SmartPhone is compared to anything you could have imagined a few years ago – and the phenomenal levels of investment in technology that have driven that development; or how quickly the level of technology available in the average car has increased – let alone what happens when self-driving, connected vehicles become widely available.

But what will be the result of all that investment?

Before the recent UK general election, I admonished a Member of Parliament who closed a Smart Cities discussion with the words “I don’t suppose we’ll be talking about this subject for a couple of months now; we’ve got an election to consider” with the response: “Apple have just posted the largest quarterly profit in Corporate history by selling mobile supercomputers to the ordinary people who vote for you. Why on earth isn’t the topic of “who benefits from this incredibly powerful technology that is reshaping our society” absolutely central to the election debate?” (Apple’s results had just been announced earlier that day).

That exchange (and the fact that these issues indeed barely surfaced at all throughout the election period) marks the core of the Smart Cities debate, and highlights our societal failure to address it.

Most politicians appreciate that technology is changing rapidly and that these changes merit attention; but they do not appreciate quite how fundamentally important and far-reaching those changes are. My sense is that they think they can deal with technology-related issues such as “Smart Cities” as self-contained subjects of secondary importance to the more pressing concerns of educational attainment, economic productivity and international competitiveness.

That is a fundamentally mistaken view. Over the next decade, developments in technology, and the way that we adapt to them, will be one of the most important factors influencing education, the economy and the character of our society.

Let me justify that assertion by considering the skills that any one of us will need in order to have a successful life as our society and economy develop.

It is obvious that we will need the right technical skills in order to use the technologies of the day effectively. But of course we will also need interpersonal skills to interact with colleagues and customers; economic skills to help focus our efforts on creating value for others; and organisational skills to enable us to do so in the context of the public and private institutions from which our society is constructed.

One single force is changing all of those skills more rapidly than we have ever known before: technology. When the Millennium began we would not have dreamed of speaking to our families wherever and whenever we liked using free video-calling, and we could not have started a business using the huge variety of online tools available to us today. From startups to multinational corporations, we are all comfortable building and operating companies that use continually evolving technology to coordinate the activities of people living in different countries on different continents; and to create innovative new ways of doing so.

Whatever you think are the most important issues in the world today, if you are not at least considering the role of technology within them, then you will misunderstand how they will develop over time. And the process of envisioning and creating that future is another way to define what we mean by Smart Cities and smart communities: the challenges and opportunities we face, and the changes that technology will create, come together in the places where we live, work, travel and play; and their outcomes will be determined both by the economics of those places, and by how how they are governed.

Unfortunately, most of us are not even engaged with these ideas. A recent poll conducted by Arqiva on behalf of YouGov found that 96% of respondents were unaware of any Smart City initiatives in the cities they lived in. If ordinary people don’t understand and believe in the value of Smart Cities, they are unlikely to vote for politicians who attempt to build them or enact policies that support them. That lack of appreciation represents a failure on the part of those of us – like me – who do appreciate the significance of the changes we’re living through to communicate them, and to make an effective case to take decisive action.

As an example of that failure, consider again Birmingham’s thought-leading “Digital Blueprint” and it’s ten design principles. To repeat, they are “best practise recommendations”: they are not policies. They are not mandatory or binding. And as a consequence, I am sorry to say that in practise they have not been applied to the literally £billions of investment in development and regeneration taking place in the city that I live in and love.

That’s a lost opportunity that greatly saddens me.

[Drones co-operate to build a rope bridge. As such machines become more capable and able to carry out more cheaply and safely tasks previously performed by people, and that are central to the construction and operation of city infrastructure and services, how do we ensure that society at large benefits from such technology?]

As a society we cannot afford to keep losing such opportunities (and Birmingham is not alone: taking those opportunities is by far the exception, and not the rule). If we do, our aspirations will be simply be overtaken by events, and the consequences could be profound.

Writing in “The 2nd Machine Age”, MIT Professors of Economics Andy McAfee and Erik Brynjolfsson argue that the “platform business models” of Air B’n’B and Uber are becoming a dominant force in the economy – they cite the enormous market valuations of corporations such as Nike, Google, Facebook and Amazon that use such models, in addition to the rapid growth of new businesses. Their analysis further demonstrates that, if left unchecked, the business models and market dynamics of the digital economy will concentrate the value created by those businesses into the hands of a small number of platform creators and shareholders to a far greater extent than traditional business models have done so throughout history to date. I had the opportunity to meet Andy and Erik earlier this year, and they were deeply concerned that we should act to prevent the stark increase in inequality that their findings predict.

These are innovative businesses using Smart technology, but those social and economic outcomes won’t make a smart world, a smart society or Smart Cities. The widespread controversy created by Uber’s business model is just the tip of the iceberg of the consequences that we could see.

As I’ve quoted many, many times on this blog, Jane Jacobs got this right in 1961 when she wrote in “The Death and Life of Great American Cities” that:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machine is adapted to turn out that image.”

We have expressed over and over again the “image of what we want” in countless aspirational visions and documents. But we have not adapted the machine to turn out that image.

Our politicians – locally and nationally – have not understood that the idea of a “Smart City” is really a combination of technology, social, environmental and economic forces that will fundamentally transform the way our society works in a way that will change the life of everyone on this planet; that the outcomes of those changes are in no way understood, and in no way guaranteed to be beneficial; and that enacting the policies, practises and – yes – laws, to adapt those changes to the benefit of everyone is a defining political challenge for our age.

I am not a politician, but this is also a challenge for which I accept responsibility.

As a representative of business – in particular a business that delivers a vast number of services to the public sector – I recognise the enormous responsibility I accept by working in a leadership role for an example of what has become one of the most powerful forces in our economy: the private corporation. It is my responsibility – and that of my peers, colleagues and competitors – to drive our business forward in a way that is responsible to the interests of the society of which we are part, and that is not driven only by the narrow financial concerns of our shareholders.

There should be absolutely no conflict between a responsible, financially successful company and one that operates in the long term interest of the society which ultimately supports it.

But that long-term synergy is only made real by a constant focus on taking the right decisions every day. From the LIBOR scandal to cheating diesel emissions tests it’s all too obvious that there are many occasions when we get those decisions wrong. Businesses are run by people; people are part of society; and we need to treat those simple facts far more seriously as an imperative in everyday decision-making than we currently do.

It is inevitable that our world, our cities and our communities will be dramatically reshaped by the technologies that are developing today, and that will be developed in the near future. They will change – very quickly – out of all recognition from what we know today.

But whether we will honestly benefit from those technologies is a different and uncertain question. Answering that question with a “yes” is a personal, political, business and organisational challenge that all of us need to face up to much more seriously and urgently than we are have done so far.

Reclaiming the “Smart” agenda for fair human outcomes enabled by technology

(Lucie & Simon’s “Silent World“, a series of photographs of cities from which almost all trace of people has been removed.)

Over the last 5 years, I’ve often used this blog to explore definitions of what a “Smart City” is. The theme that’s dominated my thinking is the need to synthesise human, urban and technology perspectives on cities and our experience of them.

The challenge with attempting such a broad synthesis within a succinct definition is that you end up with a very high-level, conceptual definition – one that might be intellectually true, but that does a very poor job of explaining to the wider world what a Smart City is, and why it’s important.

We need a simple, concise definition of Smart Cities that ordinary people can identify with. To create it, we need to reclaim the “Smart” concept from technologies such as analytics, the Internet of Things and Big Data, and return to it’s original meaning – using the increasingly ubiquitous and accessible communications technology enabled by the internet to give people more control over their own lives, businesses and communities.

I’ve written many articles on this blog about the futile and unsophisticated argument that rages on about whether Smart Cities should be created by “top-down” or “bottom-up” approaches: clearly, anything “Smart” is a subtle harmonisation of both.

In this article, I’d like to tackle an equally unconstructive argument that dominates Smart Cities debates: are Smart Cities defined by the role of technology, or by the desire to create a better future?

It’s clear to me that anything that’s really “Smart” must combine both of those ideas.

In isolation, technology is amoral, inevitable and often banal; but on the other hand a “better future” without a means to achieve it is merely an aspiration, not a practical concept. Why is it “Smart” to want a better future and better cities today in a way that wanting them 10, 20, 50 or 100 years ago wasn’t?

Surely we can agree that focussing our use of a powerful and potentially ubiquitously accessible new technology – one that’s already transforming our world – on making the world a better place, rather than just on making money, is an idea worthy of the “Smart” label?

In making this suggestion, I’m doing nothing more than returning to the origin of the term “Smart” in debates in social science about the “smart communities” that would emerge from our new ability to communicate freely and widely with each other following the emergence of the Internet.

Smart communities are enabled by ubiquitous access to empowering technology

In his 2011 book “Civilization“, Niall Fergusson comments that news of the Indian Mutiny in 1857 took 46 days to reach London, travelling in effect at 3.8 miles an hour – the speed of a brisk walk. By contrast, in January 2009 when US Airways flight 1549 crash landed in the Hudson river, Jim Hanrahan’s message on Twitter communicated the news to the entire world four minutes later; it reached Perth, Australia at more than 170,000 miles an hour.

(In the 1960s, the mobile phone-like “communicators” used in Star Trek were beyond our capability to manufacture; but they were used purely for talking. Similarly, while William Gibson’s 1980s vision of “cyberspace” was predictive and ambitious in its descriptions of virtual environments and data visualisations, the people who inhabited it interacted with each other almost as if normal space has simply been replaced by virtual space: there was no sense of the immense power of social media to enable new connections.)

Social media is the tool that around a quarter of the world’s population now simply uses to stay in touch with friends and family at this incredible speed. Along with mobile devicese-commerce technology and analytics, social media has made it dramatically easier for individuals, communities and small businesses anywhere around the world with the potential to transact with each other to make contact and interact without needing the enormous supply chains and sales and marketing channels that previously made such activity the prerogative of large, multi-national corporations.

It was in a workshop with social scientists at the University of Durham that I first became aware that “Smart” concepts originated in social science in the 1990s and pre-date the famous early large-scale technology infrastructure projects in cities like Masdar and Songdo. The term was coined to describe the potential for new forms of governance, citizen engagement, collective intelligence and stakeholder collaboration enabled by Internet communication technologies. The hope was that new forms of exchange and contract between people and organisations would create a better chance of realising the underlying outcomes we really want – health, happiness and fulfilment:

“The notion of smart community refers to the locus in which such networked intelligence is embedded. A smart community is defined as a geographical area ranging in size from a neighbourhood to a multi-county region within which citizens, organizations and governing institutions deploy and embrace NICT [“New Information and Communication Technologies”] to transform their region in significant and fundamental ways (Eger 1997). In an information age, smart communities are intended to promote job growth, economic development and improve quality of life within the community.”

(Amanda Coe, Gilles Paquet and Jeffrey Roy, “E-Governance and Smart Communities: A Social Learning Challenge“,  Social Science Computer Review, Spring 2001)

But technology’s not Smart unless it’s used to create human value

It’s no surprise that technology companies such as Cisco, Siemens and my former employer IBM came to similar realisations about the transformative potential of digital technology in addressing societal as well as business challenges as technology spread from the back office into the everyday world, leading, for example, to the launch of IBM’s “Smarter Planet” initiative in 2008, a pre-cursor to their “Smarter Cities” programme.

Let’s pause at this point to say: that’s a tremendously exciting idea. A technology company – Apple – recently recorded the largest corporate profit in the history of business. Microsoft’s founder Bill Gates was just recognised as the richest person on the planet. Technology companies make enormous profits, and they feed significant portions of those profits back into research and development. Shouldn’t it be wonderful that some of those resources are invested into exploring how to make cities, communities and people more successful?

(The Dubuque water and energy portal, showing an individual household insight into it's conservation performance; but also a ranking comparing their performance to their near neighbours)

(The Dubuque water and energy portal, showing an individual household insight into it’s conservation performance; but also a ranking comparing their performance to their near neighbours)

IBM, for example, has invested millions of dollars of effort in implementing Smarter Cities projects in cities such as Dubuque through the IBM Research “First of a Kind” programme; and has helped over a hundred cities worldwide develop new initiatives and strategies through the charitable “Smarter Cities Challenge” – advising Kyoto on how to become a more “walkable” city, for instance.

So what’s the problem?

Large technology corporations are often criticised in debates on this topic for their size, profitability and “top-down” approaches – and the local authorities who work with them are often criticised too. In my experience, that criticism is based on an incomplete understanding of the people involved, and how the projects are carried out; and I think it misses the point.

The real question we should be asking is more subtle and important: what happens to the social elements of an idea once it becomes apparent to businesses both large and small that they can make money by selling the technologies that enable it?

I know very well the scientists, engineers and creatives at many of the companies, social enterprises and government bodies – of any size – who are engaged in Smart Cities initiatives. They are almost universally extremely bright, well intentioned and humane, and fully capable of talking with passion about the social and environmental value of their work. “Top-down” is at best a gross simplification of the projects that they carry out, and at worst a gross misrepresentation. Their views dominated the early years of the Smart Cities market as it developed.

But as the market has matured and grown, the focus has switched from research, exploration and development to the marketing and selling of well-defined product and service offerings. Amidst the need to promote those offerings to potential customers, and to differentiate them against competitors, it’s easy for the subtle intertwining of social, economic, environmental and technology ideas to be drowned out.

That’s what led to the unfortunate statement that armed Professor Adam Greenfield with the ammunition he needed to criticise the Smart Cities movement. A technology company that I won’t name made an over-reaching and mis-guided assertion that Smart Cities would create “autonomous, intelligently functioning IT systems that will have perfect knowledge of users’ habits” – blissfully ignoring the fact that such perfection is scientifically and philosophically impossible, not to mention inhuman and undesirable.

As a scientist-turned-technologist-turned-wannabe-urbanist working in this field, and as someone who’s been repeatedly inspired by the people, communities, social scientists, social innovators, urban designers and economists I’ve met over the past 5 years, I started writing this blog to explore and present a more balanced, humane vision of a Smart City.

Zen and the art of Smart Cities: opposites should create beautiful fusions, not arguments

Great books change our lives, and one of many that has changed mine is “Zen and the Art of Motorcycle Maintenance” by Robert M. Pirsig. Pirsig explores the relationship between what he called “romantic” perspectives of life, which focus on emotional meaning and value “quality”, and “rational” perspectives, which focus on the reasons our world behaves in the way that it does and value “truth”. He argues that early Greek philosophers didn’t distinguish between “quality” and “truth”, and that by considering them together we can learn to value things that are simultaneously well-intentioned and well-formed.

This thinking is echoed in Alan Watts’ “The Way of Zen“, in which he comments on the purpose of the relentless practise of technique that is part of the Zen approach to art that:

“The very technique involves the art of artlessness, or what Sabro Hasegawa has called the ‘controlled accident’, so that paintings are formed as naturally as the rocks and grasses which they depict”

(Alan Watts, “The Way of Zen“)

In other words, by working tirelessly to perfect their technique – i.e. their use of tools – artists enable themselves to have “beautiful accidents” when inspiration strikes.

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

Modern technologies from social media to Smartphones to Cloud computing and Open Source software are both incredibly powerful and, compared to any previous generation of technology, incredibly cheap.

If we work hard to ensure that they can be used to access and manipulate the technologies that will inevitably be used to make the operations of city infrastructures and public services more efficient, then they have incredible potential to be a tool for people everywhere to shape the world around them to their own advantage; and for us to collectively create a world that is fairer, healthier and more resilient.

But unless we re-claim the word “Smart” to describe those outcomes, the market will drive our energy and resources in the direction of narrower financial interests.

The financial case for investment in Smart technologies is straightforward: as the costs of smartphones, sensors, analytics, and cloud computing infrastructure reduce rapidly, market dynamics will drive their aggressive adoption to make construction, infrastructure and city services more efficient, and hence make their providers more competitive.

But those market dynamics do not guarantee that we will get everything we want for the future of our cities: efficiency and resilience are not the same as health, happiness and opportunity for every citizen.

So how can we adapt that investment drive to create the outcomes that we want?

Can responsible business create a better world?

Some corporate behaviours promote these outcomes, driven by the voting and buying powers of citizens and consumers. Working for Amey, for example, my customers are usually government organisations who serve an electorate; or private sector companies who are regulated by government bodies. In both cases, there is a direct chain of influence leading from individual citizen needs and perceptions through to the way we operate and deliver our services. If we don’t engage with, respect and meet those needs and expectations, we will not be successful. I can observe that influence at work driving an ethic of service, care and responsibility throughout our business at Amey, and it’s been an inspiration to me since joining the company.

UniLever have taken a similar approach, using consumer desires for sustainable products to link corporate performance to sustainable business practices; and Jared Diamond wrote extensively about successful examples of socially and environmentally sustainable resource extraction businesses, such as Chevron’s sustainable operations in the Kutubu oilfield in Papua New Guinea, in his book “Collapse“. Business models such as social enterprise and the sharing economy also offer great potential to link business success to positive social and environmental outcomes.

But ultimately our investment markets are still strongly focused on financial performance, and reward the businesses that make the most money with the investment that enables them to grow. This is why many social enterprises do not scale-up; and why many of the rapidly growing “sharing economy” businesses currently making the headlines have nothing at all to do with sharing value and resources, but are better understood as a new type of profit-seeking transaction broker.

Responsible business models are a choice made by individual business leaders, and they depend for their successful operation on the daily choices and actions of their employees. They are not a market imperative. For as long as that is the case, we cannot rely on them to improve our world.

Policy, legislation and regulation

I’ve quoted from Jane Jacobs on many occasions on this blog that “private investment shapes cities, but social ideas (and laws) shape private investment”.

It’s a source of huge frustration to me that so much of the activity in the Smart Cities community ignores that so obviously fundamental principle, and focuses instead on the capabilities of technology or on projects funded by research grants.

The recent article reporting a TechUK Smart Cities conference titled “Milton Keynes touted as model city for public sector IoT use” is a good example. Milton Keynes have many Smart City projects underway that are technologically very interesting, but every one of them is funded by a significant grant of funds from a central government department, a research or innovation funding body, or a technology company. Not a single project has been paid for by a sustainable, re-usable business case. Other cities can aspire to emulate Milton Keynes all they want, but they won’t win research and innovation funding to re-deploy solutions that have already been proven.

Research and innovation grants provide the funding that proves for the first time that a new idea is viable. They do not pay for that idea to be enacted across the world.

(Shaleen Meelu and Robert Smith with Hugh Fearnley-Whittingstall at the opening of the Harborne Food School. The School is a Community Interest Company that promotes healthy, sustainable approaches to food through courses offered to local people and organisations)

(Shaleen Meelu and Robert Smith with Hugh Fearnley-Whittingstall at the opening of the Harborne Food School. The School is a Community Interest Company that promotes healthy, sustainable approaches to food through courses offered to local people and organisations)

Policy, legislation and regulation are far more effective tools for enabling widespread change, and are what we should be focussing our energy and attention on.

The Social Value Act requires that public authorities, who spend nearly £200 billion every year on private sector goods and services, procure those services in a way that creates social value – for example, by requiring that national or international service providers engage local small businesses in their supply chains.

In an age in which private companies are investing heavily in the use of digital technology because it provides them with by far the most powerful tool to increase their success, surely local authorities should fulfil their Social Value Act obligations by using procurement criteria to ensure that those companies employ that same tool to create social and environmental improvements in the places and communities in which they operate?

Similary, the British Property Federation estimates that £14 billion is invested in the development of new property in the UK each year. If planning and development frameworks oblige that property developers describe and quantify the social value that will be created by their developments, and how they will use technology do so – as I’ve promoted on this blog for some time now, and as the British Standards Institute have recently recommended – then this enormous level of private sector investment can contribute to investing in technology for public benefit; just as those same frameworks already require investment in public space around commercial buildings.

The London Olympic Legacy Development Corporation have been following this strategy in support of the Greater London Authority’s Smart London Plan. As a result, they are securing private sector investment in deploying technology not only to redevelop the Olympic park using smart infrastructure; but also to ensure that that investment benefits the existing communities and business economies in neighbouring areas.

A Smart manifesto for human outcomes enabled by technology

These business models, policy measures and procurement approaches are bold, difficult measures to enact. They are not as sexy as Smartphones, analytics and self-driving cars. But they are much more important if what we want to achieve are positive human outcomes, not just financially successful technology companies and a continuous stream of research projects.

What will make it more likely that businesses, local governments and national governments adopt them?

Citizen understanding. Consumer understanding. A definition of smart people, places, communities, businesses and governments that makes sense to everyone who votes, works, stands for election, runs a business, or buys things. In other words, everyone.

If that definition doesn’t include the objective of making the world a healthier, happier, fairer, more sustainable place for everyone, then it’s not worth the effort. If it doesn’t include harnessing modern technology, then it misses the point that human ingenuity has recently given us a phenomenal new toolkit that make possible things that we’d never previously dreamt of.

I think it should go something like this:

“Smart people, places, communities, businesses and governments work together to use the modern technologies that are changing our world to make it fairer and more sustainable in the process, giving everyone a better chance of a longer, healthier, happier and more fulfilling life.”

I’m not sure that’s a perfect definition; but I think it’s a good start, and I hope that it combines the right realisation that we do have unprecedented tools at our disposal with the right sentiment that what really matters is how we use them.

(I’d like to thank John Murray of Scottish Enterprise for a useful discussion that inspired me to write this article)

Smart Digital Urbanism: creating the conditions for equitably distributed opportunity in the digital age

(The sound artists FA-TECH [http://fa-tech.tumblr.com/] improvising in Shoreditch, London. Shoreditch's combination of urban character, cheap rents and proximity to London's business, financial centres and culture led to the emergence of a thriving technology startup community - although that community's success is now driving rents up, challenging some of the characteristics that enabled it.)

(The sound artists FA-TECH improvising in Shoreditch, London. Shoreditch’s combination of urban character, cheap rents and proximity to London’s business, financial centres and culture led to the emergence of a thriving technology startup community – although that community’s success is now driving rents up, challenging some of the characteristics that enabled it.)

(I first learned of the architect Kelvin Campbell‘s concept of “massive/small” just over two years ago – the idea that certain characteristics of policy and the physical environment in cities could encourage “massive amounts of small-scale innovation” to occur. Kelvin recently launched a collaborative campaign to capture ideas, tools and tactics for massive/small “Smart Urbanism“. This is my first contribution to that campaign.)

Over the past 5 years, enormous interest has developed in the potential for digital technologies to contribute to the construction and development of cities, and to the operation of the services and infrastructures that support them. These ideas are often referred to as “Smart Cities” or “Future Cities”.

Indeed, as the price of digital technologies such as smartphones, sensors, analytics, open source software and cloud platforms reduces rapidly, market dynamics will drive their aggressive adoption to make construction, infrastructure and city services more efficient, and hence make their providers more competitive.

But those market dynamics do not guarantee that we will get everything we want for the future of our cities: efficiency and resilience are not the same as health, happiness and opportunity for every citizen.

Is it realistic to ask ourselves whether we can achieve those objectives? Yes, it has to be.

Many of us believe in that possibility, and spend a lot of our efforts finding ways to achieve it. And over the same timeframe that interest in “smart” and “future” cities has emerged, a belief has developed around the world that the governance institutions of cities – local authorities and elected mayors, rather than the governments of nations – are the most likely political entities to implement the policies that lead to a sustainable, resilient future with more equitably distributed economic growth.

Consequently many Mayors and City Councils are considering or implementing legislation and policy frameworks that change the economic and financial context in which construction, infrastructure and city services are deployed and operated. The British Standards Institute recently published guidance on this topic as part of its overall Smart Cities Standards programme.

But whilst in principle these trends and ideas are incredibly exciting in their potential to create better cities, communities, places and lives in the future, in practise many debates about applying them falter on a destructive and misleading argument between “top-down” and “bottom-up” approaches – the same chasm that Smart Urbanism seeks to bridge in the physical world.

Policies and programmes driven by central government organisations or implemented by technology and infrastructure corporations that drive digital technology into large-scale infrastructures and public services are often criticised as crude, “top-down” initiatives that prioritise resilience and efficiency at the expense of the concerns and values of ordinary people, businesses and communities. However, the organic, “bottom-up” innovation that critics of these initatives champion as the better, alternative approach is ineffective at creating equality.

("Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(“Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

“Bottom-up innovation” is what every person, community and business does every day: using our innate creativity to find ways to use the resources and opportunities available to us to make a better life.

But the degree to which we fail to distribute those resources and opportunities equally is illustrated by the stark variation in life expectancy between the richest and poorest areas of cities in the UK: often this variation is as much as 20 years within a single city.

Just as the “design pattern”, a tool invented by a town planner in the 1970s, Christopher Alexander, is probably the single most influential concept that drove the development of the digital technology we all use today, two recent movements in town planning and urban design – “human scale cities” and “smart urbanism” – offer the analogies that can connect “top-down” technology policies and infrastructure with the factors that affect the success of “bottom-up” creativity to create “massive / small” success: future, digital cities that create “massive amounts of small-scale innovation“.

The tools to achieve this are relatively cheap, and the right policy environment could make it fairly straightforward to augment the business case for efficient, resilient “smart city” infrastructures to ensure that they are deployed. They are the digital equivalents of the physical concepts of Smart Urbanism – the use of open grid structures for spatial layouts, and the provision of basic infrastructure components such as street layouts and party walls in areas expected to attract high growth in informal housing. Some will be delivered as a natural consequence of market forces driving technology adoption; but others will only become economically viable when local or national government policies shape the market by requiring them:

  • Broadband, wi-if and 3G / 4G connectivity should be broadly available so that everyone can participate in the digital economy.
  • The data from city services should be made available as Open Data and published through “Application Programming Interfaces” (APIs) so that everybody knows how they work; and can adapt them to their own individual needs.
  • The data and APIs should be made available in the form of Open Standards so that everybody can understand them; and so that the systems that we rely on can work together.
  • The data and APIs should be available to developers working on Cloud Computing platforms with Open Source software so that anyone with a great idea for a new service to offer to people or businesses can get started for free.
  • The technology systems that support the services and infrastructures we rely on should be based on Open Architectures, so that we have freedom to chose which technologies we use, and to change our minds.
  • Governments, institutions, businesses and communities should participate in an open dialogue about the places we live and work in, informed by open data, enabled by social media and smartphones, and enlightened by empathy.

(Casserole Club, a social enterprise developed by FutureGov uses social media to connect people who have difficulty cooking for themselves with others who are happy to cook an extra portion for a neighbour; a great example of a locally-focused “sharing economy” business model which creates financially sustainable social value.)

These principles would encourage good “digital placemaking“: they would help to align the investments that will be made in improving cities using technology with the needs and motivations of the public sector, the private sector, communities and businesses. They would create “Smart Digital Urbanism”: the conditions and environment in which vibrant, fair digital cities grow from the successful innovations of their citizens, communities and businesses in the information economy.

In my new role at Amey, a vast organisation in the UK that delivers public services and operates and supports public infrastructure, I’m leading a set of innovative projects with our customers and technology partners to explore these ideas and to understand how we can collaboratively create economic, social and environmental value for ourselves; for our customers; and for the people, communities and businesses who live in the areas our services support.

It’s a terrifically exciting role; and I’ll soon be hiring a small team of passionate, creative people to help me identify, shape and deliver those projects. I’ll post an update here with details of the skills, experience and characteristics I’m looking for. I hope some of you will find them attractive and get in touch.

From concrete to telepathy: how to build future cities as if people mattered

(An infographic depicting realtime data describing Dublin - the waiting time at road junctions; the location of buses; the number of free parking spaces and bicycles available to hire; and sentiments expressed about the city through social meida)

(An infographic depicting realtime data describing Dublin – the waiting time at road junctions; the location of buses; the number of free parking spaces and bicycles available to hire; and sentiments expressed about the city through social media)

(I was honoured to be asked to speak at TEDxBrum in my home city of Birmingham this weekend. The theme of the event was “DIY” – “the method of building, modifying or repairing something without the aid of experts or professionals”. In other words, how Birmingham’s people, communities and businesses can make their home a better place. This is a rough transcript of my talk).

What might I, a middle-aged, white man paid by a multi-national corporation to be an expert in cities and technology, have to say to Europe’s youngest city, and one of its most ethnically and nationally diverse, about how it should re-create itself “without the aid of experts or professionals”?

Perhaps I could try to claim that I can offer the perspective of one of the world’s earliest “digital natives”. In 1980, at the age of ten, my father bought me one of the world’s first personal computers, a Tandy TRS 80, and taught me how to programme it using “machine code“.

But about two years ago, whilst walking through London to give a talk at a networking event, I was reminded of just how much the world has changed since my childhood.

I found myself walking along Wardour St. in Soho, just off Oxford St., and past a small alley called St. Anne’s Court which brought back tremendous memories for me. In the 1980s I spent all of the money I earned washing pots in a local restaurant in Winchester to travel by train to London every weekend and visit a small shop in a basement in St. Anne’s Court.

I’ve told this story in conference speeches a few times now, perhaps to a total audience of a couple of thousand people. Only once has someone been able to answer the question:

“What was the significance of St. Anne’s Court to the music scene in the UK in the 1980s?”

Here’s the answer:

Shades Records, the shop in the basement, was the only place in the UK that sold the most extreme (and inventive) forms of “thrash metal” and “death metal“, which at the time were emerging from the ashes of punk and the “New Wave of British Heavy Metal” in the late 1970s.

G157 Richard with his Tandy

(Programming my Tandy TRS 80 in Z80 machine code nearly 35 years ago)

The process by which bands like VOIVOD, Coroner and Celtic Frost – who at the time were three 17-year-olds who practised in an old military bunker outside Zurich – managed to connect – without the internet – to the very few people around the world like me who were willing to pay money for their music feels like ancient history now. It was a world of hand-printed “fanzines”, and demo tapes painstakingly copied one at a time, ordered by mail from classified adverts in magazines like Kerrang!

Our world has been utterly transformed in the relatively short time between then and now by the phenomenal ease with which we can exchange information through the internet and social media.

The real digital natives, though, are not even those people who grew up with the internet and social media as part of their everyday world (though those people are surely about to change the world as they enter employment).

They are the very young children like my 6-year-old son, who taught himself at the age of two to use an iPad to access the information that interested him (admittedly, in the form of Thomas the Tank Engine stories on YouTube) before anyone else taught him to read or write, and who can now use programming tools like MIT’s Scratch to control computers vastly more powerful than the one I used as a child.

Their expectations of the world, and of cities like Birmingham, will be like no-one who has ever lived before.

And their ability to use technology will be matched by the phenomenal variety of data available to them to manipulate. As everything from our cars to our boilers to our fridges to our clothing is integrated with connected, digital technology, the “Internet of Things“, in which everything is connected to the internet, is emerging. As a consequence our world, and our cities, are full of data.

(The programme I helped my 6-year old son write using MIT's "Scratch" language to draw a picture of a house)

(The programme I helped my 6-year old son write using MIT’s “Scratch” language to cause a cartoon cat to draw a picture of a house)

My friend the architect Tim Stonor calls the images that we are now able to create, such as the one at the start of this article, “data porn”. The image shows data about Dublin from the Dublinked information sharing partnership: the waiting time at road junctions; the location of buses; the number of free parking spaces and bicycles available to hire; and sentiments expressed about the city through social media.

Tim’s point is that we should concentrate not on creating pretty visualisations; but on the difference we can make to cities by using this data. Through Open Data portals, social media applications, and in many other ways, it unlocks secrets about cities and communities:

  • Who are the 17 year-olds creating today’s most weird and experimental music? (Probably by collaborating digitally from three different bedroom studios on three different continents)
  • Where is the healthiest walking route to school?
  • Is there a local company nearby selling wonderful, oven-ready curries made from local recipes and fresh ingredients?
  • If I set off for work now, will a traffic jam develop to block my way before I get there?

From Dublin to Montpellier to Madrid and around the world my colleagues are helping cities to build 21st-Century infrastructures that harness this data. As technology advances, every road, electricity substation, University building, and supermarket supply chain will exploit it. The business case is easy: we can use data to find ways to operate city services, supply chains and infrastructure more efficiently, and in a way that’s less wasteful of resources and more resilient in the face of a changing climate.

Top-down thinking is not enough

But to what extent will this enormous investment in technology help the people who live and work in cities, and those who visit them, to benefit from the Information Economy that digital technology  and data is creating?

This is a vital question. The ability of digital technology to optimise and automate tasks that were once carried out by people is removing jobs that we have relied on for decades. In order for our society to be based upon a fair and productive economy, we all need to be able to benefit from the new opportunities to work and be successful that are being created by digital technology.

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the city centre before its redevelopment in 2003, by Birmingham City Council)

Too often in the last century, we got this wrong. We used the technologies of the age – concrete, lifts, industrial machinery and cars – to build infrastructures and industries that supported our mass needs for housing, transport, employment and goods; but that literally cut through and isolated the communities that create urban life.

If we make the same mistake by thinking only about digital technology in terms of its ability to create efficiencies, then as citizens, as communities, as small businesses we won’t fully benefit from it.

In contrast, one of the authors of Birmingham’s Big City Plan, the architect Kelvin Campbell, created the concept of “massive / small“. He asked: what are the characteristics of public policy and city infrastructure that create open, adaptable cities for everyone and that thereby give rise to “massive” amounts of “small-scale” innovation?

In order to build 21st Century cities that provide the benefits of digital technology to everyone we need to find the design principles that enable the same “massive / small” innovation to emerge in the Information Economy, in order that we can all use the simple, often free, tools available to us to create our own opportunities.

There are examples we can learn from. Almere in Holland use analytics technology to plan and predict the future development of the city; but they also engage in dialogue with their citizens about the future the city wants. Montpellier in France use digital data to measure the performance of public services; but they also engage online with their citizens in a dialogue about those services and the outcomes they are trying to achieve. The Dutch Water Authority are implementing technology to monitor, automate and optimise an infrastructure on which many cities depend; but making much of the data openly available to communities, businesses, researchers and innovators to explore.

There are many issues of policy, culture, design and technology that we need to get right for this to happen, but the main objectives are clear:

  • The data from city services should be made available as Open Data and through published “Application Programming Interfaces” (APIs) so that everybody knows how they work; and can adapt them to their own individual needs.
  • The data and APIs should be made available in the form of Open Standards so that everybody can understand it; and so that the systems that we rely on can work together.
  • The data and APIs should be available to developers working on Cloud Computing platforms with Open Source software so that anyone with a great idea for a new service to offer to people or businesses can get started for free.
  • The technology systems that support the services and infrastructures we rely on should be based on Open Architectures, so that we have freedom to chose which technologies we use, and to change our minds.
  • Governments, institutions, businesses and communities should participate in an open dialogue, informed by data and enlightened by empathy, about the places we live and work in.

If local authorities and national government create planning policies, procurement practises and legislation that require that public infrastructure, property development and city services provide this openness and accessibility, then the money spent on city infrastructure and services will create cities that are open and adaptable to everyone in a digital age.

Bottom-up innovation is not enough, either

(Coders at work at the Birmingham “Smart Hack”, photographed by Sebastian Lenton)

Not everyone has access to the technology and skills to use this data, of course. But some of the people who do will create the services that others need.

I took part in my first “hackathon” in Birmingham two years ago. A group of people spent a weekend together in 2012 asking themselves: in what way should Birmingham be better? And what can we do about it? Over two days, they wrote an app, “Second Helping”, that connected information about leftover food in the professional kitchens of restaurants and catering services, to soup kitchens that give food to people who don’t have enough.

Second Helping was a great idea; but how do you turn a great idea and an app into a change in the way that food is used in a city?

Hackathons and “civic apps” are great examples of the “bottom-up” creativity that all of us use to create value – innovating with the resources around us to make a better life, run a better business, or live in a stronger community. But “bottom-up” on it’s own isn’t enough.

The result of “bottom-up” innovation at the moment is that life expectancy in the poorest parts of Birmingham is more than 10 years shorter than it is in the richest parts. In London and Glasgow, it’s more than 20 years shorter.

If you’re born in the wrong place, you’re likely to die 10 years younger than someone else born in a different part of the same city. This shocking situation arises from many, complex issues; but one conclusion that it is easy to draw is that the opportunity to innovate successfully is not the same for everyone.

So how do we increase everybody’s chances of success? We need to create the policies, institutions, culture and behaviours that join up the top-down thinking that tends to control the allocation of resources and investment, especially for infrastructure, with the needs of bottom-up innovators everywhere.

Translational co-operation

Harborne Food School

(The Harborne Food School, which will open in the New Year to offer training and events in local and sustainable food)

The Economist magazine reminded us of the importance of those questions in a recent article describing the enormous investments made in public institutions such as schools, libraries and infrastructure in the past in order to distribute the benefits of the Industrial Revolution to society at large rather than concentrate them on behalf of business owners and the professional classes.

But the institutions of the past, such as the schools which to a large degree educated the population for repetitive careers in labour-intensive factories, won’t work for us today. Our world is more complicated and requires a greater degree of localised creativity to be successful. We need institutions that are able to engage with and understand individuals; and that make their resources openly available so that each of us can use them in the way that makes most sense to us. Some public services are starting to respond to this challenge, through the “Open Public Services” agenda; and the provision of Open Data and APIs by public services and infrastructure are part of the response too.

But as Andrew Zolli describes in “Resilience: why things bounce back“, there are both institutional and cultural barriers to engagement and collaboration between city institutions and localised innovation. Zolli describes the change-makers who overcome those barriers as “translational leaders” – people with the ability to engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.

We’re trying to apply that “translational” thinking in Birmingham through the Smart City Alliance, a collaboration between 20 city institutions, businesses and innovators. The idea is to enable conversations about challenges and opportunities in the city, between people, communities, innovators and  the organisations who have resources, from the City Council and public institutions to businesses, entrepreneurs and social enterprises. We try to put people and organisations with challenges or good ideas in touch with other people or organisations with the ability to help them.

This is how we join the “top-down” resources, policies and programmes of city institutions and big companies with the “bottom-up” innovation that creates value in local situations. A lot of the time it’s about listening to people we wouldn’t normally meet.

Partly as a consequence, we’ve continued to explore the ideas about local food that were first raised at the hackathon. Two years later, the Harborne Food School is close to opening as a social enterprise in a redeveloped building on Harborne High Street that had fallen out of use.

The school will be teaching courses that help caterers provide food from sustainable sources, that teach people how to set up and run food businesses, and that help people to adopt diets that prevent or help to manage conditions such as diabetes. The idea has changed since the “Second Helping” app was written, of course; but the spirit of innovation and local value is the same.

Cities that work like magic

So what does all this have to do with telepathy?

The innovations and changes caused by the internet over the last two decades have accelerated as it has made information easier and easier to access and exchange through the advent of technologies such as broadband, mobile devices and social media. But the usefulness of all of those technologies is limited by the tools required to control them – keyboards, mice and touchscreens.

Before long, we won’t need those tools at all.

Three years ago, scientists at the University of Berkely used computers attached to an MRI scanner to recreate moving images from the magnetic field created by the brain of a person inside the scanner watching a film on a pair of goggles. And last year, scientists at the University of Washington used similar technology to allow one of them to move the other’s arm simply by thinking about it. A less sensitive mind-reading technology is already available as a headset from Emotiv, which my colleagues in IBM’s Emerging Technologies team have used to help a paralysed person communicate by thinking directional instructions to a computer.

Telepathy is now technology, and this is just one example of the way that the boundary between our minds, bodies and digital information will disappear over the next decade. As a consequence, our cities and lives will change in ways we’ve never imagined, and some of those changes will happen surprisingly quickly.

I can’t predict what Birmingham will or should be like in the future. As a citizen, I’ll be one of the million or so people who decide that future through our choices and actions. But I can say that the technologies available to us today are the most incredible DIY tools for creating that future that we’ve ever had access to. And relatively quickly technologies like bio-technology, 3D printing and brain/computer interfaces will put even more power in our hands.

As a parent, I get engaged in my son’s exploration of these technologies and help him be digitally aware, creative and responsible. Whenever I can, I help schools, Universities, small businesses or community initiatives to use them, because I might be helping one of IBM’s best future employees or business partners; or just because they’re exciting and worth helping. And as an employee, I try to help my company take decisions that are good for our long term business because they are good for the society that the business operates in.

We can take for granted that all of us, whatever we do, will encounter more and more incredible technologies as time passes. By remembering these very simple things, and remembering them in the hundreds of choices I make every day, I hope that I’ll be using them to play my part in building a better Birmingham, and better cities and communities everywhere.

(Shades Records in St. Anne's Court in the 1980s)

(Shades Records in St. Anne’s Court in the 1980s. You can read about the role it played in the development of the UK’s music culture – and in the lives of its customers – in this article from Thrash Hits;  or this one from Every Record Tells a Story. And if you really want to find out what it was all about, try watching Celtic Frost or VOIVOD in the 1980s!)

What’s the risk of investing in a Smarter City?

(The two towers of the Bosco Verticale in Milan will be home to more than 10,000 plants that create shade and improve air quality. But to what degree do such characteristics make buildings more attractive to potential tenants than traditional structures, creating the potential to create financial returns to reward more widespread investment in this approach? Photo by Marco Trovo)

(Or “how to buy a Smarter City that won’t go bump in the night”)

There are good reasons why the current condition and future outlook of the world’s cities have been the subject of great debate in recent years. Their population will double from 3 billion to 6 billion by 2050; and while those in the developing world are growing at such a rate that they are challenging our ability to construct resilient, efficient infrastructure, those in developed countries often have significant levels of inequality and areas of persistent poverty and social immobility.

Many people involved in the debate are convinced that new approaches are needed to transport, food supply, economic development, water and energy management, social and healthcare, public safety and all of the other services and infrastructures that support cities.

As a consequence, analysts such as Frost & Sullivan have estimated that the market for “Smart City” solutions that exploit technology to address these issues will be $1.5trillion by 2020.

But anyone who has tried to secure investment in an initiative to apply “smart” technology in a city knows that it is not always easy to turn that theoretical market value into actual investment in projects, technology, infrastructure and expertise.

It’s not difficult to see why this is the case. Most investments are made in order to generate a financial return, but profit is not the objective of “Smart Cities” initiatives: they are intended to create economic, environmental or social outcomes. So some mechanism – an investment vehicle, a government regulation or a business model – is needed to create an incentive to invest in achieving those outcomes.

Institutions, Business, Infrastructure and Investment

Citizens expect national and local governments to use their tax revenues to deliver these objectives, of course. But they are also very concerned that the taxes they pay are spent wisely on programmes with transparent, predictable, deliverable outcomes, as the current controversy over the UK’s proposed “HS2” high speed train network and previous controversies over the effectiveness of public sector IT programmes show.

Nevertheless, the past year has seen a growing trend for cities in Europe and North America to invest in Smart Cities technologies from their own operational budgets, on the basis of their ability to deliver cost savings or improvements in outcomes.

For example, some cities are replacing traditional parking management and enforcement services with “smart parking” schemes that are reducing congestion and pollution whilst paying for themselves through increased enforcement revenues. Others are investing their allocation of central government infrastructure funds in Smart solutions – such as Cambridge, Ontario’s use of the Canadian government’s Gas Tax Fund to invest in a sensor network and analytics infrastructure to manage the city’s physical assets intelligently.

The providers of Smart Cities solutions are investing too, by implementing their services on Cloud computing platforms so that cities can pay incrementally for their use of them, rather than investing up-front in their deployment. Minneapolis, Minnesota and Montpelier, France, recently announced that they are using IBM’s Cloud-based solutions for smarter water, transport and emergency management in this way. And entrepreneurial businesses, backed by Venture Capital investment, are also investing in the development of new solutions.

However, we have not yet tapped the largest potential investment streams: property and large-scale infrastructure. The British Property Federation, for example, estimates that £14 billion is invested in the development of new property in the UK each year. For the main part, these investment streams are not currently investing  in “Smart City” solutions.

To understand why that is the case – and how we might change it – we need to understand the difference in three types of risk involved in investing in smart infrastructures compared with traditional infrastructures: construction risk; the impact of operational failures; and confidence in outcomes.

(A cyclist’s protest in 2012 about the disruption caused in Edinburgh by the overrunning construction of the city’s new tram system. Photo by Andy A)

Construction Risk

At a discussion in March of the financing of future city initiatives held within the Lord Mayor of the City of London’s “Tommorrow’s Cities” programme, Daniel Wong, Head of Infrastructure and Real Estate for Macquarie Capital Europe, said that only a “tiny fraction” – a few percent – of the investable resources of the pension and sovereign wealth funds often referred to as the “wall of money” seeking profitable long-term investment opportunities in infrastructure were available to invest in infrastructure projects that carry “construction risk” – the risk of financial loss or cost overruns during construction.

For conventional infrastructure, construction risk is relatively well understood. At the Tomorrow’s Cities event, Jason Robinson, Bechtel’s General Manager for Urban Development, said that the construction sector was well able to manage that risk on behalf of investors. There are exceptions – such as the delays, cost increases and reduction in scale of Edinburgh’s new tram system – but they are rare.

So are we similarly well placed to manage the additional “construction risk” created when we add new technology to infrastructure projects?

Unfortunately, research carried out in 2013 by the Standish Group on behalf of Computerworld suggests not. Standish Group used data describing 3,555 IT projects between 2003 and 2012 that had labour costs of at least $10 million, and found that only 6.4% were wholly successful. 52% were delivered, but cost more than expected, took longer than expected, or failed to deliver everything that was expected of them. The rest – 41.4% – either failed completely or had to be stopped and re-started from scratch. Anecdotally, we are familiar with the press coverage of high profile examples of IT projects that do not succeed.

We should not be surprised that it is so challenging to deliver IT projects. They are almost always driven by requirements that represent an aspiration to change the way that an organisation or system works: such requirements are inevitably uncertain and often change as projects proceed. In today’s interconnected world, many IT projects involve the integration of several existing IT systems operated by different organisations: most of those systems will not have been designed to support integration. And because technology changes so quickly, many projects use technologies that are new to the teams delivering them. All of these things will usually be true for the technology solutions required for Smart City projects.

By analogy, then, an IT project often feels like an exercise in building an ambitiously new style of building, using new materials whose weight, strength and stiffness isn’t wholly certain, and standing on a mixture of sand, gravel and wetland. It is not surprising that only 6.4% deliver everything they intend to, on time and on budget – though it is also disappointing that as many as 41.4% fail so completely.

However, the real insight is that the characteristics of uncertainty, risk, timescales and governance for IT projects are very different from construction and infrastructure projects. All of these issues can be managed; but they are managed in very different ways. Consequently, it will take time and experience for the cultures of IT and construction to reconcile their approaches to risk and project management, and consequently to present a confident joint approach to investors.

The implementation of Smart Cities IT solutions on Cloud Computing platforms  by their providers mitigates this risk to an extent by “pre-fabricating” these components of smart infrastructure. But there is still risk associated with the integration of these solutions with physical infrastructure and engineering systems. As we gain further experience of carrying out that integration, IT vendors, investors, construction companies and their customers will collectively increase their confidence in managing this risk, unlocking investment at greater scale.

(The unfortunate consequence of a driver who put more trust in their satellite navigation and GPS technology than its designers expected. Photo by Salmon Assessors)

Operational Risk

We are all familiar with IT systems failing.

Our laptops, notebooks and tablets crash, and we lose work as a consequence. Our television set-top boxes reboot themselves midway through recording programmes. Websites become unresponsive or lose data from our shopping carts.

But when failures occur in IT systems that monitor and control physical systems such as cars, trains and traffic lights, the consequences could be severe: damage to property, injury; and death. Organisations that invest in and operate infrastructure are conscious of these risks, and balance them against the potential benefits of new technologies when deciding whether to use them.

The real-world risks of technology failure are already becoming more severe as all of us adopt consumer technologies such as smartphones and social media into every aspect of our lives (as the driver who followed his satellite navigation system off the roads of Paris onto the pavement, and then all the way down the steps into the Paris Metro, discovered).

The noted urbanist Jane Jacobs defined cities by their ability to provide privacy and safety amongst citizens who are usually strangers to each other; and her thinking is still regarded today by many urbanists as the basis of our understanding of cities. As digital technology becomes more pervasive in city systems, it is vital that we evolve the policies that govern digital privacy to ensure that those systems continue to support our lives, communities and businesses successfully.

Google’s careful exploration of self-driving cars in partnership with driver licensing organisations is an example of that process working well; the discovery of a suspected 3D-printing gun factory in Manchester last year is an example of it working poorly.

These issues are already affecting the technologies involved in Smart Cities solutions. An Argentinian researcher recently demonstrated that traffic sensors used around the world could be hacked into and caused to create misleading information. At the time of installation it was assumed that there would never be a motivation to hack into them and so they were configured with insufficient security. We will have to ensure that future deployments are much more secure.

Conversely, we routinely trust automated technology in many aspects of our lives – the automatic pilots that land the planes we fly in, and the anit-lock braking systems that slow and stop our cars far more effectively than we are able to ourselves.

If we are to build the same level of trust and confidence in Smart City solutions, we need to be open and honest about their risks as well as their benefits; and clear how we are addressing them.

(Cars from the car club “car2go” ready to hire in Vancouver. Despite succeeding in many cities around the world, the business recently withdrew from the UK after failing to attract sufficient customers to two pilot deployments in London and Birmingham. The UK’s cultural attraction of private car ownership has proved too strong at present for a shared ownership business model to succeed. Photo by Stephen Rees).

Outcomes Risk

Smart infrastructures such as Stockholm’s road-use charging scheme and London’s congestion charge were constructed in the knowledge that they would be financially sustainable, and with the belief that they would create economic and environmental benefits. Subsequent studies have shown that they did achieve those benefits, but data to predict them confidently in advance did not exist because they were amongst the first of their kind in the world.

The benefits of “Smart” schemes such as road-use charging and smart metering cannot be calculated deterministically in advance because they depend on citizens changing their behaviour – deciding to ride a bus rather than to drive a car; or deciding to use dishwashers and washing machines overnight rather than during the day.

There are many examples of Smart Cities projects that have successfully used technology to encourage behaviour change. In a smart water meter project in Dubuque, for example, households were given information that told them whether their domestic appliances were being used efficiently, and alerted to any leaks in their supply of water. To a certain extent, households acted on this information to improve the efficiency of their water usage. But a control group who were also given a “green points” score telling them how their water conservation compared to that of their near neighbours were found to be twice as likely to take action to improve their efficiency.

However, these techniques are notoriously difficult to apply successfully. A recycling scheme that adopted a similar approach found instead that it lowered recycling rates across the community: households who learned that they were putting more effort into recycling than their neighbours asked themselves “if my neighbours aren’t contributing to this initiative, then why should I?”

The financial vehicles that enable investment in infrastructure and property are either government-backed instruments that reward economic and social outcomes such as reductions in carbon footprint or the creation of jobs ; or market-based instruments  based on the creation of direct financial returns.

So are we able to predict those outcomes confidently enough to enable investment in Smart Cities solutions?

I put that question to the debating panel at the Tomorrow’s Cities meeting. In particular, I asked whether investors would be willing to purchase bonds in smart metering infrastructures with a rate of return dependent on the success of those infrastructures in encouraging consumers to  reduce their use of water and energy.

The response was a clear “no”. The application of those technologies and their effectiveness in reducing the use of water and electricity by families and businesses is too uncertain for such investment vehicles to be used.

Smart Cities solutions are not straightforward engineering solutions such as electric vehicles whose cost, efficiency and environmental impacts can be calculated in a deterministic way. They are complex socio-technical systems whose outcomes are emergent and uncertain.

Our ability to predict their performance and impact will certainly improve as more are deployed and analysed, and as University researchers, politicians, journalists and the public assess them. As that happens, investors will be more willing to fund them; or, with government support, to create new financial vehicles that reward investment in initiatives that use smart technology to create social, environmental and economic improvements – just as the World Bank’s Green Bonds, launched in 2008, support environmental schemes today.

(Recycling bins in Curitiba, Brazil. As Mayor of Curitaba Jaime Lerner started one of the world’s earliest and most effective city recycling programmes by harnessing the enthusiasm of children to influence the behaviour of their parents. Lerner’s many initiatives to transform Curitaba have the characteristic of entrepreneurial leadership. Photo by Ana Elisa Ribeiro)

Evidence and Leadership

The evidence base need to support new investment vehicles is already being created. In Canada, for example, a collaboration between Canadian insurers and cities has developed a set of tools to create a common understanding of the financial risk created by the effects of climate change on the resilience of city infrastructures.

More internationally, the “Little Rock Accord” between the Madrid Club of former national Presidents and Prime Ministers and the P80 group of pension funds agreed to create a task force to increase the degree to which pension and sovereign wealth funds invest in the deployment of technology to address climate change issues, shortages in resources such as energy, water and food, and sustainable, resilient growth. My colleague the economist Mary Keeling has been working for IBM’s Institute for Business Value to more clearly analyse and express the benefits of Smart approaches – in water management and transportation, for example. And Peter Head’s Ecological Sequestration Trust and Robert Bishop’s International Centre for Earth Simulation are both pooling international data and expertise to create models that explore how more sustainable cities and societies might work.

But the Smart City programmes which courageously drive the field forward will not always be those that demand a complete and detailed cost/benefit analysis in advance. Writing in “The Plundered Planet”, the economist Paul Collier asserts that any proposed infrastructure of reasonable novelty and significant scale is effectively so unique – especially when considered in its geographic, political, social and economic context – that an accurate cost/benefit case simply cannot be constructed.

Instead, initiatives such as London’s congestion charge and bicycle hire scheme, Sunderland’s City Cloud and Bogota’s bikeways and parks were created by courageous leaders with a passionate belief that they could make their cities better. As more of those leaders come to trust technology and the people who deliver it, their passion will be another force behind the adoption of technology in city systems and infrastructure.

What’s the risk of not investing in a Smarter City?

For at least the last 50 years, we have been observing that life is speeding up and becoming more complicated. In his 1964 work “Notes on the Synthesis of Form“, the town planner Christopher Alexander wrote:

“At the same time that the problems increase in quantity, complexity and difficulty, they also change faster than ever before. New materials are developed all the time, social patterns alter quickly, the culture itself is changing faster than it has ever changed before … To match the growing complexity of problems, there is a growing body of information and specialist experience … [but] not only is the quantity of information itself beyond the reach of single designers, but the various specialists who retail it are narrow and unfamiliar with the form-makers’ peculiar problems.”

(Alexander’s 1977 work “A Pattern Language: Towns, Buildings, Construction” is one of the most widely read books on urban design; it was also an enormous influence on the development of the computer software industry).

The physicist Geoffrey West has shown that this process is alive and well in cities today. As the world’s cities grow, life in them speeds up, and they create ideas and wealth more rapidly, leading to further growth. West has observed that, in a world with constrained resources, this process will lead to a catastrophic failure when demand for fresh water, food and energy outstrips supply – unless we change that process, and change the way that we consume resources in order to create rewarding lives for ourselves.

There are two sides to that challenge: changing what we value; and changing how we create what we value from the resources around us.

(...)

(“Makers” at the Old Print Works in Balsall Heath, Birmingham, sharing the tools, skills, contacts and ideas that create successful small businesses in local communities)

The Transition movement, started by Rob Hopkins in Totnes in 2006, is tackling both parts of that challenge. “Transition Towns” are communities who have decided to act collectively to transition to a way of life which is less resource-intensive, and to value the characteristics of such lifestyles in their own right – where possible trading regionally, recycling and re-using materials and producing and consuming food locally.

The movement does not advocate isolation from the global industrial economy, but it does advocate that local, alternative products and services in some cases can be more sustainable than mass-produced commodities; that the process of producing them can be its own reward; and that acting at community level is for many people the most effective way to contribute to sustainability. From local currencies, to food-trading networks to community energy schemes, many “Smart” initiatives have emerged from the transition movement.

We will need the ideas and philosophy of Transition to create sustainable cities and communities – and without them we will fail. But those ideas alone will not create a sustainable world. With current technologies, for example, one hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency. And Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America.

Cities depend on vast infrastructures and supply-chains, and they create complex networks of transactions supported by transportation and communications. Community initiatives will adapt these infrastructures to create local value in more sustainable, resilient ways, and by doing so will reduce demand. But they will not affect the underlying efficiency of the systems themselves. And I do not personally believe that in a world of 7 billion people in which resources and opportunity are distributed extremely unevenly that community initiatives alone will reduce demand significantly enough to achieve sustainability.

We cannot simply scale these systems up as the world’s population grows to 9 billion by 2050, we need to change the way they work. That means changing the technology they use, or changing the way they use technology. We need to make them smarter.

Six ways to design humanity and localism into Smart Cities

(Birmingham’s Social Media Cafe, where individuals from every part of the city share their experience using social media to promote their businesses and community initiatives. Photograph by Meshed Media)

The Smart Cities movement is sometimes criticised for appearing to focus mainly on the application of technology to large-scale city infrastructures such as smart energy grids and intelligent transportation.

It’s certainly vital that we manage and operate city services and infrastructure as intelligently as possible – there’s no other way to deal with the rapid urbanisation taking place in emerging economies; or the increasing demand for services such as health and social care in the developed world whilst city budgets are shrinking dramatically; and the need for improved resilience in the face of climate change everywhere.

But to focus too much on this aspect of Smart Cities and to overlook the social needs of cities and communities risks forgetting what the full purpose of cities is: to enable a huge number of individual citizens to live not just safe, but rewarding lives with their families.

Maslow’s Hierarchy of Needs identifies our most basic requirements to be food, water, shelter and security. The purpose of many city infrastructures is to answer those needs, either directly (buildings, utility infrastructures and food supply chains) or indirectly (the transport systems that support us and the businesses that we work for).

Important as those needs are, though – particularly to the billions of people in the world for whom they are not reliably met – life would be dull and unrewarding if they were all that we aspired to.

Maslow’s hierarchy next relates the importance of family, friends and “self-actualisation” (which can crudely be described as the process of achieving things that we care about). These are the more elusive qualities that it’s harder to design cities to provide. But unless cities provide them, they will not be successful. At best they will be dull, unrewarding places to live and work, and will see their populations fall as those can migrate elsewhere. At worst, they will create poverty, poor health and ultimately short, unrewarding lives.

A Smart City should not only be efficient, resilient and sustainable; it should improve all of these qualities of life for its citizens.

So how do we design and engineer them to do that?

(Maslow’s Hierarchy of Needs, image by Factoryjoe via Wikimedia Commons)

Tales of the Smart City

Stories about the people whose lives and businesses have been made better by technology tell us how we might answer that question.

In the Community Lover’s Guide to Birmingham, for example, Nick Booth describes the way his volunteer-led social media surgeries helped the Central Birmingham Neighbourhood Forum, Brandwood End Cemetery and Jubilee Debt Campaign to benefit from technology.

Another Birmingham initiative, the Northfield Ecocentre, crowdfunded £10,000 to support their “Urban Harvest” project. The funds helped the Ecocentre pick unwanted fruit from trees in domestic gardens in Birmingham and distribute it between volunteers, children’s centres, food bank customers and organisations promoting healthy eating; and to make some of it into jams, pickles and chutneys to raise money so that in future years the initiative can become self-sustaining.

In the village of Chale on the Isle of Wight, a community not served by the national gas power network and with significant levels of fuel poverty, my colleague Andy Stanford-Clark has helped an initiative not only to deploy smart meters to measure the energy use of each household; but to co-design with residents how they will use that technology, so that the whole community feels a sense of ownership and inclusion in the initiative. The project has resulted in a significant drop in rent arrears as residents use the technology to reduce their utility bills, in some cases by up to 50 percent. Less obviously, the sense of shared purpose has extended to the creation of a communal allotment area in the village and a successful compaign to halve bus fares in the area.

There are countless other examples. Play Fitness “gamify” exercise to persuade children to get fit, and work very hard to ensure that their products are accessible to children in communities of any level of wealth.  Casserole Club use social media to introduce people who can’t cook for themselves to people who are prepared to volunteer to cook for others. The West Midlands Collaborative Commerce Marketplace uses analytics technology to help it’s 10,000 member businesses win more than £4billion in new contracts each year. … and so on.

None of these initiatives are purely to do with technology. But they all use technologies that simply were not available and accessible as recently as a few years ago to achieve outcomes that are important to cities and communities. By understanding how the potential of technology was apparent to the stakeholders in such initiatives, why it was affordable and accessible to them, and how they acquired the skills to exploit it, we can learn how to design Smart Cities in a way that encourages widespread grass-roots, localised innovation.

(Top: Birmingham's Masshouse Circus roundabout, part of the inner-city ringroad that famously impeded the city's growth. Bottom: This pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

(Top: Birmingham’s Masshouse Circus roundabout, part of the inner-city ringroad that famously impeded the city’s growth until it was demolished. Photo by Birmingham City Council. Bottom: Pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

A tale of two roundabouts

History tells us that we should not assume that it will be straightforward to design Smart Cities to achieve that objective, however.

A measure of our success in building the cities we know today from the generations of technology that shaped them – concrete, cars and lifts – is the variation in life expectancy across them. In the UK, it’s common for life expectancy to vary by around 20 years between the poorest and richest parts of the same city.

That staggering difference is the outcome of a complex set of issues including the availability of education and opportunity, lifestyle factors such as diet and exercise, and the accessibility of city services. But a significant influence on many of those issues is the degree to which the large-scale infrastructures built to support our physiological needs and the demands of the economy also create a high-quality environment for daily life.

The photograph on the right shows two city transport infrastructures that are visually similar, but that couldn’t be more different in their influence on the success of the cities that they are part of.

The picture at the top shows Masshouse Circus in Birmingham in 2001 shortly before it was demolished. It was constructed in the 1960s as part of the city’s inner ring-road, intended to improve connectivity to the national economy through the road network. However, the impact of the physical barrier that it created to pedestrian traffic can be seen by the stark difference in land value inside and outside the “concrete collar” of the ring-road. Inside the collar, land is valuable enough for tall office blocks to be constructed on it; whilst outside it is of such low value that it is used as a ground-level carpark.

In contrast, the pedestrian roundabout in Lujiazui, China pictured at the bottom, constructed over a busy road junction, balances the need to support traffic flows through the city with the need for people to walk freely about the areas in which they live and work. As can be seen from the people walking all around it, it preserves the human vitality of an area that many busy roads flow through. 

We should take insight from these experiences when considering the design of Smart City infrastructures. Unless those infrastructures are designed to be accessible to and usable by citizens, communities and local businesses, they will be as damaging as poorly constructed buildings and poorly designed transport networks. If that sounds extreme, then consider the dangers of cyber-stalking, or the implications of the gun-parts confiscated from a suspected 3D printing gun factory in Manchester last year that had been created on general purpose machinery from digital designs shared through the internet. Digital technology has life and death implications in the real world.

For a start, we cannot take for granted that city residents have the basic ability to access the internet and digital technology. Some 18% of adults in the UK have never been online; and children today without access to the internet at home and in school are at an enormous disadvantage. As digital technology becomes even more pervasive and important, the impact of this digital divide – within and between people, cities and nations – will become more severe. This is why so many people care passionately about the principle of “Net Neutrality” – that the shared infrastructure of the internet provides the same service to all of its users; and does not offer preferential access to those individuals or corporations able to pay for it.

These issues are very relevant to cities and their digital strategies and governance. The operation of any form of network requires physical infrastructure such as broadband cables, wi-fi and 4G antennae and satellite dishes. That infrastructure is regulated by city planning policies. In turn, those planning policies are tools that cities can and should use to influence the way in which technology infrastructure is deployed by private sector service providers.

(Photograph of Aesop’s fable “The Lion and the Mouse” by Liz West)

Little and big

Cities are enormous places in which what matters most is that millions of individually small matters have good outcomes. They work well when their large scale systems support the fine detail of life for every one of their very many citizens: when “big things” and “little things” work well together.

A modest European or US city might have 200,000 to 500,000 inhabitants; a large one might have between one and ten million. The United Nations World Urbanisation Prospects 2011 revision recorded 23 cities with more than 10 million population in 2011 (only six of them in the developed world); and predicted that there would be nearly 40 by 2025 (only eight of them in the developed world – as we define it today). Overall, between now and 2050 the world’s urban population will double from 3 billion to 6 billion. 

A good example of the challenges that this enormous level of urbanisation is already creating is the supply of food. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency; and Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America Feeding the 7 to 10 billion people who will inhabit the planet between now and 2050, and the 3 to 6 billion of them that will live in dense cities, is certainly a challenge on an industrial scale. 

In contrast, Casserole Club, the Northfield Eco-Centre, the Chale Project and many other initiatives around the world have demonstrated the social, health and environmental benefits of producing and distributing food locally. Understanding how to combine the need to supply food at city-scale with the benefits of producing it locally and socially could make a huge difference to the quality of urban lives.

The challenge of providing affordable broadband connectivity throughout cities demonstrates similar issues. Most cities and countries have not yet addressed that challenge: private sector network providers will not deploy connectivity in areas which are insufficiently economically active for them to make a profit, and Government funding is not yet sufficient to close the gap.

In his enjoyable and insightful book “Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia“, Anthony Townsend describes a grass-roots effort by civic activists to provide New York with free wi-fi connectivity. I have to admire the vision and motivation of those involved, but – rightly or wrongly; and as Anthony describes – wi-fi has ultimately evolved to be dominated by commercial organisations.  

As technology continues to improve and to reduce in price, the balance of power between large, commercial, resource-rich institutions and small, agile, resourceful  grassroots innovators will continue to changeTechnologies such as Cloud Computing, social media, 3D printing and small-scale power generation are reducing the scale at which many previously industrial technologies are now economically feasible; however, it will remain the case for the foreseeable future that many city infrastructures – physical and digital – will be large-scale, expensive affairs requiring the buying power and governance of city-scale authorities and the implementation resources of large companies.

But more importantly, neither small-scale nor large-scale solutions alone will meet all of our needs. Many areas in cities – usually those that are the least wealthy – haven’t yet been provided with wi-fi or broadband connectivity by either.  

(Cars in Frederiksberg, Copenhagen wishing to join a main road must give way to cyclists and pedestrians)

(A well designed urban interface between people and infrastructure. Cars in Frederiksberg, Copenhagen wishing to join a main road must give way to cyclists and pedestrians passing along it)

We need to find the middle ground between the motivations, abilities and cultures of large companies and formal institutions on one hand; and those of agile, local innovators and community initiatives on the other. The pilot project to provide broadband connectivity and help using the internet to Castle Vale in Birmingham is a good example of finding that balance.

And I am optimistic that we can find it more often. Whilst Anthony is rightly critical of approaches to designing and building city systems that are led by technology, or that overlook the down-to-earth and sometimes downright “messy” needs of people and communities for favour of unrealistic technocratic and corporate utopias; the reality of the people I know that are employed by large corporations on Smart City projects is that they are acutely aware of the limitations as well as the value of technology, and are passionately committed to the human value of their work. That passion is often reflected in their volunteered commitment to “civic hacking“, open data initiatives, the teaching of technology in schools and other activities that help the communities in which they live to benefit from technology.

But rather than relying on individual passion and integrity, how do we encourage and ensure that large-scale investments in city infrastructures and technology enable small-scale innovation, rather than stifle it?

Smart urbanism and massive/small innovation

I’ve taken enormous inspiration in recent years from the architect Kelvin Campbell whose “Massive / Small” concept and theory of “Smart Urbanism” are based on the belief that successful cities emerge from physical environments that encourage “massive” amounts of “small”-scale innovation – the “lively, diversified city, capable of continual, close- grained improvement and change” that Jane Jacobs described in “The Death and Life of Great American Cities“.

We’ll have to apply similar principles in order for large-scale city technology infrastructures to support localised innovation and value-creation. But what are the practical steps that we can take to put those principles into practise?

Step 1: Make institutions accessible

There’s a very basic behaviour that most of us are quite bad at – listening. In particular, if the institutions of Smart Cities are to successfully create the environment in which massive amounts of small-scale innovation can emerge, then they must listen to and understand what local activists, communities, social innovators and entrepreneurs want and need.

Many large organisations – whether they are local authorities or private sector companies – are poor at listening to smaller organisations. Their decision-makers are very busy; and communications, engagement and purchasing occur through formally defined processes with legal, financial and confidentiality clauses that can be difficult for small or informal organisations to comply with. The more that we address these barriers, the more that our cities will stimulate and support small-scale innovation. One way to do so is through innovations in procurement; another is through the creation of effective engagements programmes, such as the Birmingham Community Healthcare Trust’s “Healthy Villages” project which is listening to communities expressing their need for support for health and wellbeing. This is why IBM started our “Smarter Cities Challenge” which has engaged hundreds of IBM’s Executives and technology experts in addressing the opportunities and challenges of city communites; and in so doing immersed them in very varied urban cultures, economies, and issues.

But listening is also a personal and cultural attitude. For example, in contrast to the current enthusiasm for cities to make as much data as possible available as “open data”, the Knight Foundation counsel a process of engagement and understanding between institutions and communities, in order to identify the specific information and resources that can be most usefully made available by city institutions to individual citizens, businesses and social organisations.

(Delegates at Gov Camp 2013 at IBM’s Southbank office, London. Gov Camp is an annual conference which brings together anyone interested in the use of digital technology in public services. Photo by W N Bishop)

In IBM, we’ve realised that it’s important to us to engage with, listen to and support small-scale innovation in its many forms when helping our customers and partners pursue Smarter City initiatives; from working with social enterprises, to supporting technology start-ups through our Global Entrepreneur Programme, to engaging with the open data and civic hacking movements.

More widely, it is often talented, individual leaders who overcome the barriers to engagement and collaboration between city institutions and localised innovation. In “Resilience: why things bounce back“, Andrew Zolli describes many examples of initiatives that have successfully created meaningful change. A common feature is the presence of an individual who shows what Zolli calls”translational leadership“: the ability to engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.

Step 2: Make infrastructure and technology accessible

Whilst we have a long way to go to address the digital divide, Governments around the world recognise the importance of access to digital technology and connectivity; and many are taking steps to address it, such as Australia’s national deployment of broadband internet connectivity and the UK’s Urban Broadband Fund. However, in most cases, those programmes are not sufficient to provide coverage everywhere.

Some businesses and social initiatives are seeking to address this shortfall. CommunityUK, for example, are developing sustainable business models for providing affordable, accessible connectivity, and assistance using it, and are behind the Castle Vale project in Birmingham. And some local authorities, such as Sunderland and Birmingham, have attempted to provide complete coverage for their citizens – although just how hard it is to achieve that whilst avoiding anti-competition issues is illustrated by Birmingham’s subsequent legal challenges.

We should also tap into the enormous sums spent on the physical regeneration of cities and development of property in them. As I first described in June last year, while cities everywhere are seeking funds for Smarter City initiatives, and often relying on central government or research grants to do so, billions of Pounds, Euros, and Dollars are being spent on relatively conventional property development and infrastructure projects that don’t contribute to cities’ technology infrastructures or “Smart” objectives.

Local authorities could use planning regulations to steer some of that investment into providing Smart infrastructure, basic connectivity, and access to information from city infrastructures to citizens, communities and businesses. Last year, I developed a set of “Smart City Design Principles” on behalf a city Council considering such an approach, including:

Principle 4: New or renovated buildings should be built to contain sufficient space for current and anticipated future needs for technology infrastructure such as broadband cables; and of materials and structures that do not impede wireless networks. Spaces for the support of fixed cabling and other infrastructures should be easily accessible in order to facilitate future changes in use.

Principle 6: Any development should ensure wired and wireless connectivity is available throughout it, to the highest standards of current bandwidth, and with the capacity to expand to any foreseeable growth in that standard.

(The Birmingham-based Droplet smartphone payment service, now also operating in London, is a Smart City start-up that has won backing from Finance Birmingham, a venture capital company owned by Birmingham City Council)

Step 3: Support collaborative innovation

Small-scale, local innovations will always take place, and many of them will be successful; but they are more likely to have significant, lasting, widespread impact when they are supported by city institutions with resources.

That support might vary from introducing local technology entrepreneurs to mentors and investors through the networks of contacts of city leaders and their business partners; through to practical assistance for social enterprises, helping them to put in place very basic but costly administration processes to support their operations.

City institutions can also help local innovations to thrive simply by becoming their customers. If Councils, Universities and major local employers buy services from innovative local providers – whether they be local food initiatives such as the Northfield Ecocentre or high-tech innovations such as Birmingham’s Droplet smartphone payment service – then they provide direct support to the success of those businesses.

In Birmingham,for example, Finance Birmingham (a Council-owned venture capital company) and the Entrepreneurs for the Future (e4F) scheme provide real, material support to the city’s innovative companies; whilst Bristol’s Mayor George Ferguson and Lambeth’s Council both support their local currencies by allowing salaries to be paid in them.

It becomes more obvious  why stakeholders in a city might become involved in collaborative innovation when they have the opportunity to co-create a clear set of shared priorities. Those priorities can be compared to the objectives of innovative proposals seeking support, whether from social initiatives or businesses; used as the basis of procurement criteria for goods, services and infrastructure; set as the objectives for civic hacking and other grass-roots creative events; or even used as the criteria for funding programmes for new city services, such as the “Future Streets Incubator” that will shortly be launched in London as a result of the Mayor of London’s Roads Task Force.

In this context, businesses are not just suppliers of products and services, but also local institutions with significant supply chains, carbon and economic footprints, purchasing power and a huge number of local employees. There are many ways such organisations can play a role in supporting the development of an open, Smarter, more sustainable city.

The following “Smart City Design Principles” promote collaborative innovation in cities by encouraging support from development and regeneration initiatives:

Principle 12: Consultations on plans for new developments should fully exploit the capabilities of social media, virtual worlds and other technologies to ensure that communities affected by them are given the widest, most immersive opportunity possible to contribute to their design.

Principle 13: Management companies, local authorities and developers should have a genuinely engaging presence in social media so that they are approachable informally.

Principle 14: Local authorities should support awareness and enablement programmes for social media and related technologies, particularly “grass roots” initiatives within local communities.

Step 4: Promote open systems

A common principle between the open data movement; civic hacking; localism; the open government movement; and those who support “bottom-up” innovations in Smart Cities is that public systems and infrastructure – in cities and elsewhere – should be “open”. That might mean open and transparent in their operation; accessible to all; or providing open data and API interfaces to their technology systems so that citizens, communities and businesses can adapt them to their own needs. Even better, it might mean all of those things.

The “Dublinked” information sharing partnership, in which Dublin City Council, three surrounding County Councils and  service providers to the city share information and make it available to their communities as “open data”, is a good example of the benefits that openness can bring. Dublinked now makes 3,000 datasets available to local authority analysts; to researchers from IBM Research and the National University of Ireland; and to businesses, entrepreneurs and citizens. The partnership is identifying new ways for the city’s public services and transport, energy and water systems to work; and enabling the formation of new, information-based businesses with the potential to export the solutions they develop in Dublin to cities internationally. It is putting the power of technology and of city information not only at the disposal of the city authority and its agencies, but also into the hands of communities and innovators.

(I was delighted this year to join Innovation Birmingham as a non-Executive Director in addition to my role with IBM. Technology incubators – particularly those, like Innovation Birmingham and Sunderland Software City, that are located in city centres – are playing an increasingly important role in making the support of city institutions and major technology corporations available to local communities of entrepreneurs and technology activists)

In a digital future, the more that city infrastructures and services provide open data interfaces and APIs, the more that citizens, communities and businesses will be able to adapt the city to their own needs. This is the modern equivalent of the grid system that Jane Jacobs promoted as the most adaptable urban form. A grid structure is the basis of Edinburgh’s “New Town”, often regarded as a masterpiece of urban planning that has proved adaptable and successful through the economic and social changes of the past 250 years, and is also the starting point for Kelvin Campbell’s work.

But open data interfaces and APIs will only be widely exploitable if they conform to common standards. In order to make it possible to do something as simple as changing a lightbulb, we rely on open standards for the levels of voltage and power from our electricity supply; the physical dimensions of the socket and bulb and the characteristics of their fastenings; specifications of the bulb’s light and heat output; and the tolerance of the bulb and the fitting for the levels of moisture found in bathrooms and kitchens. Cities are much more complicated than lightbulbs; and many more standards will be required on order for us to connect to and re-configure their systems easily and reliably.

Open standards are also an important tool in avoiding city systems becoming “locked-in” to any particular supplier. By specifying common characteristics that all systems are required to demonstrate, it becomes more straightforward to exchange one supplier’s implementation for another.

Some standards that Smarter City infrastructures can use are already in place – for example, Web services and REST that specify the general ways in which computer systems interact, and the Common Alerting Protocol which is more specific to interactions between systems that monitor and control the physical world. But many others will need to be invented and encouraged to spread. The City Protocol Society is one organisation seeking to develop those new standards; and the British Standards Institute recently published the first set of national standards for Smarter Cities in the UK, including a standard for the interoperability of data between Smart City systems.

Some open source technologies will also be pivotal; open source (software whose source code is freely available to anyone, and which is usually written by unpaid volunteers) is not the same as open standards (independently governed conventions that define the way that technology from any provider behaves). But some open source technologies are so widely used to operate the internet infrastructures that we have become accustomed to – the “LAMP” stack of operating system, web server, database and web progamming language, for example – that they are “de facto” standards that convey some of the benefits of wide usability and interoperability of open standards. For example, IBM recently donated MQTT, a protocol for connecting information between small devices such as sensors and actuators in Smart City systems to the open source community, and it is becoming increasingly widely adopted as a consequence.

Once again, local authorities can contribute to the adoption of open standards through planning frameworks and procurement practises:

Principle 7: Any new development should demonstrate that all reasonable steps have been taken to ensure that information from its technology systems can be made openly available without additional expenditure. Whether or not information is actually available will be dependent on commercial and legal agreement, but it should not be additionally subject to unreasonable expenditure. And where there is no compelling commercial or legal reason to keep data closed, it should actually be made open.

Principle 8: The information systems of any new development should conform to the best available current standards for interoperability between IT systems in general; and for interoperability in the built environment, physical infrastructures and Smarter Cities specifically.

(The town plan for Edinburgh’s New Town, clearly showing the grid structure that gives rise to the adaptability that it is famous for showing for the past 250 years. Image from the JR James archive)

Finally, design skills will be crucial both to creating interfaces to city infrastructures that are truly useful and that encourage innovation; and in creating innovations that exploit them that in turn are useful to citizens.

At the technical level, there is already a rich corpus of best practise in the design of interfaces to technology systems and in the architecture of technology infrastructures that provide them.

But the creativity that imagines new ways to use these capabilities in business and in community initiatives will also be crucial. The new academic discipline of “Service Science” describes how designers can use technology to create new value in local contexts; and treats services such as open data and APIs as “affordances” – capabilities of infrastructure that can be adapted to the needs of an individual. In the creative industries, “design thinkers” apply their imagination and skills to similar subjects.

Step 5: Provide common services

At the 3rd EU Summit on Future Internet, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project, identified the specific tools that local innovators need in order to exploit city information infrastructures. They include real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust.

The Dublinked information sharing partnership is already putting some of these ideas into practise. It provides assistance to innovators in using, analysing and visualising data; and now makes available realtime data showing the location and movements of buses in the city. The partnership is based on specific governance processes that protect data privacy and manage the risk associated with sharing data.

As we continue to engage with communities of innovators in cities, we will discover further requirements of this sort. Imperial College’s “Digital Cities Exchange” research programme is investigating the specific digital services that could be provided as enabling infrastructure to support innovation and economic growth in cities, for example. And the British Standards Institute’s Smart Cities programme includes work on standards that will enable small businesses to benefit from Smart City infrastructure.

Local authorities can adapt planning frameworks to encourage the provision of these services:

Principle 9: New developments should demonstrate that they have considered the commercial viability of providing the digital civic infrastructure services recommended by credible research sources.

Step 6: Establish governance of the information economy

From the exponential growth in digital information we’ve seen in recent years, to the emergence of digital currencies such as Bitcoin, to the disruption of traditional industries by digital technology; it’s clear that we are experiencing an “information revolution” just as significant as the “industrial revolution” of the 18th and 19th centuries. We often refer to the resulting changes to business and society as the development of an “information economy“.

But can we speak in confidence of an information economy when the basis of establishing the ownership and value of its fundamental resource – digital information – is not properly established?

(Our gestures when using smartphones may be directed towards the phones, or the people we are communicating with through them; but how are they interpreted by the people around us? “Oh, yeah? Well, if you point your smartphone at me, I’m gonna point my smartphone at you!” by Ed Yourdon)

A great deal of law and regulation already applies to information, of course – such as the European Union’s data privacy legislation. But practise in this area is far less established than the laws governing the ownership of physical and intellectual property and the behaviour of the financial system that underlie the rest of the economy. This is evident in the repeated controversies concerning the use of personal information by social media businesses, consumer loyalty schemes, healthcare providers and telecommunications companies.

The privacy, security and ownership of information, especially personal information, are perhaps the greatest challenges of the digital age. But that is also a reflection of their importance to all aspects of our lives. Jane Jacobs’ description of urban systems in terms of human and community behaviour was based on those concepts, and is still regarded as the basis of our understanding of cities. New technologies for creating and using information are developing so rapidly that it is not only laws specifically concerning them that are failing to keep up with progress; laws concerning the other aspects of city systems that technology is transforming are failing to adapt quickly enough too.

A start might be to adapt city planning regulations to reflect and enforce the importance of the personal information that will be increasingly accessed, created and manipulated by city systems:

Principle 21: Any information system in a city development should provide a clear policy for the use of personal information. Any use of that information should be with the consent of the individual.

The triumph of the commons

I wrote last week that Smarter Cities should be a “middle-out” economic investment – in other words, an investment in common interests – and compared them to the Economist’s report on the efforts involved in distributing the benefits of the industrial revolution to society at large rather than solely to business owners and the professional classes.

One of the major drivers for the current level of interest in Smarter Cities and technology is the need for us to adapt to a more sustainable way of living in the face of rising global populations and finite resources. At large scale, the resources of the world are common; and at local scale, the resources of cities are common too.

For four decades, it has been widely assumed that those with access to common resources will exploit them for short term gain at the expense of long term sustainability – this is the “tragedy of the commons” first described by the economist Garrett Hardin. But in 2009, Elinor Ostrum won the Nobel Prize for economics by demonstrating that the “tragedy” could be avoidedand that a community could manage and use shared resources in a way that was sustainable in the long-term.

Ostrum’s conceptual framework for managing common resources successfully is a set of criteria for designing “institutions” that consist of people, processes, resources and behaviours. These need not necessarily be formal political or commercial institutions, they can also be social structures. It is interesting to note that some of those criteria – for example, the need for mechanisms of conflict resolution that are local, public, and accessible to all the members of a community – are reflected in the development over the last decade of effective business models for carrying out peer-to-peer exchanges using social media, supported by technologies such as reputation systems.

Of course, there are many people and communities who have championed and practised the common ownership of resources regardless of the supposed “tragedy” – not least those involved in the Transition movement founded by Rob Hopkins, and which has developed a rich understanding of how to successfully change communities for the better using good ideas; or the translational leaders described by Andrew Zolli. But Elinor Ostrum’s ideas are particularly interesting because they could help us to link the design, engineering and governance of Smarter Cities to the achievement of sustainable economic and social objectives based on the behaviour of citizens, communities and businesses.

Combined with an understanding of the stories of people who have improved their lives and communities using technology, I hope that the work of Kelvin Campbell, Rob Hopkins, Andrew Zolli, Elinor Ostrum and many others can inspire technologists, urban designers, architects and city leaders to develop future cities that fully exploit modern technology to be efficient, resilient and sustainable; but that are also the best places to live and work that we can imagine, or that we would hope for for our children.

Cities created by people like that really would be Smart.