Why Smart Cities still aren’t working for us after 20 years. And how we can fix them.

(The futuristic "Emerald City" in the 1939 film "The Wizard of Oz". The "wizard" who controls the city is a fraud who uses theatrical technology to disguise his lack of real power.)

(The futuristic “Emerald City” in the 1939 film “The Wizard of Oz“. The “wizard” who controls the city is a fraud who uses theatrical technology to disguise his lack of real power.)

(I was recently asked to give evidence to the United Nations Commission on Science and Technology for Development during the development of their report on Smart Cities and Infrastructure. This article is based on my presentation, which you can find here).

The idea of a “Smart City” (or town, or region, or community) is 20 years old now; but despite some high profile projects and a lot of attention, it has so far achieved relatively little.

The goal of a Smart City is to invest in technology in order to create economic, social and environmental improvements. That is an economic and political challenge, not a technology trend; and it is an imperative challenge because of the nature and extent of the risks we face as a society today. Whilst the demands created by urbanisation and growth in the global population threaten to outstrip the resources available to us, those resources are under threat from man-made climate change; and we live in a world in which many think that access to resources is becoming dangerously unfair.

Surely, then, there should be an urgent political debate concerning how city leaders and local authorities enact policies and other measures to steer investments in the most powerful tool we have ever created, digital technology, to address those threats?

In honesty, that debate is not really taking place. There are endless conferences and reports about Smart Cities, but very, very few of them tackle the issues of financing, investment and policy – they are more likely to describe the technology and engineering solutions behind schemes that appear to create new efficiencies and improvements in transport and energy systems, for example, but that in reality are unsustainable because they rely on one-off research and innovation grants.

Because Smart Cities are usually defined in these terms – by the role of technology in city systems rather than by the role of policy in shaping the outcomes of investment – the idea has not won widespread interest and support from the highest level of political leadership – the very people without whom the policy changes and investments that Smart Cities need will not be made.

And because Smart Cities are usually discussed as projects between technology providers, engineers, local authorities and universities, the ordinary people who vote for politicians, pay taxes, buy products, use public services and make businesses work are not even aware of the idea, let alone supportive of it.

("Visionary City" by William Robinson Leigh)

(William Robinson Leigh’s 1908 painting “Visionary City” envisaged future cities constructed from mile-long buildings of hundreds of stories connected by gas-lit skyways for trams, pedestrians and horse-drawn carriages. A century later we’re starting to realise not only that developments in transport and power technology have eclipsed Leigh’s vision, but that we don’t want to live in cities constructed from buildings on this scale.)

The fact that the Smart Cities movement confuses itself with inconsistent and contradictory definitions exacerbates this lack of engagement, understanding and support. From the earliest days, it has been defined in terms of either smart infrastructure or smart citizens; but rarely both at the same time.

For example, in “City of Bits” in 1996, William Mitchell, Director of the Smart Cities Research Group at MIT’s Media Lab, predicted the widespread deployment of digital technology to transform city infrastructures:

“… as the infobahn takes over a widening range of functions, the roles of inhabited structures and transportation systems are shifting once again, fresh urban patterns are forming, and we have the opportunity to rethink received ideas of what buildings and cities are, how they can be made, and what they are really for.”

Whilst in their paper “E-Governance and Smart Communities: A Social Learning Challenge“, published in the Social Science Computer Review in 2001, Amanda Coe, Gilles Paquet and Jeffrey Roy described the 1997 emergence of the idea of “Smart Communities” in which citizens and communities are given a stronger voice in their own governance by the power of internet communication technologies:

“A smart community is defined as a geographical area ranging in size from a neighbourhood to a multi-county region within which citizens, organizations and governing institutions deploy and embrace NICT [“New Information and Communication Technologies”] to transform their region in significant and fundamental ways (Eger 1997). In an information age, smart communities are intended to promote job growth, economic development and improve quality of life within the community.”

Because few descriptions of a Smart City reflect both of those perspectives in harmony, many Smart City discussions quickly create arguments between opposing camps rather than constructive ideas: infrastructure versus people; top-down versus bottom-up; technology versus urban design; proprietary technology versus open source; public service improvements versus the enablement of open innovation – and so on.

I haven’t seen many political leaders or the people who vote for them be impressed by proposals whose advocates are arguing with each other.

The emperor has no wearable technology … why we’re not really investing in Smart Cities

The consequence of this lack of cohesion and focus is that very little real money is being invested in Smart Cities to create the outcomes that cities, towns, regions and whole countries have set out for themselves in thousands of Smart City visions and strategies. The vast majority of Smart City initiatives to date are pilot projects funded by research and innovation grants. There are very, very few sustainable, repeatable solutions yet.

There are three reasons for this; and they will have serious economic and social consequences if we don’t address them.

Firstly, the investment streams available to most of those who are trying to shape Smart Cities initiatives – engineers, technologists, academics, local authority officers and community activists – are largely limited to corporate research and development funds, national and international innovation programmes and charitable or socially-focussed grants. Those are important sources of funding, but they are only available at a scale sufficient to prove that good new ideas can work through individual, time-limited projects. They are not intended to fund the deployment of those ideas across cities everywhere, or to construct new infrastructure at city scale, and they are not remotely capable of doing so.

(United States GDP plotted against median household income from 1953 to present. Until about 1980, growth in the economy correlated to increases in household wealth. But from 1980 onwards as digital technology has transformed the economy, household income has remained flat despite continuing economic growth)

(United States GDP plotted against median household income from 1953 to present. Until about 1980, growth in the economy correlated to increases in household wealth. But from 1980 onwards as digital technology has transformed the economy, household income has remained flat despite continuing economic growth. From “The Second Machine Age“, by MIT economists Andy McAfee and Erik Brynjolfsson, summarised in this article.)

Secondly and conversely, the massive investments that are being made in smart technology at a scale that is transforming our world are primarily commercial: they are investing in technology to develop new products and services that consumers want to buy. That’s guaranteed to create convenience for consumers and profit for companies; but it’s far from guaranteed to create resilient, socially mobile, vibrant and healthy cities. It’s just as likely to reduce our life expectancy and social engagement by making it easier to order high-fat, high-sugar takeaway food on our smartphones to be delivered to our couches by drones whilst we immerse ourselves in multiplayer virtual reality games.

That’s why whilst technology advocates praise the ingenuity of technology-enabled “sharing economy” business models such as Airbnb and Uber, most other commentators point out that far from being platforms for “sharing” many are simply profit-seeking transaction brokers. More fundamentally, some economists are seriously concerned that the economy is becoming dominated by such platform business models and that the majority of the value they create is captured by a small number of platform owners – world leaders discussed these issues at the World Economic Forum’s Davos summit this year. There is real evidence that the exploitation of technology by business is contributing to the evolution of the global economy in a way that makes it less equal and that concentrates an even greater share of wealth amongst a smaller number of people.

Finally, the similarly massive investments continually made in property development and infrastructure in cities are, for the most part, not creating investments in digital technology in the public interest. Sometimes that’s because there’s no incentive to do so: development investors make their returns by selling the property they construct; they often have no interest in whether the tenants of that property start successful digital businesses, and they receive no income from any connectivity services those tenants might use. In other cases, policy actively inhibits more socially-minded developers from providing digital services. One developer of a £1billion regeneration project told me that European Union restrictions on state aid had prevented them making any investment in connectivity. They could only build buildings without connectivity – in an area with no mobile coverage – and attempt to attract people and businesses to move in, thereby creating demand for telecommunications companies to subsequently compete to fulfil.

We’ll only build Smart Cities when we shape the market for investing in technology for city services and infrastructure

In her seminal 1961 work “The Death and Life of Great American Cities“, Jane Jacobs wrote that “Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image.”

Cities, towns, regions and countries around the world have set out their self-images of a Smart future, but we have not adapted the financial, regulatory and economic machinery – the policies, the procurement practises, the development frameworks, the investment models – to incentivise the private sector to create them.

I do not mean to be critical of the private sector in this article. I have worked in the private sector for my entire career. It is the engine of our economy, and without its profits we would not create the jobs needed by a growing global population, or the means to pay the taxes that sustain our public services, or the surplus wealth that creates an ability to invest in our future.

But one of the fallacies of large parts of the Smart Cities movement, and of a significant part of the overall debate concerning the enormous growth in value of the technology economy, is the assumption that economic growth driven by private sector investments in technology to improve business performance will create broad social, economic and environmental benefits.

There is no guarantee that it will. Outside philanthropy, charitable donations and social business models, private sector investments are made in order to make a profit, period. In doing so, social, economic and environmental benefits may also be created, but they are side effects which, at best, result from the informed investment choices of conscientious business leaders. At worst, they are simply irrelevant to the imperative of the profit motive.

Some businesses have the scale, vision and stability to make more direct links in their strategies and decision-making to the dependency between their success as businesses and the health of the society in which they operate – Unilever is a notable and high profile example. And all businesses are run by real people whose consciences influence their business decisions (with unfortunate exceptions, of course).

But those examples do not in any way add up to the alignment of private sector investment objectives with the aspirations of city authorities or citizens for their future. And as MIT economists Andy McAfee and Erik Brynjolfsson, amongst others, have shown, most current evidence indicates that the technology economy is exacerbating the inequality that exists in our society (see graph above). That is the opposite of the future aspirations expressed by many cities, communities and their governments.

This leads us to the political and economic imperative represented by the Smart Cities movement: to adapt the machinery of our economy to influence investments in technology so that they contribute to the social, economic and environmental outcomes that we want.

A leadership imperative to learn from the past

Those actions can only be taken by political leaders; and they must be taken because without them developments and investments in new technology and infrastructure will not create ubiquitously beneficial outcomes. Historically, there is plenty of evidence that investments in technology and infrastructure can create great harm if market forces alone are left to shape them.

(Areas of relative wealth and deprivation in Birmingham as measured by the Indices of Multiple Deprivation. Birmingham, like many of the UK's Core Cities, has a ring of persistently deprived areas immediately outside the city centre, co-located with the highest concentration of transport infrastructure allowing traffic to flow in and out of the centre.)

(Areas of relative wealth and deprivation in Birmingham as measured by the Indices of Multiple Deprivation. Birmingham, like many of the UK’s Core Cities, has a ring of persistently deprived areas immediately outside the city centre, co-located with the highest concentration of transport infrastructure allowing traffic to flow in and out of the centre)

For example, in the decades after the Second World War, cities in developed countries rebuilt themselves using the technologies of the time – concrete and the internal combustion engine. Networks of urban highways were built into city centres in the interests of connecting city economies with national and international transport links to commerce.

Those infrastructures supported economic growth; but they did not provide access to the communities they passed through.

The 2015 Indices of Multiple Deprivation in the UK demonstrate that some of those communities were greatly harmed as a result. The indices identify neighbourhoods with combinations of low levels of employment and income; poor health; poor access to quality education and training; high levels of crime; poor quality living environments and shortages of quality housing and services. An analysis of these areas in the UK’s Core Cities (the eight economically largest cities outside London, plus Glasgow and Cardiff) show that many of them exist in rings surrounding relatively thriving city centres. Whilst clearly the full causes are complex, it is no surprise that those rings feature a concentration of transport infrastructure passing through them, but primarily serving the interests of those passing in and out of the centre. (And this is without taking into account the full health impacts of transport-related pollution, which we’re only just starting to appreciate).

Similar effects can be seen historically. In their report “Cities Outlook 1901“, Centre for Cities explored the previous century of urban development in the UK, examining why at various times some cities thrived and some did not. They concluded that the single most important influence on the success of cities was their ability to provide their citizens with the right skills and opportunities to find employment, as the skills required in the economy changed as technology evolved. (See the sample graph below). A recent short article in The Economist magazine similarly argued that history shows there is no inevitable mechanism that ensures that the benefits of economic growth driven by technology-enabled productivity improvements are broadly distributed. It cites huge investments made in the US education system in the late 19th and early 20th Centuries to ensure that the general population was in a position to benefit from the technological developments of the Industrial Revolution as an example of the efforts that may need to be made.

Why smart cities are a political leadership challenge

So, to summarise the arguments I’ve made so far:

From global urbanisation and population growth to man-made climate change we are facing some of the most serious and acute challenges in our history, as well as the persistent challenge of inequality. But the most powerful tool that is shaping a transformation of our society and economy, digital technology, is, for the most part, not being used to address those challenges. The vast majority of investments in it are being made simply in the interests of profitable returns. Our political leaders are not shaping the markets in which those investment are made, or influencing public sector procurement practises, in order to create broader social, economic and environmental outcomes.

So what can we do about that?

We need to persuade political leaders to act – the leaders of cities; of local authorities more generally; and national politicians. I’m trying to do that using the arguments set out in this article, approaching “Smart Cities” not as a technology initiative but as a political and economic issue made urgent by imperative challenges to society.

I can imagine three arguments against that proposition, which I’d like to tackle first, before going on to talk about the actions that we need those leaders to take.

(Population changes in Blackburn, Burnley and Preston from 1901-2001. In the early part of the century, all three cities grew, supported by successful manufacturing economies. But in the latter half, only Preston continued to grow as it transitioned successfully to a service economy. From Cities Outlook 1901 by Centre for Cities)


(Population changes in Blackburn, Burnley and Preston from 1901-2001. In the early part of the century, all three cities grew, supported by successful manufacturing economies. But in the latter half, only Preston continued to grow as it transitioned successfully to a service economy. If cities do not adapt to changes in the economy driven by technology, history shows that they fail. From “Cities Outlook 1901” by Centre for Cities)

The first argument is: why focus on cities? What about the rest of the world, and in particular the challenges of smaller towns, which are often overlooked; or rural regions, which are distinctive and deserve focus in their own right?

There are two replies to this argument. The first is that cities do represent the most sizeable challenge. Since 2010, more than half the world’s population has lived in urban areas, and that’s expected to rise to 70% by 2050. Cities drive the majority of the world’s economy, consume the majority of resources in the most concentrated way and create the majority of the pollution driving climate change. By focussing on cities we focus on most of our challenges at the same time, and in the places where they are most concentrated; and we focus on a unit of governance that is able to act decisively and with understanding of local context.

And that brings us to the second reply: most of the arguments I make in this article aren’t really about cities, they’re about the need for the leaders of local governments – cities, towns and regions – to take action. That applies to any local authority, not just to cities.

The second counter-argument is that my proposal is “top-down” and that instead we should focus on the “bottom-up” creativity that is the richest source of innovation and of practical solutions to problems that are rooted in local context.

My answer to this challenge is that I agree completely that it is bottom-up innovation that will create the majority of the answers to our challenges. But bottom-up innovation is already happening everywhere around us – it is what everyone does every day to create a better business, a better community, a better life. The problem with bottom-up innovation doesn’t lie in making it happen; it lies in enabling it to have a bigger impact. If bottom-up innovation on its own were the answer, then we wouldn’t have the staggering and increasing levels of inequality that we see today, and the economic growth created by the information revolution would be more broadly distributed.

Ultimately, it’s not the bottom-up innovators who need persuading to take action: they’re already acting. It’s the top-down leaders and policy-makers who are not doing what we need them to do: setting the policies that will influence investments in digital technology infrastructure to create better opportunities and support for citizen-led, community-led and business-led innovation. That’s why I’m focussing this article on those leaders and the actions we need them to take.

The third argument works similarly to the second argument, and it’s that we should be focussing on people, not on technology and policy.

Yes, of course we should be focussing on people: their creativity, the detail of their daily lives, and the outcomes that matter to them. But two central points to my argument are that digital technology is a new and revolutionary force reshaping our world, our society and our economy; and that the benefits of that revolution are not being equitably distributed. The main thing that’s not working for people right now is the impact of digital technology on society, and the main reason for that is the lack of action by political leaders. So that’s what we should concentrate on fixing.

Finally, I can summarise my response to all of those arguments in a simple statement: first we have to persuade political leaders to act, because many of them are not acting on these issues at the moment; and then we have to persuade them to act in the right way – to support bottom-up innovation through investment in open technology infrastructures and to put the interests of people at the heart of the policies that drive and shape that investment.

(Innovation Birmingham's £7m "iCentrum" facility will open in March 2016. It will small companies developing smart city products and services will have the opportunity to co-develop them with larger organisations such as RWE nPower, the Transport Systems Catapult and Centro (Birmingham’s Public Transport Executive) – see, e.g., https://ts.catapult.org.uk/-/centro-and-the-transport-systems-catapult-to-run-intelligent-mobility-incubator-within-innovation-birmingham-s-8m-icentrum-buildi-1 )

(Innovation Birmingham’s Chief Executive David Hardman describes the £7m “iCentrum” facility which will open in March 2016 to local stakeholders. It will offer entrepreneurial companies opportunities to co-develop smart city products and services with larger organisations such as RWE nPower, the Transport Systems Catapult and Centro, Birmingham’s Public Transport Executive)

Learning from what’s worked

This might all sound rather negative so far; and in a sense that’s intentional because I want to be very clear in my message that I do not think we are doing enough.

But I have a positive message too: if we can persuade our political leaders to act, then it’s increasingly clear what we need them to do. Whilst the majority of “Smart City” initiatives are unsustainable pilot and innovation projects, that’s not true of them all.

In the UK, from Sunderland to London to Newcastle to Birmingham there are examples of initiatives that are supported by sustainable funding sources and investment streams; that are not dependent on research and development grants from national or international innovation funds or technology companies; and that essentially could be applied by any city or community.

I summarised these repeatable models recently in the article “4 ways to get on with building Smart Cities. And the societal failure that stops us using them“:

1. Include Smart City criteria in the procurement of services by local authorities to encourage competitive innovation from private sector providers. Whilst local authority budgets are under pressure around the world, and have certainly suffered enormous cuts in the UK, local authorities nevertheless spend up to billions of pounds sterling annually on goods, services and staff time. The majority of procurements that direct that spending still procure traditional goods and services through traditional criteria and contracts. By contrast, Sunderland, a UK city, and Norfolk, a UK county, have shown that by emphasising city and regional aspirations in procurement scoring criteria it is possible to incentivise suppliers to invest in smart solutions that contribute to local objectives.

2. Encourage development opportunities to include “smart” infrastructure. Investors invest in infrastructure and property development because it creates returns for them – to the tune of billions of pounds sterling annually in the UK. Those investments are already made in the context of regulations – planning frameworks, building codes and energy performance criteria, for example. Those regulations can be adapted to demand that investments in property and physical infrastructure include investment in digital infrastructure in a way that contributes to local authority and community objectives. The East Wick and Sweetwater development in London – a multi-£100million development that is part of the 2012 Olympics legacy and that is financed by a pension fund investment – was awarded to it’s developer based in part on their commitments to invest in this way.

3. Commit to entrepreneurial programmes. There are many examples of new urban or public services being delivered by entrepreneurial organisations who develop new business and operating models enabled by technology – I’ve already cited Uber and Airbnb as examples that contribute to traveller convenience; Casserole Club, a service that uses social media to connect people who can’t provide their own food with neighbours who are happy to cook an extra portion of a meal for someone else, is an example that has more obviously social benefits. Many cities have local investment funds and support services for entrepreneurial businesses, and Sunderland’s Software Centre, Birmingham’s iCentrum development, Sheffield’s Smart Lab and London’s Cognicity accelerator are examples where those investments have been linked to local smart city objectives.

4. Enable and support Social Enterprise. The objectives of Smart Cities are analogous to the “triple bottom line” objectives of Social Enterprises – organisations whose finances are sustained by revenues from the products or services that they provide, but that commit themselves to social, environmental or economic outcomes, rather than to maximising their financial returns to shareholders. A vast number of Smart City initiatives are carried out by these organisations when they innovate using technology. Cities that find a way to systematically enable social enterprises to succeed could unlock a reservoir of beneficial innovation, as the Impact Hub network, a global community of collaborative workspaces, has shown.

How to lead a smart city: Commitment, Collaboration, Consistency and Community

Each of the approaches I’ve described is dependent on both political leadership from a local authority and collaboration with regional stakeholders – businesses, developers, Universities, community groups and so on.

So the first task for political leaders who wish to drive an effective Smart City programme is to facilitate the co-creation of regional consensus and an action plan (I’m not going to use the word “roadmap”. My experience of Smart Cities roadmaps is that they are, as the name implies, passive documents that don’t go anywhere).

I can sum up how to do that effectively using “four C’s”: Commitment, Collaboration, Consistency and Community:

Commitment: a successful approach to a Smart City or community needs the commitment, leadership and active engagement of the most senior local government leaders. Of course, elected Mayors, Council Leaders and Chief Executives are busy people with a multitude of responsibilities and they inevitably delegate; but this is a responsibility that cannot be delegated too far. The vast majority of local authorities that I have seen pursue this agenda with tangible results – through whichever approach, even those authorities who have been successful funding their initiatives through research and innovation grants – have appointed a dedicated Executive officer reporting directly to the Chief Executive and with a clear mandate to create, communicate and drive a collaborative smart strategy and programme.

Collaboration: a collaborative, empowered regional stakeholder forum is needed to convene local resources. Whilst a local authority is the only elected body with a mandate to set regional objectives, local authorities directly control only a fraction of regional resources, and do not directly set many local priorities. Most approaches to Smart Cities require coordinated activity by a variety of local organisations. That only comes about if those organisations decide to collaborate at the most senior level, mutually agree their objectives for doing so, and meet regularly to agree actions to achieve them. The local authority’s elected mandate usually makes it the most appropriate organisation to facilitate the formation and chair the proceedings of such fora; but it cannot direct them.

Consistency: in order to collaborate, regional stakeholders need to agree a clear, consistent, specific local vision for their future. Without that, they will lack a context in which to take decisions that reconcile their individual interests with shared regional objectives; and any bids for funding and investments they make, whether individually or jointly, will appear inconsistent and unconvincing.

Community: finally, the only people who really know what a smart city should look like are the citizens, taxpayers, voters, customers, business owners and employees who form its community; who will live and work in it; and who will ultimately pay for it through their taxes. It’s their bottom-up innovation that will give rise to the most meaningful and effective initiatives. Their voice – heard through events, consultation exercises, town hall meetings, social media and so on – should lead to the visions and policies to create an environment in which they can flourish.

(Birmingham's newly opened city centre trams are an example of a reversal of 20th century trends that prioritised car traffic over the public transport systems that we have realised are so important to healthy cities)

(Birmingham’s newly opened city centre trams are an example of a reversal of 20th century trends that prioritised car traffic over the public transport systems that we have re-discovered to be so important to healthy cities)

Beyond “top-down” versus “bottom-up”: Translational Leadership and Smart Digital Urbanism

Having established that there’s a challenge worth facing, argued that we need political leaders to take action to address it, and explored what that action should be, I’d like finally to return to one of the arguments I explored along the way.

Action by political leaders is, almost by definition, “top-down”; and, whilst I stand by my argument that it’s the most important missing element of the majority of smart cities initiatives today, it’s vitally important that those top-down actions are taken in such a way as to encourage, enable and empower “bottom-up” innovation by the people, communities and businesses from which real cities are made.

It’s not only important that our leaders take the actions that I’ve argued for; it’s important that they act in the right way. Smart cities are not “business as usual”; and they are also not “behaviour as usual”.

The smart cities initiatives that I have been part of or had the privilege to observe, and that have delivered meaningful outcomes, have taken me on a personal journey. They have involved meeting with, listening to and working with people, organisations and communities that I would not have previously expected to be part of my working life, and that I was not previously familiar with in my personal life – from social enterprises to community groups to individual people with unusual ideas.

Writing in “Resilience: Why Things Bounce Back”, Andrew Zolli observes that the leaders of initiatives that have created real, lasting and surprising change in communities around the world show a quality that he defines as “Translational Leadership“. Translational leaders have the ability to overcome the institutional and cultural barriers to engagement and collaboration between small-scale, informal innovators in communities and large-scale, formal institutions with resources. This is precisely the ability that any leaders involved in smart cities need in order to properly understand how the powerful “top-down” forces within their influence – policies, procurements and investments – can be adapted to empower and enable real people, real communities and real businesses.

Translational leaders understand that their role is not to direct change, but to create the conditions in which others can be successful.

We can learn how to create those conditions from the decades of experience that town planners and urban designers have acquired in creating “human-scale cities” that don’t repeat the mistakes that were made in constructing vast urban highways, tower blocks and housing projects from unforgiving concrete in the past century.

And there is good precedent to do so. It is not just that the experience of town planners and urban designers leads us unmistakably to design thinking that focusses on the needs of the millions of individual citizens whose daily experiences collectively create the behaviour of cities. That is surely the only approach that will succeed; and the designers of smart city technologies and infrastructures will fail unless they take it. But there is also a long-lasting and profound relationship between the design techniques of town planners and of software engineers. The basic architectures of the internet and mobile applications we use today were designed using those techniques in the last decade of the last millennium and the first decade of this one.

The architect Kelvin Campbell’s concept of “massive/small smart urbanism” can teach us how to join the effects of “top-down” investments and policy with the capacity for “bottom-up” innovation that exists in people, businesses and communities everywhere. In the information age, we create the capacity for “massive amounts of small-scale innovation” if digital infrastructures are accessible and adaptable through the provision of open data interfaces, and accessible from open source software on cloud computing platforms – the digital equivalent of accessible public space and human-scale, mixed-used urban environments.

I call this “Smart Digital Urbanism”, and many of its principles are already apparent because their value has been demonstrated time and again. These principles should be the starting point for adapting planning frameworks, procurement practises and the other policies that influence spending and investment in cities and public services.

Re-stating what Smart Cities are all about

Defining and re-defining the “Smart City” is a hoary old business – as I pointed out at the start of this article, we’ve been at it for 20 years now, and without much success.

But definitions are important: saying what you mean to do is an important first step in acting successfully, particularly in a collaborative, public context.

So I’ll end this article by offering another attempt to sum up a smart city – or community – in a way that emphasises what I know from experience are the important factors that will lead to successful actions and outcomes, rather than the endless rounds of debate that we can’t allow to continue any longer:

A Smart City or community is one which successfully harnesses the most powerful tool of our age – digital technology – to create opportunities for its citizens; to address the most severe acute challenges the human race has ever faced, arising from global urbanisation and population growth and man-made climate change; and to address the persistent challenge of social and economic inequality. The policies and investments needed to do this demand the highest level of political leadership at a local level where regional challenges and resources are best understood, and particularly in cities where they are most concentrated. Those policies and investments will only be successful if they are enabling, not directing; if they result from the actions of leaders who are listening and responding to the people and communities they serve; and if they shape an urban environment and digital economy in which individual citizens, businesses and communities have the skills, opportunities and resources to create their own success on their own terms.

That’s not a snappy definition; but I hope it’s a useful definition that’s inclusive of the major issues and clearly points out the actions that are required by city, political, community and business leaders … and why it’s vitally important that we finally start taking them.

 

Intelligent Transport Systems need to get wiser … or transport will keep on killing us

(The 2nd Futurama exhibition at the 1964 New York World’s Fair displayed a vision for the future that in many ways reflected the concrete highways and highrises constructed at the time. We now recognise that the environments those structures created often failed to support healthy personal and community life. In 50 years’ time, how will we perceive today’s visions of Intelligent Transport Systems? Photo by James Vaughan)


Two weeks ago the Transport Systems Catapult published a “Traveller Needs and UK Capability Study”, which it called “the UK’s largest traveller experience study” – a survey of 10,000 people and their travelling needs and habits, complemented by interviews with 100 industry experts and companies. The survey identifies a variety of opportunities for UK innovators in academia and industry to exploit the predicted £56 billion market for intelligent mobility solutions in the UK by 2025, and £900 billion market worldwide. It is rightly optimistic that the UK can be a world leader in those markets.

This is a great example of the enormous value that the Catapult programme – inspired by Germany’s Fraunhofer Institutes – can play in transferring innovation and expertise out of University research and into the commercial economy, and in enabling the UK’s expert small businesses to reach opportunities in international markets.

But it’s also a great example of failing to connect the ideas of Intelligent Transport with their full impact on society.

I don’t think we should call any transport initiative “intelligent” unless it addresses both the full relationship between the physical mobility of people and goods with social mobility; and the significant social impact of transport infrastructure – which goes far beyond issues of congestion and pollution.

The new study not only fails to address these topics, it doesn’t mention them at all. In that light, such a significant report represents a failure to meet the Catapult’s own mission statement, which incorporates a focus on “wellbeing” – as quoted in the introduction to the report:

“We exist to drive UK global leadership in Intelligent Mobility, promoting sustained economic growth and wellbeing, through integrated, efficient and sustainable transport systems.” [My emphasis]

I’m surprised by this failing in the study as both the engineering consultancy Arup and the Future Cities Catapult – two organisations that have worked extensively to promote human-scale, walkable urban environments and human-centric technology – were involved in its production; as was at least one social scientist (although the experts consulted were otherwise predominantly from the engineering, transport and technology industries or associated research disciplines).

I note also that the list of reports reviewed for the study does not include a single work on urbanism. Jane Jacobs’ “The Death and Life of Great American Cities”, Jan Gehl’s “Cities for People“, Jeff Speck’s “Walkable City” and Charles Montgomery’s “The Happy City“, for example, all describe very well the way that transport infrastructures and traffic affect the communities in which most of the world’s population lives. That perspective is sorely lacking in this report.

Transport is a balance between life and death. Intelligent transport shouldn’t forget that.

These omissions matter greatly because they are not just lost areas of opportunity for the UK economy to develop solutions (although that’s certainly what they are). More importantly, transport systems that are designed without taking their full social impact into account have the most serious social consequences – they contribute directly to deprivation, economic stagnation, a lack of social mobility, poor health, premature deaths, injuries and fatalities.

As town planner Jeff Speck and urban consultant Charles Montgomery recently described at length in “Walkable City” and “The Happy City” respectively, the most vibrant, economically successful urban environments tend to be those where people are able to walk between their homes, places of work, shops, schools, local transport hubs and cultural amenities; and where they feel safe doing so.

But many people do not feel that it is safe to walk about the places in which they live, work and relax. Transport is not their only cause of concern; but it is certainly a significant one.

After motorcyclists (another group of travellers who are poorly represented), pedestrians and cyclists are by far the most likely travellers to be injured in accidents. According to the Royal Society for the Prevention of Accidents, for example, more than 60 child pedestrians are killed or injured every week in the UK – that’s over 3000 every year. No wonder that the number of children walking to school has progressively fallen as car ownership has risen, contributing (though it is obviously far from the sole cause) to rising levels of childhood obesity. In its 60 pages, the Traveller Needs study doesn’t mention the safety of pedestrians at all.

A recent working paper published by Transport for London found that the risk and severity of injury for different types of road users – pedestrians, cyclists, drivers, car passengers, bus passengers etc. – vary in complex and unexpected ways; and that in particular, the risks for each type of traveller vary very differently according to age, as our personal behaviours change, depending on the journeys we undertake, and according to the nature of the transport infrastructure we use.

These are not simple issues, they are deeply challenging. They are created by the tension between our need to travel in order to carry out social and economic interactions, and the physical nature of transport which takes up space and creates pollution and danger.

As a consequence, many of the most persistently deprived areas in cities are badly affected by large-scale transport infrastructure that has been primarily designed in the interests of the travellers who pass through them, and not in the interests of the people who live and work around them.

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the city centre before its redevelopment in 2003, by Birmingham City Council)

Birmingham’s Masshouse circus, for example, was constructed in the 1960s as part of the city’s inner ring-road, intended to improve connectivity to the national economy through the road network. However, the impact of the physical barrier that it created to pedestrian traffic can be seen by the stark difference in land value inside and outside the “concrete collar” that the ring-road created around the city centre. Inside the collar, land is valuable enough for tall office blocks to be constructed on it; whilst outside it is of such low value that it is used as a ground-level carpark. The reason for such a sharp change in value? People didn’t feel safe walking across or under the roundabout. The demolition of Masshouse Circus in 2002 enabled a revitalisation of the city centre that has continued for more than a decade.

Atlanta’s Buford Highway is a seven lane road which for two miles has no pavements, no junctions and no pedestrian crossings, passing through an area of houses, shops and businesses. It is an infrastructure fit only for vehicles, not for people. It allows no safe access along or across it for the communities it passes through – it is closed to them, unless they risk their lives.

In Sheffield, two primary schools were recently forced to close after measurements of pollution from diesel vehicles revealed levels 10-15 times higher than those considered the maximum safe limits, caused by traffic from the nearby M1 motorway. The vast majority of vehicles using the motorway comply to the appropriate emissions legislation depending on their age; and until specific emissions measurements were performed at the precise locations of the schools, the previous regional measurements of air quality had been within legal limits. This illustrates the failure of our transport policies to take into account the nature of the environments within which we live, and the detailed impact of transport on them. That’s why it’s now suspected that up to 60,000 people die prematurely every year in the UK due to the effects of diesel emissions, double previous estimates.

Nathaniel Lichfield and Partners recently published a survey of the 2015 Indices of Multiple Deprivation in the UK – the indices summarise many of the challenges that affect deprived communities such as low levels of employment and income; poor health; poor access to quality education and training; high levels of crime; poor quality living environments and shortages of quality housing and services.

Lichfield and Partners found that most of the UK’s Core Cities (the eight economically largest cities outside London, plus Glasgow and Cardiff) are characterised by a ring of persistently deprived areas surrounding their relatively thriving city centres. Whilst clearly the full causes are complex, it is no surprise that those rings feature a concentration of transport infrastructure passing through them, but primarily serving the interests of those passing in and out of the centre.

Birmingham IMD cropped

(Areas of relative wealth and deprivation in Birmingham as measured by the Indices of Multiple Deprivation. Birmingham, like many of the UK’s Core Cities, has a ring of persistently deprived areas immediately outside the city centre, co-located with the highest concentration of transport infrastructure allowing traffic to flow in and out of the centre)

These issues are not considered at all in the Transport Systems Catapult’s study. The word “walk” appears just three times in the document, all in a section describing the characteristics of only one type of traveller, the “dependent passenger” who does not own a car. Their walking habits are never examined, and walking as a transport choice is never mentioned or presented as an option in any of the sections of the report discussing challenges, opportunities, solutions or policy initiatives, beyond a passing mention that public transport users sometimes undertake the beginnings and ends of their journeys on foot. The word “pedestrian” does not appear at all. Cycling is mentioned only a handful of times; once in the same section on dependent passengers, and later on to note that “bike sharing [schemes have] not yet enjoyed high uptake in the UK”. The reason cited for this is that “it is likely that there are simply not enough use cases where using these types of services is convenient and cost-effective for travellers.”

If that is the case, why not investigate ways to extend the applicability of such schemes to broader use cases?

If only the sharing economy were a walking and cycling economy

The role of the Transport Systems Catapult is to promote the UK transport and transport technology industry, and this perhaps explains why so much of the study is focussed on public and private forms of powered transport and infrastructure. But there are many ways for businesses to profit by providing innovative technology and services that support walking and cycling.

What about way-finding services and street furniture that benefit pedestrians, for example, as the Future Cities Catapult recently explored? What about the cycling industry – including companies providing cargo-carrying bicycles as an alternative to small vans and trucks? What about the wearable technology industry to promote exercise measurement and pedestrian navigation along the safest, least polluted routes?

What about the construction of innovative infrastructure that promotes cycling and walking such as the “SkyCycle” proposal to build cycle highways above London’s railway lines, similar to the pedestrian and cycle roundabouts already built in Europe and China? What about the use of conveyor belts along similar routes to transport freight? What about the use of underground, pneumatically powered distribution networks for recycling and waste processing? All of these have been proposed or explored by UK businesses and universities.

And what about the UK’s world-class community of urban designers, town planners and landscape architects, some of whom are using increasingly sophisticated technologies to complement their professional skills in designing places and communities in which living, working and travelling co-exist in harmony? What about our world class University expertise researching visions for sustainable, liveable cities with less intrusive transport systems?

An even more powerful source of innovations to achieve a better balance between transportation and liveability could be the use of “sharing economy” business models to promote social and economic systems that emphasise local, human-powered travel.

Wikipedia describes the sharing economy as “economic and social systems that enable shared access to goods, services, data and talent“. Usually, these systems employ consumer technologies such as SmartPhones and social media to create online peer-to-peer trading networks that disrupt or replace traditional supply chains and customer channels – eBay is an obvious example for trading second hand goods, Airbnb connects travellers with people willing to rent out a spare room, and Uber connects passengers and drivers.

These business models can be enormously successful. Since its formation 8 years ago, Airbnb has acquired access to over 800,000 rooms to let in more than 190 countries; in 2014 the estimated value of this company which employed only 300 people at the time was $13 billion. Uber has demonstrated similarly astonishing growth.

However, it is much less clear what these businesses are contributing to society. In many cases their rapid growth is made possible by operating business models that side-step – or just ignore – the regulation that governs the traditional businesses that they compete with. Whilst they can offer employment opportunities to the providers in their trading networks, those opportunities are often informal and may not be protected by employment rights and minimum wage legislation. As privately held companies their only motivation is to return a profit to their owners.

By creating dramatic shifts in how transactions take place in the industries in which they operate, sharing economy businesses can create similarly dramatic shifts in transport patterns. For example, hotels in major cities frequently operate shuttle buses to transfer guests from nearby airports – a shared form of transport. Airbnb offer no such equivalent transfers to their independent accommodation. This is a general consequence of replacing large-scale, centrally managed systems of supply with thousands of independent transactions. At present there is very little research to understand these impacts, and certainly no policy to address them.

But what if incentives could be created to encourage the formation of sharing economy systems that promoted local transactions that can take place with less need for powered transport?

For example, Borroclub provides a service that matches someone who needs a tool with a neighbour who owns one that they could borrow. Casserole Club connects people who are unable to cook for themselves with a neighbours who are happy to cook and extra portion and share it. The West Midlands Collaborative Commerce Marketplace identifies opportunities for groups of local businesses to collaborate to win new contracts. Such “hyperlocal” schemes are not a new idea, and there are endless possibilities for them to reveal local opportunities to interact; but they struggle to compete for attention and investment against businesses purely focussed on maximising profits and investor returns.

Surely, a study that includes the Future Cities Catapult, Digital Catapult and Transport Systems Catapult amongst its contributors could have explored possibilies for encouraging and scaling hyperlocal sharing economy business models, alongside all those self-driving cars and multi-modal transport planners that industry seems to be quite willing to invest in on its own?

The study does mention some “sharing economy” businesses, including Uber; but it makes no mention of the controversy created because their profit-seeking focus takes no account of their social, economic and environmental impact.

It also mentions the role of online commerce in providing retail options that avoid the need to travel in person – and cites these as an option for reducing the overall demand for travel. But it fails to adequately explore the impact of the consequent requirements for delivery transport – other than to note the potential for detrimental impact on, let’s wait for it, not local communities but: local traffic!

“Enabling lifestyles is about more than just enabling and improving physical travel. 31% (19bn) of journeys made today would rather not have been made if alternative means were available (e.g. online shopping)” (page 15)

“Local authorities and road operators need to be aware that increased goods delivery can potentially have a negative impact on local traffic flows.” (page 24)

Why promote transactions that we carry out in isolation online rather than transactions that we carry out socially by walking, and that could contribute towards the revitalisation of local communities and town centres? Why mention “enabling lifestyles” without exploring the health benefits of walking, cycling and socialising?

(A poster from the International Sustainability Institute's Commuter Toolkit, depicting the space 200 travellers occupy on Seattle's 2nd Avenue when using different forms of transport, and intended to persuade travellers to adopt those forms that use less public space)

(A poster from the International Sustainability Institute’s Commuter Toolkit, depicting the space 200 travellers occupy on Seattle’s 2nd Avenue when using different forms of transport, and intended to persuade travellers to adopt those forms that use less public space)

Self-driving cars as a consumer product represent selfish interests, not societal interests

The sharing economy is not the only example of a technology trend whose social and economic impact cannot be assumed to be positive. The same challenge applies very much to perhaps the most widely publicised transport innovation today, and one that features prominently in the new study: the self-driving car.

On Friday I attended a meeting of the UK’s Intelligent Transport Systems interest group, ITS-UK. Andy Graham of White Willow Consulting gave a report of the recent Intelligent Transport Systems World Congress in Bordeaux. The Expo organisers had provided a small fleet of self-driving cars to transfer delegates between hotels and conference venues.

Andy noted that the cars drove very much like humans did – and that they kept at least as large, if not a larger, gap between themselves and the car in front. On speaking to the various car manufacturers at the show, he learned that their market testing had revealed that car buyers would only be attracted to self-driving cars if they drove in this familiar way.

Andy pointed out that this could significantly negate one of the promoted advantages of self-driving cars: reducing congestion and increasing transport flow volumes by enabling cars to be driven in close convoys with each other. This focus on consumer motivations rather than the holistic impact of travel choices is repeated in the Transport Systems Catapults’ study’s consideration of self-driving cars.

Cars don’t only harm people, communities and the environment if they are diesel or petrol powered and emit pollution, or if they are involved in collisions: they do so simply because they are big and take up space.

Space – space that is safe for people to inhabit – is vital to city and community life. We use it to walk; to sit and relax; to exercise; for our children to play in; to meet each other. Self-driving cars and electric cars take up no less space than the cars we have driven for decades. Cars that are shared take up slightly less space per journey – but are nowhere near as efficient as walking, cycling or public transport in this regard. Car clubs might reduce the need for vehicles to be parked in cities, but they still take up as much space on the road.

The Transport Systems Catapult’s study does explore many means to encourage the use of shared or public transport rather than private cars; but it does so primarily in the interests of reducing congestion and pollution. The relationship between public space, wellbeing and transport is not explored; and neither is the – at best – neutral societal impact of self-driving cars, if their evolution is left to today’s market forces.

Just as the industry and politicians are failing to enact the policies and incentives that are needed to adapt the Smart Cities market to create better cities rather than simply creating efficiencies in service provision and infrastructure, the Intelligent Transport Systems community will fail to deliver transport that serves our society better if it doesn’t challenge our self-serving interests as consumers and travellers and consider the wider interests of society.

The Catapult’s report does highlight the potential need for city-wide and national policies to govern future transport systems consisting of connected and autonomous vehicles; but once again the emphasis is on optimising traffic flows and the traveller experience, not on optimising the outcomes for everyone affected by transport infrastructure and traffic.

As consumers we don’t always know best. In the words of one of the most famous transport innovators in history: “If I had asked people what they wanted, they would have said ‘faster horses’.” (Henry Ford, inventor of the first mass-produced automobile, and of the manufacturing production line).

A failure that matters

The Transport Systems Catapult’s report doesn’t mention most of the issues I’ve explored in this article, and those that it does touch on are quickly passed over. In 60 pages it only mentions walking and cycling a handful of times; it never analyses the needs of pedestrians and cyclists, and beyond a passing mention of employers’ “cycle to work” schemes and the incorporation of bicycle hire schemes in multi-modal ticketing solutions, these modes of transport are never presented as solutions to our transport and social challenges.

This is a failure that matters. The Transport Systems Catapult is only one voice in the Intelligent Transport Systems community, and many of us would do well to broaden our understanding of the context and consequences of our work. For my part when I worked with IBM’s Intelligent Transport Systeams team several years ago I was similarly disengaged with these issues, and focussed on the narrower economic and technological aspects of the domain. It was only later in my career as I sought to properly understand the wider complexities of Smart Cities that I began to appreciate them.

But the Catapult Centre benefits from substantial public funding, is a high profile influencer across the transport sector, and is perceived to have the authority of a relatively independent voice between the public and private sectors. By not taking into account these issues, its recommendations and initiatives run the risk of creating great harm in cities in the UK, and anywhere else our transport industry exports its ideas to.

Both the “Smart Cities” and “Intelligent Transport” communities often talk in terms of breaking down silos in industry, in city systems and in thinking. But in reality we are not doing so. Too many Smart City discussions separate out “energy”, “mobility” and ”wellbeing” as separate topics. Too few invite town planners, urban designers or social scientists to participate. And this is an example of an “Intelligent Transport” discussion that makes the same mistakes.

(Pedestrian’s attempting to cross Atlanta’s notorious Buford Highway; a 7-lane road with no pavements and 2 miles between junctions and crossings. Photo by PBS)

In the wonderful “Walkable City“, Jeff Speck describe’s the epidemiologist Richard Jackson’s stark realisation of the life-and-death significance of good urban design related to transport infrastructure. Jackson was driving along the notorious two mile stretch of Atlanta’s seven lane Buford highway with no pavements or junctions:

“There, by the side of the road, in the ninety-five degree afternoon, he saw a woman in her seventies, struggling under the burden of two shopping bags. He tried to relate her plight to his own work as an epidemiologist. “If that poor woman had collapsed from heat stroke, we docs would have written the cause of death as heat stroke and not lack of trees and public transportation, poor urban form, and heat-island effects. If she had been killed by a truck going by the cause of death would have been “motor vehicle trauma”, and not lack of sidewalks and transit, poor urban planning and failed political leadership.”

We will only harness technology, transport and infrastructure to create better communities and better cities if we seek out and respect those cross-disciplinary insights that take seriously the needs of everyone in our society who is affected by them; not just the needs of those who are its primary users.

Our failure to do so over the last century is demonstrated by the UK’s disgracefully low social mobility; by those areas of multiple deprivation which in most cases have persisted for decades; and by the fact that as a consequence life expectancy for babies born today in the poorest parts of cities in the UK is 20 years shorter than for babies born today in the richest part of the same city.

That is the life and death impact of the transport strategies that we’ve had in the past; the transport strategies we publish today must do better.

Postscript 3rd November

The Transport Systems Catapult replied very positively on Twitter today to my rather forthright criticisms of their report. They said “Great piece Rick. The study is a first step in an ongoing discussion and we welcome further input/ideas feeding in as we go on.”

I’d like to think I’d respond in a similarly gracious way to anyone’s criticism of my own work!

What my article doesn’t say is that the Catapult’s report is impressively detailed and insightful in its coverage of those topics that it does include. I would absolutely welcome their expertise and resources being applied to a broader consideration of the topic of future transport, and look forward to seeing it. 

Let’s not get carried away by self-driving cars and the sharing economy: they won’t make Smart Cities better places to live, work and play

(Cities either balance or create tension between human interaction and transport; how will self-driving cars change that equation?)

(Cities either balance or create tension between human interaction and transport; how will self-driving cars change that equation? With thanks and apologies to Tim Stonor for images and inspiration)

Will we remember to design cities for people and life, enriched by interactions and supported by transport? Or will we put the driverless car and the app that hires it before the passenger?

I’m worried that the current level of interest in self-driving cars as a Smart City initiative is a distraction from the transport and technology issues that really matter in cities.

It’s a great example of a technology that is attracting significant public, private and academic investment because many people will pay for the resulting product in return for the undoubted benefits to their personal safety and convenience.

But will cities full of cars driving themselves be better places to live, work and play than cities full of cars driven by people?

Cities create value when people in them transact with each other: that often requires meeting in person and/or exchanging goods – both of which require transport. From the medieval era to the modern age cities have in part been defined by the tension between our desire to interact and the negative effects created by the size, noise, pollution and danger of the transport that we use to do so – whether that transport is horses and wagons or cars and vans.

A number of town planners and urban designers argue that we’ve got that balance wrong over the past half century with the result that many urban environments are dominated by road traffic and infrastructure to the extent that they inhibit the human interactions that are at the heart of the social and economic life of cities.

What will be the effect of autonomous vehicles on that inherent tension – will they help us to achieve a better balance, or make it harder to do so?

(Traffic clogging the streets of Rome. Photo by AntyDiluvian)

(Traffic clogging the streets of Rome. Photo by AntyDiluvian)

Autonomous vehicles are driven in a different way than the cars that we drive today, and that creates certain advantages: freeing people from the task of driving in order to work or relax; and allowing a higher volume of traffic to flow in safety than currently possible, particularly on national highway networks. And they will almost certainly very soon become better at avoiding accidents with people, vehicles and their surroundings than human drivers.

But they are no smaller than traditional vehicles, so they will take up just as much space. And they will only produce less noise and pollution if they are electric vehicles (which in turn merely create pollution elsewhere in the power system) or are powered by hydrogen – a technology that is still a long way from large-scale adoption.

And whilst computer-driven cars may be safer than cars driven by people, they will not make pedestrians and cyclists feel any safer: people are more likely to feel safe in proximity with slow moving cars with whose drivers they can make eye contact, not automated vehicles travelling at speed. The extent to which we feel safe (which we are aware of) is often a more important influence on our social and economic activity than the extent to which we are actually safe (which we may well not be accurately aware of).

The tension between the creation of social and economic value in cities through interactions between people, and the transport required to support those interactions, is also at the heart of the world’s sustainability challenge. At the “Urban Age: Governing Urban Futures” conference in New Delhi,  November 2014, Ricky Burdett, Director of the London School of Economics’ Cities Program, described the graph below that shows the relationship between social and economic development, as measured by the UN Human Welfare Index, plotted left-to-right; and ecological footprint per person, which is shown vertically, and which by and large grows significantly as social and economic progress is made.  (You can watch Burdett’s presentation, along with those by other speakers at the conference, here).

the relationship between social and economic development, as measured by the UN Human Welfare Index, plotted left-to-right and ecological footprint per person, which is shown vertically

(The relationship between social and economic development, as measured by the UN Human Welfare Index, plotted left-to-right and ecological footprint per person, which is shown vertically)

The dotted line at the bottom of the graph shows when the ecological footprint of each person passes beyond that which our world can support for the entire population. Residents of cities in the US are using five times this limit already, and countries such as China and Brazil, whose cities are growing at a phenomenal rate, are just starting to breach that line of sustainability.

Tackling this challenge does not necessarily involve making economic, social or personal sacrifices, though it certainly involves making changes. In recent decades, a number of politicians such as Enrique Penalosa, ex-Mayor of Bogota, international influencers such as  Joan Clos, Exective Director of UN-Habitat  (as reported informally by Tim Stonor from Dr. Clos’s remarks at the “Urban Planning for City Leaders” conference at the Crystal, London in 2012), and town planners such as Jeff Speck and Charles Montgomery have explored the social and economic benefits of cities that combine low-carbon lifestyles and economic growth by promoting medium-density, mixed-use urban centres that stimulate economies with a high proportion of local transactions within a walkable and cyclable distance.

Of course no single idea is appropriate to every situation, but overall I’m personally convinced that this is the only sensible general conception of cities for the future that will lead to a happy, healthy, fair and sustainable world.

There are many ways that technology can contribute to the development of this sort of urban economy, to complement the work of urban designers and town planners in the physical environment. For example, a combination of car clubs, bicycle hire schemes and multi-modal transport information services is already contributing to a changing culture in younger generations of urban citizens who are less interested in owning cars than previous generations.

ScreenHunter_07 Jun. 03 23.49

(Top: Frederiksberg, Copenhagen, where cyclists and pedestrians on one of the districts main thoroughfares are given priority over cars waiting to turn onto the road. Bottom: Buford Highway, Atlanta, a 2 kilometre stretch of 7-line highway passing through a residential and retail area with no pavements or pedestrian crossings)

And this is a good example that it is not set in stone that cities must inevitably grow towards the high ecological footprints of US cities as their economies develop.

The physicist Geoffrey West’s work is often cited as proof that cities will grow larger, and that their economies will speed up as they do so, increasing their demand for resources and production of waste and pollution. But West’s work is “empirical”, not “deterministic”: it is simply based on measurements and observations of how cities behave today; it is not a prediction for how cities will behave in the future.

It is up to us to discover new services and infrastructures to support urban populations and their desire for ever more intense interactions in a less profligate way. Already today, cities diverge from West’s predictions according to the degree to which they have done so. The worst examples of American sprawl such as Houston, Texas have enormous ecological footprints compared to the standard of living and level of economy activity they support; more forward-thinking cities such as Portland, Vancouver, Copenhagen and Freiberg are far more efficient (and Charles Montgomery has argued that they are home to happier, healthier citizens as a consequence).

However, the role that digital technologies will play in shaping the economic and social transactions of future cities and that ecological footprint is far from certain.

On the one hand modern, technologies make it easier for us to communicate and share information wherever we are without needing to travel; but on the other hand those interactions create new opportunities to meet in person and to exchange goods and services; and so they create new requirements for transport. As technologies such as 3D printingopen-source manufacturing and small-scale energy generation make it possible to carry out traditionally industrial activities at much smaller scales, an increasing number of existing bulk movement patterns are being replaced by thousands of smaller, peer-to-peer interactions created by transactions in online marketplaces. We can already see the effects of this trend in the vast growth of traffic delivering goods that are purchased or exchanged online.

I first wrote about this “sharing economy“, defined by Wikipedia as “economic and social systems that enable shared access to goods, services, data and talent”, two years ago. It has the potential to promote a sustainable economy through matching supply and demand in ways that weren’t previously possible. For example, e-Bay CEO John Donahoe has described the environmental benefits created by the online second-hand marketplace extending the life of over $100 billion of goods since it began, representing a significant reduction in the impact of manufacturing and disposing of goods. But on the other hand those benefits are offset by the carbon footprint of the need to transport goods between the buyers and sellers who use them; and by the social and economic impact of that traffic on city communities.

There are many sharing economy business models that promote sustainable, walkable, locally-reinforcing city economies: Casserole Club, who use social media to introduce people who can’t cook for themselves to people who are prepared to volunteer to cook for others; the West Midlands Collaborative Commerce Marketplace, which uses analytics technology to help it’s 10,000 member businesses work together in local partnerships to win more than £4billion in new contracts each year, and Freecyle and other free recycling networks which tend to promote relatively local re-use of goods and services because the attraction of free, used goods diminishes with the increasing expense of the travel required to collect them.

(Packages from Amazon delivered to Google’s San Francisco office. Photo by moppet65535)

But it takes real skill and good ideas to create and operate these business models successfully; and those abilities are just those that the MIT economists Andy McAfee, Erik Brynjolfsson and Michael Spence have pointed out can command exceptional financial rewards in a capitalist economy. What is there to incent the people who posess those skills to use them to design business models that achieve balanced financial, social and environmental outcomes, as opposed to simply maximising profit and personal return?

The vast majority of systematic incentives act to encourage such people to design businesses that maximise profit. That is why many social enterprises are small-scale, and why many successful “sharing economy” businesses such as Airbnb and Uber have very little to do with sharing value and resources, but are better understood as a new type of profit-seeking transaction broker. It is only personal, ethical attitudes to society that persuade any of us to turn our efforts and talents to more balanced models.

This is a good example of a big choice that we are taking in millions of small decisions: the personal choices of entrepreneurs, social innovators and business leaders in the businesses they start, design and operate; and our personal choices as consumers, employees and citizens in the products we buy, the businesses we work for and the politicians we vote for.

For individuals, those choices are influenced by the degree to which we understand that our own long term interests, the long term interests of the businesses we run or work for, and the long term interests of society are ultimately the same – we are all people living on a single planet together – and that that long-term alignment is more important than the absolute maximisation of short-term financial gain.

But as a whole, the markets that invest in businesses and enable them to operate and grow are driven by relatively short-term financial performance unless they are influenced by external forces.

In this context, self-driving cars – like any other technology – are strictly neutral and amoral. They are a technology that does have benefits, but those benefits are relatively weakly linked to the outcomes that most cities have set out as their objectives. If we want autonomous vehicles, “sharing economy” business models or the Internet of Things to deliver vibrant, fair, healthy and happy cities then more of our attention should be on the policy initiatives, planning and procurement frameworks, business licensing and taxation regimes that could shape the market to achieve those outcomes. The Centre for Data Innovation, British Standards Institute, and Future Cities Catapult have all published work on this subject and are carrying out  initiatives to extend it.

(Photograph by Martin Deutsche of plans to redevelop Queen Elizabeth Park, site of the 2012 London Olympics. The London Legacy Development’s intention, in support of the Smart London Plan, is “for the Park to become one of the world’s leading digital environments, providing a unique opportunity to showcase how digital technology enhances urban living. The aim is to use the Park as a testing ground for the use of new digital technology in transport systems and energy services.”)

Cities create the most value in the most sustainable way when they encourage transactions between people that can take place over a walkable or cyclable distance. New technologies and new technology-enabled business models have great potential to encourage both of those outcomes, but only if we use the tools available to us to shape the market to make them financially advantageous to private sector enterprise.  We should be paying more attention to those tools, and less attention to technology.

From concrete to telepathy: how to build future cities as if people mattered

(An infographic depicting realtime data describing Dublin - the waiting time at road junctions; the location of buses; the number of free parking spaces and bicycles available to hire; and sentiments expressed about the city through social meida)

(An infographic depicting realtime data describing Dublin – the waiting time at road junctions; the location of buses; the number of free parking spaces and bicycles available to hire; and sentiments expressed about the city through social media)

(I was honoured to be asked to speak at TEDxBrum in my home city of Birmingham this weekend. The theme of the event was “DIY” – “the method of building, modifying or repairing something without the aid of experts or professionals”. In other words, how Birmingham’s people, communities and businesses can make their home a better place. This is a rough transcript of my talk).

What might I, a middle-aged, white man paid by a multi-national corporation to be an expert in cities and technology, have to say to Europe’s youngest city, and one of its most ethnically and nationally diverse, about how it should re-create itself “without the aid of experts or professionals”?

Perhaps I could try to claim that I can offer the perspective of one of the world’s earliest “digital natives”. In 1980, at the age of ten, my father bought me one of the world’s first personal computers, a Tandy TRS 80, and taught me how to programme it using “machine code“.

But about two years ago, whilst walking through London to give a talk at a networking event, I was reminded of just how much the world has changed since my childhood.

I found myself walking along Wardour St. in Soho, just off Oxford St., and past a small alley called St. Anne’s Court which brought back tremendous memories for me. In the 1980s I spent all of the money I earned washing pots in a local restaurant in Winchester to travel by train to London every weekend and visit a small shop in a basement in St. Anne’s Court.

I’ve told this story in conference speeches a few times now, perhaps to a total audience of a couple of thousand people. Only once has someone been able to answer the question:

“What was the significance of St. Anne’s Court to the music scene in the UK in the 1980s?”

Here’s the answer:

Shades Records, the shop in the basement, was the only place in the UK that sold the most extreme (and inventive) forms of “thrash metal” and “death metal“, which at the time were emerging from the ashes of punk and the “New Wave of British Heavy Metal” in the late 1970s.

G157 Richard with his Tandy

(Programming my Tandy TRS 80 in Z80 machine code nearly 35 years ago)

The process by which bands like VOIVOD, Coroner and Celtic Frost – who at the time were three 17-year-olds who practised in an old military bunker outside Zurich – managed to connect – without the internet – to the very few people around the world like me who were willing to pay money for their music feels like ancient history now. It was a world of hand-printed “fanzines”, and demo tapes painstakingly copied one at a time, ordered by mail from classified adverts in magazines like Kerrang!

Our world has been utterly transformed in the relatively short time between then and now by the phenomenal ease with which we can exchange information through the internet and social media.

The real digital natives, though, are not even those people who grew up with the internet and social media as part of their everyday world (though those people are surely about to change the world as they enter employment).

They are the very young children like my 6-year-old son, who taught himself at the age of two to use an iPad to access the information that interested him (admittedly, in the form of Thomas the Tank Engine stories on YouTube) before anyone else taught him to read or write, and who can now use programming tools like MIT’s Scratch to control computers vastly more powerful than the one I used as a child.

Their expectations of the world, and of cities like Birmingham, will be like no-one who has ever lived before.

And their ability to use technology will be matched by the phenomenal variety of data available to them to manipulate. As everything from our cars to our boilers to our fridges to our clothing is integrated with connected, digital technology, the “Internet of Things“, in which everything is connected to the internet, is emerging. As a consequence our world, and our cities, are full of data.

(The programme I helped my 6-year old son write using MIT's "Scratch" language to draw a picture of a house)

(The programme I helped my 6-year old son write using MIT’s “Scratch” language to cause a cartoon cat to draw a picture of a house)

My friend the architect Tim Stonor calls the images that we are now able to create, such as the one at the start of this article, “data porn”. The image shows data about Dublin from the Dublinked information sharing partnership: the waiting time at road junctions; the location of buses; the number of free parking spaces and bicycles available to hire; and sentiments expressed about the city through social media.

Tim’s point is that we should concentrate not on creating pretty visualisations; but on the difference we can make to cities by using this data. Through Open Data portals, social media applications, and in many other ways, it unlocks secrets about cities and communities:

  • Who are the 17 year-olds creating today’s most weird and experimental music? (Probably by collaborating digitally from three different bedroom studios on three different continents)
  • Where is the healthiest walking route to school?
  • Is there a local company nearby selling wonderful, oven-ready curries made from local recipes and fresh ingredients?
  • If I set off for work now, will a traffic jam develop to block my way before I get there?

From Dublin to Montpellier to Madrid and around the world my colleagues are helping cities to build 21st-Century infrastructures that harness this data. As technology advances, every road, electricity substation, University building, and supermarket supply chain will exploit it. The business case is easy: we can use data to find ways to operate city services, supply chains and infrastructure more efficiently, and in a way that’s less wasteful of resources and more resilient in the face of a changing climate.

Top-down thinking is not enough

But to what extent will this enormous investment in technology help the people who live and work in cities, and those who visit them, to benefit from the Information Economy that digital technology  and data is creating?

This is a vital question. The ability of digital technology to optimise and automate tasks that were once carried out by people is removing jobs that we have relied on for decades. In order for our society to be based upon a fair and productive economy, we all need to be able to benefit from the new opportunities to work and be successful that are being created by digital technology.

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the city centre before its redevelopment in 2003, by Birmingham City Council)

Too often in the last century, we got this wrong. We used the technologies of the age – concrete, lifts, industrial machinery and cars – to build infrastructures and industries that supported our mass needs for housing, transport, employment and goods; but that literally cut through and isolated the communities that create urban life.

If we make the same mistake by thinking only about digital technology in terms of its ability to create efficiencies, then as citizens, as communities, as small businesses we won’t fully benefit from it.

In contrast, one of the authors of Birmingham’s Big City Plan, the architect Kelvin Campbell, created the concept of “massive / small“. He asked: what are the characteristics of public policy and city infrastructure that create open, adaptable cities for everyone and that thereby give rise to “massive” amounts of “small-scale” innovation?

In order to build 21st Century cities that provide the benefits of digital technology to everyone we need to find the design principles that enable the same “massive / small” innovation to emerge in the Information Economy, in order that we can all use the simple, often free, tools available to us to create our own opportunities.

There are examples we can learn from. Almere in Holland use analytics technology to plan and predict the future development of the city; but they also engage in dialogue with their citizens about the future the city wants. Montpellier in France use digital data to measure the performance of public services; but they also engage online with their citizens in a dialogue about those services and the outcomes they are trying to achieve. The Dutch Water Authority are implementing technology to monitor, automate and optimise an infrastructure on which many cities depend; but making much of the data openly available to communities, businesses, researchers and innovators to explore.

There are many issues of policy, culture, design and technology that we need to get right for this to happen, but the main objectives are clear:

  • The data from city services should be made available as Open Data and through published “Application Programming Interfaces” (APIs) so that everybody knows how they work; and can adapt them to their own individual needs.
  • The data and APIs should be made available in the form of Open Standards so that everybody can understand it; and so that the systems that we rely on can work together.
  • The data and APIs should be available to developers working on Cloud Computing platforms with Open Source software so that anyone with a great idea for a new service to offer to people or businesses can get started for free.
  • The technology systems that support the services and infrastructures we rely on should be based on Open Architectures, so that we have freedom to chose which technologies we use, and to change our minds.
  • Governments, institutions, businesses and communities should participate in an open dialogue, informed by data and enlightened by empathy, about the places we live and work in.

If local authorities and national government create planning policies, procurement practises and legislation that require that public infrastructure, property development and city services provide this openness and accessibility, then the money spent on city infrastructure and services will create cities that are open and adaptable to everyone in a digital age.

Bottom-up innovation is not enough, either

(Coders at work at the Birmingham “Smart Hack”, photographed by Sebastian Lenton)

Not everyone has access to the technology and skills to use this data, of course. But some of the people who do will create the services that others need.

I took part in my first “hackathon” in Birmingham two years ago. A group of people spent a weekend together in 2012 asking themselves: in what way should Birmingham be better? And what can we do about it? Over two days, they wrote an app, “Second Helping”, that connected information about leftover food in the professional kitchens of restaurants and catering services, to soup kitchens that give food to people who don’t have enough.

Second Helping was a great idea; but how do you turn a great idea and an app into a change in the way that food is used in a city?

Hackathons and “civic apps” are great examples of the “bottom-up” creativity that all of us use to create value – innovating with the resources around us to make a better life, run a better business, or live in a stronger community. But “bottom-up” on it’s own isn’t enough.

The result of “bottom-up” innovation at the moment is that life expectancy in the poorest parts of Birmingham is more than 10 years shorter than it is in the richest parts. In London and Glasgow, it’s more than 20 years shorter.

If you’re born in the wrong place, you’re likely to die 10 years younger than someone else born in a different part of the same city. This shocking situation arises from many, complex issues; but one conclusion that it is easy to draw is that the opportunity to innovate successfully is not the same for everyone.

So how do we increase everybody’s chances of success? We need to create the policies, institutions, culture and behaviours that join up the top-down thinking that tends to control the allocation of resources and investment, especially for infrastructure, with the needs of bottom-up innovators everywhere.

Translational co-operation

Harborne Food School

(The Harborne Food School, which will open in the New Year to offer training and events in local and sustainable food)

The Economist magazine reminded us of the importance of those questions in a recent article describing the enormous investments made in public institutions such as schools, libraries and infrastructure in the past in order to distribute the benefits of the Industrial Revolution to society at large rather than concentrate them on behalf of business owners and the professional classes.

But the institutions of the past, such as the schools which to a large degree educated the population for repetitive careers in labour-intensive factories, won’t work for us today. Our world is more complicated and requires a greater degree of localised creativity to be successful. We need institutions that are able to engage with and understand individuals; and that make their resources openly available so that each of us can use them in the way that makes most sense to us. Some public services are starting to respond to this challenge, through the “Open Public Services” agenda; and the provision of Open Data and APIs by public services and infrastructure are part of the response too.

But as Andrew Zolli describes in “Resilience: why things bounce back“, there are both institutional and cultural barriers to engagement and collaboration between city institutions and localised innovation. Zolli describes the change-makers who overcome those barriers as “translational leaders” – people with the ability to engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.

We’re trying to apply that “translational” thinking in Birmingham through the Smart City Alliance, a collaboration between 20 city institutions, businesses and innovators. The idea is to enable conversations about challenges and opportunities in the city, between people, communities, innovators and  the organisations who have resources, from the City Council and public institutions to businesses, entrepreneurs and social enterprises. We try to put people and organisations with challenges or good ideas in touch with other people or organisations with the ability to help them.

This is how we join the “top-down” resources, policies and programmes of city institutions and big companies with the “bottom-up” innovation that creates value in local situations. A lot of the time it’s about listening to people we wouldn’t normally meet.

Partly as a consequence, we’ve continued to explore the ideas about local food that were first raised at the hackathon. Two years later, the Harborne Food School is close to opening as a social enterprise in a redeveloped building on Harborne High Street that had fallen out of use.

The school will be teaching courses that help caterers provide food from sustainable sources, that teach people how to set up and run food businesses, and that help people to adopt diets that prevent or help to manage conditions such as diabetes. The idea has changed since the “Second Helping” app was written, of course; but the spirit of innovation and local value is the same.

Cities that work like magic

So what does all this have to do with telepathy?

The innovations and changes caused by the internet over the last two decades have accelerated as it has made information easier and easier to access and exchange through the advent of technologies such as broadband, mobile devices and social media. But the usefulness of all of those technologies is limited by the tools required to control them – keyboards, mice and touchscreens.

Before long, we won’t need those tools at all.

Three years ago, scientists at the University of Berkely used computers attached to an MRI scanner to recreate moving images from the magnetic field created by the brain of a person inside the scanner watching a film on a pair of goggles. And last year, scientists at the University of Washington used similar technology to allow one of them to move the other’s arm simply by thinking about it. A less sensitive mind-reading technology is already available as a headset from Emotiv, which my colleagues in IBM’s Emerging Technologies team have used to help a paralysed person communicate by thinking directional instructions to a computer.

Telepathy is now technology, and this is just one example of the way that the boundary between our minds, bodies and digital information will disappear over the next decade. As a consequence, our cities and lives will change in ways we’ve never imagined, and some of those changes will happen surprisingly quickly.

I can’t predict what Birmingham will or should be like in the future. As a citizen, I’ll be one of the million or so people who decide that future through our choices and actions. But I can say that the technologies available to us today are the most incredible DIY tools for creating that future that we’ve ever had access to. And relatively quickly technologies like bio-technology, 3D printing and brain/computer interfaces will put even more power in our hands.

As a parent, I get engaged in my son’s exploration of these technologies and help him be digitally aware, creative and responsible. Whenever I can, I help schools, Universities, small businesses or community initiatives to use them, because I might be helping one of IBM’s best future employees or business partners; or just because they’re exciting and worth helping. And as an employee, I try to help my company take decisions that are good for our long term business because they are good for the society that the business operates in.

We can take for granted that all of us, whatever we do, will encounter more and more incredible technologies as time passes. By remembering these very simple things, and remembering them in the hundreds of choices I make every day, I hope that I’ll be using them to play my part in building a better Birmingham, and better cities and communities everywhere.

(Shades Records in St. Anne's Court in the 1980s)

(Shades Records in St. Anne’s Court in the 1980s. You can read about the role it played in the development of the UK’s music culture – and in the lives of its customers – in this article from Thrash Hits;  or this one from Every Record Tells a Story. And if you really want to find out what it was all about, try watching Celtic Frost or VOIVOD in the 1980s!)

12 simple technologies for cities that are Smart, open and fair

(Fritz Lang’s 1927 dystopian film Metropolis pictured a city that exploited futuristic technologies, but only on behalf of a minority of its citizens. Image by Breve Storia del Cinema)

Efficiency; resilience; growth; vitality. These are all characteristics that cities desire, and that are regularly cited as the objectives of Smarter City programmes and other forward-looking initiatives.

But, though it is less frequently stated, a more fundamental objective underlies all of these: fairness.

The Nobel Prize-winning economist Joseph Stiglitz has written extensively about the need to prioritise fairness as a policy and investment objective in a world that in many areas – and in many cities – is becoming more unequal. That inequality is demonstrated by the difference in life expectancy of 20 years or so that exists between the poorest and richest parts of many UK cities.

I think the Smart Cities movement will only be viewed as a success by the wider world if it contributes to redressing that imbalance.

So how do we design Smart City systems that employ technology to make cities more successful, resilient and efficient; in a way that distributes resources and creates opportunities more fairly than today?

One answer to that question is that the infrastructures and institutions of such cities should be open to citizens and businesses: accessible, understandable, adaptable and useful.

Why do we need open cities?

In the wonderful “Walkable City“, Jeff Speck describe’s the epidemiologist Richard Jackson’s stark realisation of the life-and-death significance of good urban design. Jackson was driving along a notorious 2 mile stretch of Atlanta’s 7-lane Buford highway with no pavements or junctions:

There, by the side of the road, in the ninety-five degree afternoon, he saw a woman in her seventies, struggling under the burden of two shopping bags. He tried to relate her plight to his own work as an epidemiologist. “If that poor woman had collapsed from heat stroke, we docs would have written the cause of death as heat stroke and not lack of trees and public transportation, poor urban form, and heat-island effects. If she had been killed by a truck going by the cause of death would have been “motor vehicle trauma”, and not lack of sidewalks and transit, poor urban planning and failed political leadership.”

(Pedestrian’s attempting to cross Atlanta’s notorious Buford Highway; a 7-lane road with no pavements and 2 miles between junctions and crossings. Photo by PBS)

Buford Highway is an infrastructure fit only for vehicles, not for people. It allows no safe access along or across it for the communities it passes through – it is closed to them, unless they risk their lives.

At the same time that city leaders are realising more and more that better planning is needed to create more equal cities, so it  is imperative that the digital infrastructures we deploy in cities are accessible and useful to citizens, not as dangerous to them as Buford Highway.

Unfortunately, there are already examples of city infrastructures using technologies that are poorly designed, that fail to serve the needs of  communities, or that fail in operation.

For instance, a network of CCTV cameras in Birmingham were eventually dismantled after it was revealed they had been erected to gather evidence of terrorist activities in Birmingham’s Muslim communities, rather than in support of their safety. And there have been many examples of the failure of both public sector agencies and private companies to properly safeguard the data they hold about citizens.

Market failures can result in the benefits of technology being more accessible to wealthier communities than poorer communities. For example,  private sector network providers will not deploy connectivity in areas which are insufficiently economically active for them to make a profit, and Government funding is not yet sufficient to close the gap. And community lenders, who typically offer loans at one-tenth to one-hundredth the cost of payday lenders, have so far lacked the resources to invest in the online technology that makes some payday loans so easy to take out – though this is starting to change.

One of the technology industry’s most notorious failures, the Greyhound Lines bus company’s 1993 “Trips” reservations system, made a city service – bus transport – unusable. The system was intended to make it quicker and easier for ticket agents to book customers onto Greyhound’s buses. But it was so poorly designed and operated so slowly that passengers missed their buses whilst they stood in line waiting for their tickets; were separated from their luggage; and in some cases were stranded overnight in bus terminals.

In the 21st Century, badly applied digital technology will create bad cities, just as badly designed roads and buildings did in the last century.

(The SMS for Life project uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa. Photo by Novartis AG)

Smart Cities for the digitally disconnected

It’s possible to benefit from Smart city infrastructures without being connected to the internet or having skills in digital technology – Stockholm’s road-use charging scheme reduces congestion and pollution for everyone in the city, for example.

But the benefits of many Smart systems are dependent on being connected to the internet and having the skills to use it. From the wealth of educational material now available online (from the most sophisticated Harvard University courses to the most basic tutorials on just about any subject available on YouTube), to the increasing role of technology in high-paid careers, it’s absolutely obvious that the ability to access and use the internet and digital technologies in the future will be a crucial component of a successful life.

Smart cities won’t be fair cities if we take connectivity and skills for granted. Worldwide, fully one-third of the population has never been online; and even in as rich and advanced a country as the United Kingdom, 18% of adults – a fifth of the voting population – have never used the internet. At the risk of generalising a complex issue, many of those people will be those that Smart City services should create benefits for if they are to contribute to making cities fairer.

After legal challenges from private sector providers, the UK Government’s plan to assist cities in funding the deployment of ubiquitous broadband connectivity has been replaced by a voucher scheme that subsidises businesses connecting to existing networks. The scheme will not now directly help to improve broadband coverage in those areas that are poorly served because they are economically relatively inactive – precisely the areas that need the most help.

There’s been a lot of discussion of “net neutrality” recently – the principle that on the Internet, all traffic is equal, and that there is no way to pay for certain data to be treated preferentially. The principle is intended to ensure that the benefits of the internet are equally available to everyone.

But net neutrality is irrelevant to those who can’t access the internet at all; and the free market is already bypassing it in some ways. Network providers who control the local infrastructures that connect homes and businesses to the internet are free to charge higher prices for faster connections. Wealthy corporations and governments can bypass parts of the internet entirely with their own international cable networks through which they can route traffic between users on one continent and content on another.

Governments in emerging economies are building new cities to house their rapidly urbanising populations with ubiquitous, high-speed connectivity from the start. The Australian government is investing the profits from selling raw materials to support that construction boom in providing broadband coverage across the entire country. The least wealthy areas of European cities will be further disadvantaged compared to them unless we can find ways to invest in their digital infrastructure without contravening the European Union’s “State aid” law.

Technology as if people mattered

The UK’s Government Digital Service employ an excellent set of agile, user-centric design principles that are intended to promote the development of Smarter, digitally-enabled services that can be accessed by anyone anywhere who needs them, regardless of their level of skill with digital technology or ability to access the Internet.

The principles include: “Start with needs”; “Do the hard work to make it simple”; “Build for inclusion”; “Understand context”; and “Build digital services, not websites”.

(An electricity bill containing information provided by OPower comparing one household’s energy usage to their neighbours. Image from Grist)

A good example of following these principles and designing excellent, accessible digital services using common sense is the London Borough of Newham. By concentrating on the delivery of services through mobile telephones – which are much more widely owned than PCs and laptops – and on contexts in which a friend or family member assists the ultimate service user, Newham have achieved a remarkable shift to online services in one of London’s least affluent boroughs, home to many communities and citizens without access to broadband connectivity or traditional computers.

Similar, low-tech innovations in designing systems that people find useful can be found in some smart meter deployments.

In principle, the analytic technology in smart meters can provide insights that helps households and businesses reduce energy usage – identifying appliances that are operating inefficiently, highlighting leaks, and comparing households’ energy usage to that of their neighbours.

But most people don’t want to look at smart meter displays or consult a computer before they put the washing on or have a shower.

In one innovative project in the village of Chale, these issues were overcome by connecting analytic technology to a glow globe in the lounge – the globe simply glows red, orange or green depending on whether too much energy is being used compared to that expected for the time of day and year. A similarly effective but even more down-to-earth approach was adopted by OPower in the US who reported that they have helped households save 1.9 terawatt hours of power simply by including a report based on data from smart meters in a printed letter sent with customers’ electricity bills.

There are countless other examples. During peak traffic periods, Dublin’s “Live Drive” radio station plays a mixture of 80s pop music and traffic information derived from sophisticated analytics developed by IBM’s Smarter Cities Research team based on data from road sensors and GPS beacons in the city’s buses. And in India’s rural Karnataka region, which lacks internet infrastructure and where many workers lack literacy skills, let alone access to computers and smartphones, the benefits of online job portals have been recreated using “spoken web” technology using the existing traditional analogue telephone network.

(The inspirational Kilimo Salama scheme that uses

(The inspirational Kilimo Salama scheme that uses “appropriate technology” to make crop insurance affordable to subsistence farmers. Photo by Burness Communications)

In Kenya, Kilimo Salama has made crop insurance affordable for subsistence farmers by using remote weather monitoring to trigger payouts via Safaricom’s M-Pesa mobile payments service, rather than undertaking expensive site visits to assess claims. And the SMS for Life project in Tanzania uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicine between rural pharmacists.

These are all examples of what was originally described as “Intermediate Technology” by the economist Ernst Friedrich “Fritz” Schumacher in his influential work, “Small is Beautiful: Economics as if People Mattered“, and is now known as Appropriate Technology.

12 “appropriate technologies” for Smart Cities

Schumacher’s views on technology were informed by his belief that our approach to economics should be transformed “as if people mattered”. He asked:

What happens if we create economics not on the basis of maximising the production of goods and the ability to acquire and consume them – which ends up valuing automation and profit – but on the Buddhist definition of the purpose of work: “to give a man a chance to utilise and develop his faculties; to enable him to overcome his ego-centredness by joining with other people in a common task; and to bring forth the goods and services needed for a becoming existence.”

Schumacher pointed out that the most advanced technologies, to which we often look to create value and growth, are in fact only effective in the hands of those with the resources and skills required to use them- i.e. those who are already wealthy; and that by emphasising efficiency, output and profit they tend to further concentrate economic value in the hands of the wealthy – often specifically by reducing the employment of people with less advanced skills and roles.

In contrast, Schumacher felt that the most genuine “development ” of our society would occur when the most possible people were employed in a way that gave them the practical ability to earn a living ; and that also offered a level of human reward – much as Maslow’s “Hierarchy of Needs” first identifies our most basic requirements for food, water, shelter and security; but next relates the importance of family, friends and “self-actualisation” (which can crudely be described as the process of achieving things that we care about).

This led him to ask:

What is that we really require from the scientists and technologists? I should answer:

We need methods and equipment which are:

    • Cheap enough so that they are accessible to virtually everyone;
    • Suitable for small-scale application; and
    • Compatible with man’s need for creativity

(Maslow’s Hierarchy of Needs, image by Factoryjoe via Wikimedia Commons)

I can’t think of a more powerful set of tools that reflect these characteristics than the digital technologies that have emerged over the past decade, such as social media, smartphones, Cloud computing and Open Data. They provide a digital infrastructure of appropriate technologies that are accessible to everyone, but that connect with the large scale city infrastructures that support millions of urban lives; and they give citizens, communities and businesses the ability to adapt city infrastructures to their own needs.

I can think of at least 12 such technologies that are particularly important; and that fall into the categories of “Infrastructures that matter”; “Technologies for everyone”; and “The keys to the city”.

Infrastructures that matter

1.Broadband connectivity

I’ve covered the importance of broadband connectivity, and the challenges involved in providing it ubiquitously, already, so I won’t go into detail again here. But whether it’s fixed-line, mobile or wi-fi, its benefits are becoming so significant that it can’t be omitted.

2. Cloud computing

Before Cloud computing, anyone who wanted to develop a computing system for others to use had to invest up-front in an infrastructure capable of operating the service to a reasonable level of reliability. Cloud computing provides a much easier, cheaper alternative: rent a little bit of someone else’s infrastructure. And if your service becomes popular, don’t worry about carrying out complex and costly upgrades, just rent a little more.

Cloud computing has helped to democratise digital services by making it  it dramatically easier and cheaper for anyone to create and offer them.

Technologies for everyone

3. Mobile and Smart phones

In 2013, the number of cellphone subscriptions worldwide surpassed the number of people who have ever owned fixed line telephones.

In the developed world, we’re conscious of the increasing power of Smartphones; and Councils such as Newham are exploiting the fact that many people who lack the desire or resources to purchase a computer and a broadband connection possess and use relatively sophisticated Smartphones through which they access digital services and content.

But in some countries in the developing world, the real story is simply the availability of the first basic infrastructure – voice calls and SMS – that’s available to almost everyone, everywhere. According to one report, access to a basic mobile phone is more common than access to a toilet with proper drainage. In his TEDGlobal 2013 talk, Toby Shapshak described how entire business infrastructures and supply chains are being built upon SMS and similiarly “appropriate” technologies – to the extent that 4o% of Kenya’s GDP now passes through the M-Pesa mobile payments service offered by Safaricom. Banks, technology entrepreneurs, governments and others in the developed world are looking to this wave of innovation as a source of new ideas.

4. Social media

In his 2011 book “Civilization“, Niall Fergusson comments that news of the Indian Mutiny in 1857 took 46 days to reach London, travelling in effect at 3.8 miles an hour. By Jan 2009 when US Airways flight 1549 crash landed in the Hudson river, Jim Hanrahan’s message on Twitter communicated the news to the entire world four minutes later; it reached Perth, Australia at more than 170,000 miles an hour.

Social media is the tool that around a quarter of the world’s population now simply uses to stay in touch with friends and family at this incredible speed.

At a recent Mayoral debate on Smarter Cities, Ridwan Kamil, Mayor of Bandung, Indonesia, described how he has nurtured an atmosphere of civic engagement, trust and transparency by encouraging his staff to connect with the city’s 2.3 million Twitter-using citizens through social media. By encouraging citizens to report issues online and by publishing details of city spending, Mayor Kami has helped to combat corruption and improve public services. Montpellier in France is engaging with citizens through social media in a similar way, asking them to explore data about their city and suggest ways to improve it. And the ambitious control room set up in Rio de Janeiro by Mayor Eduardo Paes to help manage the city during the current World Cup uses social media not just as one of the information feeds that provides insight into what is happening in the city, but to keep citizens as well informed as possible.

The “Community Lovers Guide“, of which 60 editions have now been published across the world, contains stories of people and projects that have improved their communities. The guide is not concerned directly with technology; but many of the initiatives that it describes have used social media as a tool for engaging with stakeholders and supporters.

And we increasingly use social media to conduct business. From e-Bay to Uber, social media is being used to create “sharing economy” business models that replace traditional sales channels and supply chains with networks of peer-to-peer transactions in industries from financial services to agriculture to distribution to retail. Nearly 2 billion of us now regularly use the technologies that allow us to participate in those trading networks.

5. The touchscreen

Three years ago, I watched my then 2-year-old son teach himself how to use a touchscreen tablet to watch cartoons from around the world. He is a member of the first generation to grow up with the world’s information literally at their fingertips before they can read and write.

The simplicity of the touchscreen has already led to the adoption of tablet computers by huge numbers of people who would never have so willingly chosen to use a laptop computer and keyboard. As touchscreens and the devices that use them become cheaper and cheaper, many more people who currently don’t choose to access online content and services will do so without realising it, simply by interacting with the world around them.

We will rapidly develop even more intimate interfaces to technology. Three years ago, scientists at the University of Berkely used computers attached to an MRI scanner to recreate moving images from the magnetic field created by the brain of a person inside the scanner watching a film on a pair of goggles. And last year, scientists at the University of Washington used similar technology to allow one of them to move the other’s arm simply by thinking about it. Whilst it will take time for these technologies to become widely available – and there are certainly ethical issues concerning their use that must be addressed in the process – eventually they will make an important contribution to making information and the ability to communicate widely even more accessible than today.

6. Open Source software

Open Source software is one of the very few technologies that is free in principle to anyone with the time to understand how to use it. It is not free in the medium or long-term – most organisations that use it pay for some form of support or maintenance to be carried out on their Open Source systems. But it is free to get started, and the Open Source community is a great place to get help and advice whilst doing so.

My colleagues around the world work very hard to ensure that IBM’s technologies support open source technology, from interoperating with the MySQL database and CKAN open data portal; to donating IBM-developed technologies such as Eclipse, MQTT and Node-RED to the Open Source community; to IBM’s new “BlueMix” Cloud computing platform for developers which is built from Open Source technology and offers developers 50 pre-built services for inclusion in their Apps, many of which are open source.

Not all technology is Open Source, and there are good reasons why many technology companies large and small invest in developing products and services for cities that use proprietary software – often, simply to protect their investment. For as long as those products and services offer valuable capabilities that are not available as open source software, cities will use them.

But it is vital that city systems incorporating those technologies are nevertheless open for use by open source software, simply to make them as widely accessible as possible for people who need to adapt them to their own needs.

7. Intelligent hardware

The emergence of the internet as a platform for enabling sales, marketing and logistics over the last decade has enabled small and micro-businesses to reach markets across the world that were previously accessible only to much larger organisations with international sales and distribution networks.

More recently, the emergence and maturation of technologies such as 3D printingopen-source manufacturing and small-scale energy generation are enabling small businesses and community initiatives to succeed in new sectors by reducing the scale at which it is economically viable to carry out what were previously industrial activities – a trend recently labelled by the Economist magazine as the “Third Industrial Revolution“.

Arduino, an Open Source electronics prototyping platform, and the Raspberry Pi, a cheap and simple computer intended to simplify the process of teaching programming skills, provide very easy introductions to these technologies; and organisations such as Hub Launchpad and TechShop make it possible for entrepreneurs and small businesses to explore them in more depth.

The keys to the city

8. Open APIs 

An “API” is an “Application Programming Interface“: it is a tool that allows one computer system – such as an Open Source “app” written by an entrepreneur or social innovator – to use the information and capabilities of another computer system – such as a traffic information system for a city’s transport network.

For example, Amazon make an API available to developers that exposes all of the capabilities of Amazon Marketplace – from listing products, to changing prices to despatching goods to customers. Whilst these features are not free to use, they offer one way for businesses to create new online shops extremely quickly,  linked to a fulfilment operation to support them.

Open APIs are a tool that can make digital city infrastructures open to local innovation, and allow citizens, businesses and communities to adapt them to their own needs. For instance, Birmingham’s Droplet, a SmartPhone payment service that encourages local economic growth by making it easy to pay for goods and services from local merchants, offer a developer API to allow their fast, cheap payments system to be included in other city services.

A Smarter City infrastructure whose IT systems offer APIs to citizens, communities and businesses can be accessed and adapted by them. It is the very opposite of Atlanta’s Buford Highway.

(The UK’s Open Data Institute’s 2013 Summit. The ODI promotes open data in the UK and shares best practise internationally. Photo by the ODI)

9. Open Data

The Open Data movement champions the principle that any non-sensitive data from public services and infrastructures should be freely and openly available. Most such data is not currently available in this form – either because the organisations operating those services have yet to adopt the principle, or because the computer systems they use simply were not designed to make data available.

There are many reasons to support the idea of Open Data. McKinsey estimate its economic value to be at least $3 trillion per year, for example.

But perhaps more importantly, Open Data is a fundamental tool for democracy and transparency in a digital age. Niall Firth’s November 2013 editorial for the New Scientist magazine describes how citizens of developing nations are using open data to hold their governments to account, from basic information about election candidates to the monitoring of government spending.

The “Dublinked” information sharing partnership, in which Dublin City Council, three surrounding local authorities and  service providers to the city share information and make it available to their communities as “open data”, is a good example of the benefits that openness can bring. Dublinked now makes 3,000 datasets available to local authority analysts; to researchers from IBM Research and the National University of Ireland; and to businesses, entrepreneurs and citizens. The partnership is identifying new ways for the city’s public services and transport, energy and water systems to work; and enabling the formation of new, information-based businesses with the potential to export the solutions they develop in Dublin to cities internationally. It is putting the power of technology and of city information not only at the disposal of the city authority and its agencies, but also into the hands of communities and innovators.

10. Open Standards

Open Data and Open APIs will only be widely used and effective in cities across the world if they conform to Open Standards that mean that everyone, everywhere can use them in the same way.

In order to do something as simple as changing a lightbulb, we rely on open standards for the levels of voltage and power from our electricity supply; the physical dimensions of the socket and bulb and the characteristics of their fastenings; specifications of the bulb’s light and heat output; and the tolerance of the bulb and the fitting for the levels of moisture found in bathrooms and kitchens. Cities are much more complicated than lightbulbs; and many more standards will be required on order for us to connect to and re-configure their systems easily and reliably.

Open standards are also an important tool in avoiding city systems becoming “locked-in” to any particular supplier. By specifying common characteristics that all systems are required to demonstrate, it becomes more straightforward to exchange one supplier’s implementation for another.

Some standards that Smarter City infrastructures can use are already in place – for example, Web services and REST that specify the general ways in which computer systems interact, and the Common Alerting Protocol which is more specific to interactions between systems that monitor and control the physical world. But many others will need to be invented and encouraged to spread. The City Protocol Society is one organisation seeking to develop those new standards; and the British Standards Institute recently published the first set of national standards for Smarter Cities in the UK, including a standard for the interoperability of data between Smart City systems.

(Photo of the Brixton Pound by Charlie Waterhouse)

11. Local and virtual currencies and trading systems

Local trading systems use paper or electronic currencies that are issued and accepted within a particular place or region. They influence people and businesses to spend the money that they earn locally, thereby promoting regional economic synergies.

Examples include the Bristol Pound; the Droplet smartphone payment scheme in Birmingham; and schemes based on the bartering of goods, money, time and services, such as time banking. Some schemes combine both elements – in Switzerland, a complementary currency, the Wir , has contributed to economic stability over the last century by allowing some debt repayments to be bartered locally when they cannot be repaid in universal currency.

As these schemes develop – and in particular as they adopt technologies such as smartphones and Open APIs – they are increasingly being used as an infrastructure for Smarter City projects in domains such as transport, food supply and energy.

Smarter Cities will succeed at scale when we discover the business models that convert financial payments and investments into social, economic and environmental improvements in the places where we live and work. I can’t think of a more directly applicable tool for designing those business models than flexible, locally focussed currencies and payment infrastructures.

12. Identity stores

In order to use digital services, we have to provide personal information online. What happens to that personal information once we have finished using the service?

Social networks such as Facebook regularly cause controversy when they experiment with new ways to use the data that we freely share with them; often granting them extensive rights over that data in the process.

Our use of technologies such as social media, Smartphones and APIs creates a mass of data about us that is often retained by the operators of the services we use. Sometimes this is as a result of deliberate actions:  when we share geo-tagged photos through social media, for example. In other cases, it is incidental. The location and movement of GPS sensors in our smartphones is anonymised by our network providers and aggregated with that of others nearby who are moving similarly. It is then sold to traffic information services, so that they can sell it back to us through the satellite navigation systems in our cars to help us to avoid traffic congestion.

Organisations of all types and sizes are competing for the new markets and opportunities of the information economy that are created, in part, by this increased availability of personal information. That is simply the natural consequence of the emergence of a new resource in a competitive economy. But it is also true that as the originators of much of that information, and as the ultimate stakeholders in that economy, we should seek to establish an equitable consensus between us for how our information is used.

A different approach is being taken by organisations such as MyDex. MyDex are a Community Interest Company (CIC) who have created a platform that allows users to securely share personal information with digital service providers when they need to; but to revoke access when they have finished using the service.

Incorporation as a Community Interest Company allows MyDex:

“… to be sustainable and requires it be run for community benefit. Crucially, the CIC assets and the majority of any profits must be used for the community purposes for which Mydex is established. Its assets cannot be acquired by another party to which such restrictions do not apply.”

(From the MyDex website, http://mydex.org/about/ensuring-trust/).

As a result of both the security of their technology solution and the clarity with which personal and community interests are reflected in their business model, MyDex’s platform is now being used by a variety of public sector and community organisations to offer a personal data store to the people they support.

MyDex’s approach to creating trust in the use of personal data is not the only one, but it is a good example of a business model that explicitly addresses and prioritises the interests of the individual.

(The town plan for Edinburgh’s New Town, clearly showing the grid structure that gives rise to the adaptability that it is famous for showing for the past 250 years. Image from the JR James archive)

Smart Digital Urbanism

Architects and city planners such as Kelvin Campbell, founder of the Smart Urbanism movement and Jan Gehl, who inspired the “human-scale cities” movement have been identifying the fine-grained physical characteristics of large-scale urban environments that encourage vibrant communities and successful economies through the daily activities of people, families, communities and businesses.

A good example is provided by Edinburgh’s “New Town”, regarded as a masterpiece of urban planning that has proved adaptable and successful through the economic and social changes of the past 250 years. It has frequent road crossings, junctions and side-streets that slow down traffic; provides stopping opportunities for traffic and crossing opportunities for people, encouraging businesses to thrive; and has a mixture of small and large premises for a variety of businesses to occupy.

Smarter cities will not be fairer cities unless we identify and employ technologies for building them that create similar openness and accessibility for digital services and information. That’s precisely what I think Open Data, mobile phones, virtual currencies and the other technologies I’ve described in this article can achieve.

I can’t think of a more exciting idea than using them to address the economic, social and environmental challenge of our time and to build better cities and communities for tomorrow.

Six ways to design humanity and localism into Smart Cities

(Birmingham’s Social Media Cafe, where individuals from every part of the city share their experience using social media to promote their businesses and community initiatives. Photograph by Meshed Media)

The Smart Cities movement is sometimes criticised for appearing to focus mainly on the application of technology to large-scale city infrastructures such as smart energy grids and intelligent transportation.

It’s certainly vital that we manage and operate city services and infrastructure as intelligently as possible – there’s no other way to deal with the rapid urbanisation taking place in emerging economies; or the increasing demand for services such as health and social care in the developed world whilst city budgets are shrinking dramatically; and the need for improved resilience in the face of climate change everywhere.

But to focus too much on this aspect of Smart Cities and to overlook the social needs of cities and communities risks forgetting what the full purpose of cities is: to enable a huge number of individual citizens to live not just safe, but rewarding lives with their families.

Maslow’s Hierarchy of Needs identifies our most basic requirements to be food, water, shelter and security. The purpose of many city infrastructures is to answer those needs, either directly (buildings, utility infrastructures and food supply chains) or indirectly (the transport systems that support us and the businesses that we work for).

Important as those needs are, though – particularly to the billions of people in the world for whom they are not reliably met – life would be dull and unrewarding if they were all that we aspired to.

Maslow’s hierarchy next relates the importance of family, friends and “self-actualisation” (which can crudely be described as the process of achieving things that we care about). These are the more elusive qualities that it’s harder to design cities to provide. But unless cities provide them, they will not be successful. At best they will be dull, unrewarding places to live and work, and will see their populations fall as those can migrate elsewhere. At worst, they will create poverty, poor health and ultimately short, unrewarding lives.

A Smart City should not only be efficient, resilient and sustainable; it should improve all of these qualities of life for its citizens.

So how do we design and engineer them to do that?

(Maslow’s Hierarchy of Needs, image by Factoryjoe via Wikimedia Commons)

Tales of the Smart City

Stories about the people whose lives and businesses have been made better by technology tell us how we might answer that question.

In the Community Lover’s Guide to Birmingham, for example, Nick Booth describes the way his volunteer-led social media surgeries helped the Central Birmingham Neighbourhood Forum, Brandwood End Cemetery and Jubilee Debt Campaign to benefit from technology.

Another Birmingham initiative, the Northfield Ecocentre, crowdfunded £10,000 to support their “Urban Harvest” project. The funds helped the Ecocentre pick unwanted fruit from trees in domestic gardens in Birmingham and distribute it between volunteers, children’s centres, food bank customers and organisations promoting healthy eating; and to make some of it into jams, pickles and chutneys to raise money so that in future years the initiative can become self-sustaining.

In the village of Chale on the Isle of Wight, a community not served by the national gas power network and with significant levels of fuel poverty, my colleague Andy Stanford-Clark has helped an initiative not only to deploy smart meters to measure the energy use of each household; but to co-design with residents how they will use that technology, so that the whole community feels a sense of ownership and inclusion in the initiative. The project has resulted in a significant drop in rent arrears as residents use the technology to reduce their utility bills, in some cases by up to 50 percent. Less obviously, the sense of shared purpose has extended to the creation of a communal allotment area in the village and a successful compaign to halve bus fares in the area.

There are countless other examples. Play Fitness “gamify” exercise to persuade children to get fit, and work very hard to ensure that their products are accessible to children in communities of any level of wealth.  Casserole Club use social media to introduce people who can’t cook for themselves to people who are prepared to volunteer to cook for others. The West Midlands Collaborative Commerce Marketplace uses analytics technology to help it’s 10,000 member businesses win more than £4billion in new contracts each year. … and so on.

None of these initiatives are purely to do with technology. But they all use technologies that simply were not available and accessible as recently as a few years ago to achieve outcomes that are important to cities and communities. By understanding how the potential of technology was apparent to the stakeholders in such initiatives, why it was affordable and accessible to them, and how they acquired the skills to exploit it, we can learn how to design Smart Cities in a way that encourages widespread grass-roots, localised innovation.

(Top: Birmingham's Masshouse Circus roundabout, part of the inner-city ringroad that famously impeded the city's growth. Bottom: This pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

(Top: Birmingham’s Masshouse Circus roundabout, part of the inner-city ringroad that famously impeded the city’s growth until it was demolished. Photo by Birmingham City Council. Bottom: Pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

A tale of two roundabouts

History tells us that we should not assume that it will be straightforward to design Smart Cities to achieve that objective, however.

A measure of our success in building the cities we know today from the generations of technology that shaped them – concrete, cars and lifts – is the variation in life expectancy across them. In the UK, it’s common for life expectancy to vary by around 20 years between the poorest and richest parts of the same city.

That staggering difference is the outcome of a complex set of issues including the availability of education and opportunity, lifestyle factors such as diet and exercise, and the accessibility of city services. But a significant influence on many of those issues is the degree to which the large-scale infrastructures built to support our physiological needs and the demands of the economy also create a high-quality environment for daily life.

The photograph on the right shows two city transport infrastructures that are visually similar, but that couldn’t be more different in their influence on the success of the cities that they are part of.

The picture at the top shows Masshouse Circus in Birmingham in 2001 shortly before it was demolished. It was constructed in the 1960s as part of the city’s inner ring-road, intended to improve connectivity to the national economy through the road network. However, the impact of the physical barrier that it created to pedestrian traffic can be seen by the stark difference in land value inside and outside the “concrete collar” of the ring-road. Inside the collar, land is valuable enough for tall office blocks to be constructed on it; whilst outside it is of such low value that it is used as a ground-level carpark.

In contrast, the pedestrian roundabout in Lujiazui, China pictured at the bottom, constructed over a busy road junction, balances the need to support traffic flows through the city with the need for people to walk freely about the areas in which they live and work. As can be seen from the people walking all around it, it preserves the human vitality of an area that many busy roads flow through. 

We should take insight from these experiences when considering the design of Smart City infrastructures. Unless those infrastructures are designed to be accessible to and usable by citizens, communities and local businesses, they will be as damaging as poorly constructed buildings and poorly designed transport networks. If that sounds extreme, then consider the dangers of cyber-stalking, or the implications of the gun-parts confiscated from a suspected 3D printing gun factory in Manchester last year that had been created on general purpose machinery from digital designs shared through the internet. Digital technology has life and death implications in the real world.

For a start, we cannot take for granted that city residents have the basic ability to access the internet and digital technology. Some 18% of adults in the UK have never been online; and children today without access to the internet at home and in school are at an enormous disadvantage. As digital technology becomes even more pervasive and important, the impact of this digital divide – within and between people, cities and nations – will become more severe. This is why so many people care passionately about the principle of “Net Neutrality” – that the shared infrastructure of the internet provides the same service to all of its users; and does not offer preferential access to those individuals or corporations able to pay for it.

These issues are very relevant to cities and their digital strategies and governance. The operation of any form of network requires physical infrastructure such as broadband cables, wi-fi and 4G antennae and satellite dishes. That infrastructure is regulated by city planning policies. In turn, those planning policies are tools that cities can and should use to influence the way in which technology infrastructure is deployed by private sector service providers.

(Photograph of Aesop’s fable “The Lion and the Mouse” by Liz West)

Little and big

Cities are enormous places in which what matters most is that millions of individually small matters have good outcomes. They work well when their large scale systems support the fine detail of life for every one of their very many citizens: when “big things” and “little things” work well together.

A modest European or US city might have 200,000 to 500,000 inhabitants; a large one might have between one and ten million. The United Nations World Urbanisation Prospects 2011 revision recorded 23 cities with more than 10 million population in 2011 (only six of them in the developed world); and predicted that there would be nearly 40 by 2025 (only eight of them in the developed world – as we define it today). Overall, between now and 2050 the world’s urban population will double from 3 billion to 6 billion. 

A good example of the challenges that this enormous level of urbanisation is already creating is the supply of food. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency; and Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America Feeding the 7 to 10 billion people who will inhabit the planet between now and 2050, and the 3 to 6 billion of them that will live in dense cities, is certainly a challenge on an industrial scale. 

In contrast, Casserole Club, the Northfield Eco-Centre, the Chale Project and many other initiatives around the world have demonstrated the social, health and environmental benefits of producing and distributing food locally. Understanding how to combine the need to supply food at city-scale with the benefits of producing it locally and socially could make a huge difference to the quality of urban lives.

The challenge of providing affordable broadband connectivity throughout cities demonstrates similar issues. Most cities and countries have not yet addressed that challenge: private sector network providers will not deploy connectivity in areas which are insufficiently economically active for them to make a profit, and Government funding is not yet sufficient to close the gap.

In his enjoyable and insightful book “Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia“, Anthony Townsend describes a grass-roots effort by civic activists to provide New York with free wi-fi connectivity. I have to admire the vision and motivation of those involved, but – rightly or wrongly; and as Anthony describes – wi-fi has ultimately evolved to be dominated by commercial organisations.  

As technology continues to improve and to reduce in price, the balance of power between large, commercial, resource-rich institutions and small, agile, resourceful  grassroots innovators will continue to changeTechnologies such as Cloud Computing, social media, 3D printing and small-scale power generation are reducing the scale at which many previously industrial technologies are now economically feasible; however, it will remain the case for the foreseeable future that many city infrastructures – physical and digital – will be large-scale, expensive affairs requiring the buying power and governance of city-scale authorities and the implementation resources of large companies.

But more importantly, neither small-scale nor large-scale solutions alone will meet all of our needs. Many areas in cities – usually those that are the least wealthy – haven’t yet been provided with wi-fi or broadband connectivity by either.  

(Cars in Frederiksberg, Copenhagen wishing to join a main road must give way to cyclists and pedestrians)

(A well designed urban interface between people and infrastructure. Cars in Frederiksberg, Copenhagen wishing to join a main road must give way to cyclists and pedestrians passing along it)

We need to find the middle ground between the motivations, abilities and cultures of large companies and formal institutions on one hand; and those of agile, local innovators and community initiatives on the other. The pilot project to provide broadband connectivity and help using the internet to Castle Vale in Birmingham is a good example of finding that balance.

And I am optimistic that we can find it more often. Whilst Anthony is rightly critical of approaches to designing and building city systems that are led by technology, or that overlook the down-to-earth and sometimes downright “messy” needs of people and communities for favour of unrealistic technocratic and corporate utopias; the reality of the people I know that are employed by large corporations on Smart City projects is that they are acutely aware of the limitations as well as the value of technology, and are passionately committed to the human value of their work. That passion is often reflected in their volunteered commitment to “civic hacking“, open data initiatives, the teaching of technology in schools and other activities that help the communities in which they live to benefit from technology.

But rather than relying on individual passion and integrity, how do we encourage and ensure that large-scale investments in city infrastructures and technology enable small-scale innovation, rather than stifle it?

Smart urbanism and massive/small innovation

I’ve taken enormous inspiration in recent years from the architect Kelvin Campbell whose “Massive / Small” concept and theory of “Smart Urbanism” are based on the belief that successful cities emerge from physical environments that encourage “massive” amounts of “small”-scale innovation – the “lively, diversified city, capable of continual, close- grained improvement and change” that Jane Jacobs described in “The Death and Life of Great American Cities“.

We’ll have to apply similar principles in order for large-scale city technology infrastructures to support localised innovation and value-creation. But what are the practical steps that we can take to put those principles into practise?

Step 1: Make institutions accessible

There’s a very basic behaviour that most of us are quite bad at – listening. In particular, if the institutions of Smart Cities are to successfully create the environment in which massive amounts of small-scale innovation can emerge, then they must listen to and understand what local activists, communities, social innovators and entrepreneurs want and need.

Many large organisations – whether they are local authorities or private sector companies – are poor at listening to smaller organisations. Their decision-makers are very busy; and communications, engagement and purchasing occur through formally defined processes with legal, financial and confidentiality clauses that can be difficult for small or informal organisations to comply with. The more that we address these barriers, the more that our cities will stimulate and support small-scale innovation. One way to do so is through innovations in procurement; another is through the creation of effective engagements programmes, such as the Birmingham Community Healthcare Trust’s “Healthy Villages” project which is listening to communities expressing their need for support for health and wellbeing. This is why IBM started our “Smarter Cities Challenge” which has engaged hundreds of IBM’s Executives and technology experts in addressing the opportunities and challenges of city communites; and in so doing immersed them in very varied urban cultures, economies, and issues.

But listening is also a personal and cultural attitude. For example, in contrast to the current enthusiasm for cities to make as much data as possible available as “open data”, the Knight Foundation counsel a process of engagement and understanding between institutions and communities, in order to identify the specific information and resources that can be most usefully made available by city institutions to individual citizens, businesses and social organisations.

(Delegates at Gov Camp 2013 at IBM’s Southbank office, London. Gov Camp is an annual conference which brings together anyone interested in the use of digital technology in public services. Photo by W N Bishop)

In IBM, we’ve realised that it’s important to us to engage with, listen to and support small-scale innovation in its many forms when helping our customers and partners pursue Smarter City initiatives; from working with social enterprises, to supporting technology start-ups through our Global Entrepreneur Programme, to engaging with the open data and civic hacking movements.

More widely, it is often talented, individual leaders who overcome the barriers to engagement and collaboration between city institutions and localised innovation. In “Resilience: why things bounce back“, Andrew Zolli describes many examples of initiatives that have successfully created meaningful change. A common feature is the presence of an individual who shows what Zolli calls”translational leadership“: the ability to engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.

Step 2: Make infrastructure and technology accessible

Whilst we have a long way to go to address the digital divide, Governments around the world recognise the importance of access to digital technology and connectivity; and many are taking steps to address it, such as Australia’s national deployment of broadband internet connectivity and the UK’s Urban Broadband Fund. However, in most cases, those programmes are not sufficient to provide coverage everywhere.

Some businesses and social initiatives are seeking to address this shortfall. CommunityUK, for example, are developing sustainable business models for providing affordable, accessible connectivity, and assistance using it, and are behind the Castle Vale project in Birmingham. And some local authorities, such as Sunderland and Birmingham, have attempted to provide complete coverage for their citizens – although just how hard it is to achieve that whilst avoiding anti-competition issues is illustrated by Birmingham’s subsequent legal challenges.

We should also tap into the enormous sums spent on the physical regeneration of cities and development of property in them. As I first described in June last year, while cities everywhere are seeking funds for Smarter City initiatives, and often relying on central government or research grants to do so, billions of Pounds, Euros, and Dollars are being spent on relatively conventional property development and infrastructure projects that don’t contribute to cities’ technology infrastructures or “Smart” objectives.

Local authorities could use planning regulations to steer some of that investment into providing Smart infrastructure, basic connectivity, and access to information from city infrastructures to citizens, communities and businesses. Last year, I developed a set of “Smart City Design Principles” on behalf a city Council considering such an approach, including:

Principle 4: New or renovated buildings should be built to contain sufficient space for current and anticipated future needs for technology infrastructure such as broadband cables; and of materials and structures that do not impede wireless networks. Spaces for the support of fixed cabling and other infrastructures should be easily accessible in order to facilitate future changes in use.

Principle 6: Any development should ensure wired and wireless connectivity is available throughout it, to the highest standards of current bandwidth, and with the capacity to expand to any foreseeable growth in that standard.

(The Birmingham-based Droplet smartphone payment service, now also operating in London, is a Smart City start-up that has won backing from Finance Birmingham, a venture capital company owned by Birmingham City Council)

Step 3: Support collaborative innovation

Small-scale, local innovations will always take place, and many of them will be successful; but they are more likely to have significant, lasting, widespread impact when they are supported by city institutions with resources.

That support might vary from introducing local technology entrepreneurs to mentors and investors through the networks of contacts of city leaders and their business partners; through to practical assistance for social enterprises, helping them to put in place very basic but costly administration processes to support their operations.

City institutions can also help local innovations to thrive simply by becoming their customers. If Councils, Universities and major local employers buy services from innovative local providers – whether they be local food initiatives such as the Northfield Ecocentre or high-tech innovations such as Birmingham’s Droplet smartphone payment service – then they provide direct support to the success of those businesses.

In Birmingham,for example, Finance Birmingham (a Council-owned venture capital company) and the Entrepreneurs for the Future (e4F) scheme provide real, material support to the city’s innovative companies; whilst Bristol’s Mayor George Ferguson and Lambeth’s Council both support their local currencies by allowing salaries to be paid in them.

It becomes more obvious  why stakeholders in a city might become involved in collaborative innovation when they have the opportunity to co-create a clear set of shared priorities. Those priorities can be compared to the objectives of innovative proposals seeking support, whether from social initiatives or businesses; used as the basis of procurement criteria for goods, services and infrastructure; set as the objectives for civic hacking and other grass-roots creative events; or even used as the criteria for funding programmes for new city services, such as the “Future Streets Incubator” that will shortly be launched in London as a result of the Mayor of London’s Roads Task Force.

In this context, businesses are not just suppliers of products and services, but also local institutions with significant supply chains, carbon and economic footprints, purchasing power and a huge number of local employees. There are many ways such organisations can play a role in supporting the development of an open, Smarter, more sustainable city.

The following “Smart City Design Principles” promote collaborative innovation in cities by encouraging support from development and regeneration initiatives:

Principle 12: Consultations on plans for new developments should fully exploit the capabilities of social media, virtual worlds and other technologies to ensure that communities affected by them are given the widest, most immersive opportunity possible to contribute to their design.

Principle 13: Management companies, local authorities and developers should have a genuinely engaging presence in social media so that they are approachable informally.

Principle 14: Local authorities should support awareness and enablement programmes for social media and related technologies, particularly “grass roots” initiatives within local communities.

Step 4: Promote open systems

A common principle between the open data movement; civic hacking; localism; the open government movement; and those who support “bottom-up” innovations in Smart Cities is that public systems and infrastructure – in cities and elsewhere – should be “open”. That might mean open and transparent in their operation; accessible to all; or providing open data and API interfaces to their technology systems so that citizens, communities and businesses can adapt them to their own needs. Even better, it might mean all of those things.

The “Dublinked” information sharing partnership, in which Dublin City Council, three surrounding County Councils and  service providers to the city share information and make it available to their communities as “open data”, is a good example of the benefits that openness can bring. Dublinked now makes 3,000 datasets available to local authority analysts; to researchers from IBM Research and the National University of Ireland; and to businesses, entrepreneurs and citizens. The partnership is identifying new ways for the city’s public services and transport, energy and water systems to work; and enabling the formation of new, information-based businesses with the potential to export the solutions they develop in Dublin to cities internationally. It is putting the power of technology and of city information not only at the disposal of the city authority and its agencies, but also into the hands of communities and innovators.

(I was delighted this year to join Innovation Birmingham as a non-Executive Director in addition to my role with IBM. Technology incubators – particularly those, like Innovation Birmingham and Sunderland Software City, that are located in city centres – are playing an increasingly important role in making the support of city institutions and major technology corporations available to local communities of entrepreneurs and technology activists)

In a digital future, the more that city infrastructures and services provide open data interfaces and APIs, the more that citizens, communities and businesses will be able to adapt the city to their own needs. This is the modern equivalent of the grid system that Jane Jacobs promoted as the most adaptable urban form. A grid structure is the basis of Edinburgh’s “New Town”, often regarded as a masterpiece of urban planning that has proved adaptable and successful through the economic and social changes of the past 250 years, and is also the starting point for Kelvin Campbell’s work.

But open data interfaces and APIs will only be widely exploitable if they conform to common standards. In order to make it possible to do something as simple as changing a lightbulb, we rely on open standards for the levels of voltage and power from our electricity supply; the physical dimensions of the socket and bulb and the characteristics of their fastenings; specifications of the bulb’s light and heat output; and the tolerance of the bulb and the fitting for the levels of moisture found in bathrooms and kitchens. Cities are much more complicated than lightbulbs; and many more standards will be required on order for us to connect to and re-configure their systems easily and reliably.

Open standards are also an important tool in avoiding city systems becoming “locked-in” to any particular supplier. By specifying common characteristics that all systems are required to demonstrate, it becomes more straightforward to exchange one supplier’s implementation for another.

Some standards that Smarter City infrastructures can use are already in place – for example, Web services and REST that specify the general ways in which computer systems interact, and the Common Alerting Protocol which is more specific to interactions between systems that monitor and control the physical world. But many others will need to be invented and encouraged to spread. The City Protocol Society is one organisation seeking to develop those new standards; and the British Standards Institute recently published the first set of national standards for Smarter Cities in the UK, including a standard for the interoperability of data between Smart City systems.

Some open source technologies will also be pivotal; open source (software whose source code is freely available to anyone, and which is usually written by unpaid volunteers) is not the same as open standards (independently governed conventions that define the way that technology from any provider behaves). But some open source technologies are so widely used to operate the internet infrastructures that we have become accustomed to – the “LAMP” stack of operating system, web server, database and web progamming language, for example – that they are “de facto” standards that convey some of the benefits of wide usability and interoperability of open standards. For example, IBM recently donated MQTT, a protocol for connecting information between small devices such as sensors and actuators in Smart City systems to the open source community, and it is becoming increasingly widely adopted as a consequence.

Once again, local authorities can contribute to the adoption of open standards through planning frameworks and procurement practises:

Principle 7: Any new development should demonstrate that all reasonable steps have been taken to ensure that information from its technology systems can be made openly available without additional expenditure. Whether or not information is actually available will be dependent on commercial and legal agreement, but it should not be additionally subject to unreasonable expenditure. And where there is no compelling commercial or legal reason to keep data closed, it should actually be made open.

Principle 8: The information systems of any new development should conform to the best available current standards for interoperability between IT systems in general; and for interoperability in the built environment, physical infrastructures and Smarter Cities specifically.

(The town plan for Edinburgh’s New Town, clearly showing the grid structure that gives rise to the adaptability that it is famous for showing for the past 250 years. Image from the JR James archive)

Finally, design skills will be crucial both to creating interfaces to city infrastructures that are truly useful and that encourage innovation; and in creating innovations that exploit them that in turn are useful to citizens.

At the technical level, there is already a rich corpus of best practise in the design of interfaces to technology systems and in the architecture of technology infrastructures that provide them.

But the creativity that imagines new ways to use these capabilities in business and in community initiatives will also be crucial. The new academic discipline of “Service Science” describes how designers can use technology to create new value in local contexts; and treats services such as open data and APIs as “affordances” – capabilities of infrastructure that can be adapted to the needs of an individual. In the creative industries, “design thinkers” apply their imagination and skills to similar subjects.

Step 5: Provide common services

At the 3rd EU Summit on Future Internet, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project, identified the specific tools that local innovators need in order to exploit city information infrastructures. They include real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust.

The Dublinked information sharing partnership is already putting some of these ideas into practise. It provides assistance to innovators in using, analysing and visualising data; and now makes available realtime data showing the location and movements of buses in the city. The partnership is based on specific governance processes that protect data privacy and manage the risk associated with sharing data.

As we continue to engage with communities of innovators in cities, we will discover further requirements of this sort. Imperial College’s “Digital Cities Exchange” research programme is investigating the specific digital services that could be provided as enabling infrastructure to support innovation and economic growth in cities, for example. And the British Standards Institute’s Smart Cities programme includes work on standards that will enable small businesses to benefit from Smart City infrastructure.

Local authorities can adapt planning frameworks to encourage the provision of these services:

Principle 9: New developments should demonstrate that they have considered the commercial viability of providing the digital civic infrastructure services recommended by credible research sources.

Step 6: Establish governance of the information economy

From the exponential growth in digital information we’ve seen in recent years, to the emergence of digital currencies such as Bitcoin, to the disruption of traditional industries by digital technology; it’s clear that we are experiencing an “information revolution” just as significant as the “industrial revolution” of the 18th and 19th centuries. We often refer to the resulting changes to business and society as the development of an “information economy“.

But can we speak in confidence of an information economy when the basis of establishing the ownership and value of its fundamental resource – digital information – is not properly established?

(Our gestures when using smartphones may be directed towards the phones, or the people we are communicating with through them; but how are they interpreted by the people around us? “Oh, yeah? Well, if you point your smartphone at me, I’m gonna point my smartphone at you!” by Ed Yourdon)

A great deal of law and regulation already applies to information, of course – such as the European Union’s data privacy legislation. But practise in this area is far less established than the laws governing the ownership of physical and intellectual property and the behaviour of the financial system that underlie the rest of the economy. This is evident in the repeated controversies concerning the use of personal information by social media businesses, consumer loyalty schemes, healthcare providers and telecommunications companies.

The privacy, security and ownership of information, especially personal information, are perhaps the greatest challenges of the digital age. But that is also a reflection of their importance to all aspects of our lives. Jane Jacobs’ description of urban systems in terms of human and community behaviour was based on those concepts, and is still regarded as the basis of our understanding of cities. New technologies for creating and using information are developing so rapidly that it is not only laws specifically concerning them that are failing to keep up with progress; laws concerning the other aspects of city systems that technology is transforming are failing to adapt quickly enough too.

A start might be to adapt city planning regulations to reflect and enforce the importance of the personal information that will be increasingly accessed, created and manipulated by city systems:

Principle 21: Any information system in a city development should provide a clear policy for the use of personal information. Any use of that information should be with the consent of the individual.

The triumph of the commons

I wrote last week that Smarter Cities should be a “middle-out” economic investment – in other words, an investment in common interests – and compared them to the Economist’s report on the efforts involved in distributing the benefits of the industrial revolution to society at large rather than solely to business owners and the professional classes.

One of the major drivers for the current level of interest in Smarter Cities and technology is the need for us to adapt to a more sustainable way of living in the face of rising global populations and finite resources. At large scale, the resources of the world are common; and at local scale, the resources of cities are common too.

For four decades, it has been widely assumed that those with access to common resources will exploit them for short term gain at the expense of long term sustainability – this is the “tragedy of the commons” first described by the economist Garrett Hardin. But in 2009, Elinor Ostrum won the Nobel Prize for economics by demonstrating that the “tragedy” could be avoidedand that a community could manage and use shared resources in a way that was sustainable in the long-term.

Ostrum’s conceptual framework for managing common resources successfully is a set of criteria for designing “institutions” that consist of people, processes, resources and behaviours. These need not necessarily be formal political or commercial institutions, they can also be social structures. It is interesting to note that some of those criteria – for example, the need for mechanisms of conflict resolution that are local, public, and accessible to all the members of a community – are reflected in the development over the last decade of effective business models for carrying out peer-to-peer exchanges using social media, supported by technologies such as reputation systems.

Of course, there are many people and communities who have championed and practised the common ownership of resources regardless of the supposed “tragedy” – not least those involved in the Transition movement founded by Rob Hopkins, and which has developed a rich understanding of how to successfully change communities for the better using good ideas; or the translational leaders described by Andrew Zolli. But Elinor Ostrum’s ideas are particularly interesting because they could help us to link the design, engineering and governance of Smarter Cities to the achievement of sustainable economic and social objectives based on the behaviour of citizens, communities and businesses.

Combined with an understanding of the stories of people who have improved their lives and communities using technology, I hope that the work of Kelvin Campbell, Rob Hopkins, Andrew Zolli, Elinor Ostrum and many others can inspire technologists, urban designers, architects and city leaders to develop future cities that fully exploit modern technology to be efficient, resilient and sustainable; but that are also the best places to live and work that we can imagine, or that we would hope for for our children.

Cities created by people like that really would be Smart.

Creating successful Smart Cities in 2014 will be an economic, financial and political challenge, not an engineering accomplishment

Why insurers, pension funds and politics will be more important to Smart Cities in 2014 than “Living Labs” or technology.

(The 2nd Futurama exhibition at the 1964 New York World’s Fair. In 50 years’ time, how will we perceive today’s visions of Smart Cities? Photo by James Vaughan)

I hope that 2014 will be the year in which we see widespread and large-scale investments in future city technology infrastructures that enable sustainable, equitably distributed economic and social growth. The truth is that we are still in the very early stages of that process.

In 2012 I spoke with a Director at a financial consultancy who’d performed a survey of European Smart City initiatives. She confirmed something that I suspected at the time: that the great majority of Smart City initiatives up to that point in the mature markets of Europe and North America had been financed by research funding, rather than on a commercial basis.

Four trends characterised the subsequent development of Smart Cities throughout 2013. Firstly, emerging markets continued to invest in supporting the rapid urbanisation they are experiencing; and businesses, Universities and national governments in developed nations recognised the commercial opportunity for them to supply that market with “Smart” solutions.

Secondly, it remains the case that the path to growth for undeveloped nations is still extremely slow and complex; so whilst there is private sector and national government interest in investing in those nations – IBM’s new Research centre in Nairobi being an example – many “smart” initiatives are carried out at small scale by local innovators, the third sector or development agencies.

In Europe and North America, a third trend was the continuing announcement of investments by the European Union and national governments in the applied research and innovation agenda in cities – such as the EU’s Horizon 2020 programme, for example.

Perhaps most importantly, though, the final trend was for cities in Europe and North America to start to make investments in the underlying technology platforms for Smart Cities from their own operational budgets, on the basis of their ability to deliver cost savings or improvements in outcomes. For example, some cities are replacing traditional parking management and enforcement services with “smart parking” schemes that are reducing congestion and pollution whilst paying for themselves through improved revenues. Others are investing their allocation of central government infrastructure funds in Smart solutions – such as Cambridge, Ontario’s use of the Canadian government’s Gas Tax Fund to invest in a sensor network and analytics infrastructure to manage the city’s physical assets intelligently.

This trend to create business cases for investment from normal operating budgets or infrastructure investment programmes is important not only because it shows that these cities are developing the business models to support investment in “Smart” solutions locally, where the finances associated with rapid economic growth and urbanisation are not present; but also because (at the risk of simplifying a challenging and complex issue) some of those business models might serve as a template for self-sustainable adoption in less developed nations.

(Downtown Cambridge, Ontario. Photo by Justin Scott Campbell)

Whilst the idea of a “Smart City” has been capturing the imagination for several years now, the reality is that many cities are still deciding what that idea might mean for them. For example, London’s “Smart London Board” published it’s Smart London plan in December, following Birmingham’s Smart City Commission report earlier in the year. And most cities who are considering such plans now or who have recently published them are still determining how to put the finance in place to carry them out.

Will “Living Labs” be the death of Smart Cities?

A concept that I see in many such plans that is intended to assist in securing finance, but that I think risks being a distraction from addressing it properly, is the “Living Lab”. 

Living labs emerged as a set of best practises for carrying out applied research into consumer or citizen services with a focus on collaborative, user-centred design and co-creation. Many cities are now seeking to win funding for their Smarter Cities initiatives by offering themselves as “Living Labs” in which consortia constructing proposals for applied research funding can carry out their activities.

The issue is not that Living Lab’s aren’t a good idea – on the contrary, they are undoubtably a very good set of prescriptions for carrying out such research and design successfully. The problem is that there are now so many cities intending to follow this approach that it no longer makes them stand out as particularly effective environments in which to perform research.

Research programmes will continue to fund the first deployments of new Smart City ideas and technology; but competition for those funds will be fierce. Cities, universities and companies that bid for them will invest many months – often more than a year – in developing their proposals; and in competitions, most entrants do not win.

The real need in cities is for the development and regeneration of infrastructure. There are certainly research topics concerning infrastructure that will attract funding from national and international government bodies; but those funds will not support the rollout of citywide infrastructure to every city in every country.

(Birmingham's new city-centre tram)

(Birmingham’s new city-centre tram is an infrastructure investment that will contribute to the same objectives as the city’s Smart City vision.)

The big questions for European and American cities in 2014 are then:

Will they continue to invest resources competing for applied research and innovation funding, limiting the speed at which the widespread deployment of new infrastructure will take place?

Or will they focus on developing independently viable business cases for investment in the infrastructure to support their
Smarter City visions?

There’s a real need for clarity about these issues. Whilst the enormous level of innovation funding being made into smart buildings, smart transport and smart cities by the EU Horizon 2020 programme and national equivalents such as the UK’s Technology Strategy Board will stimulate the field and fund important demonstration projects that deliver real value, these bodies will not pay for all of our cities to become Smarter.

The same is true for the research investments made by commercial organisations including technology companies such as IBM. Commercial research investments fund the first attempts to apply technology to solve problems or achieve objectives in new ways; those that succeed are subsequently deployed elsewhere on a commercial basis.

The risk is that in seeking investment from research programmes, we become distracted from addressing the real challenge: how to make the case for private sector investment in new technology infrastructures based on the economic and social improvements they will enable; or on the direct financial returns that they will generateIn the UK, for example, a specialist body in Government, Infrastructure UK, coordinates private sector funding for public infrastructure. And if we can persuade property developers of the value of “Smart” technologies, then cities could benefit from the enormous investments made in property every year that currently don’t result in the deployment of technology – the British Property Federation, for example, estimate that £14 billion is invested in the development of new space in the UK each year.

(This pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

This is an opportunity we should treat with urgency. Whilst public sector finances are under immense pressure, the vast wealth held in private investment funds is seeking new opportunities following the poor returns that many traditional forms of investment have yielded over the last few years. There is a lot of work to do between the stakeholders in cities, government and finance before these investment sources can be exploited by Smart Cities – not least in agreeing reasonable expectations for how the risks and returns will be measured and shared. But I personally believe that until we do so, we will not be able to properly finance the development of our next generation of cities.

As Jane Jacobs wrote in her seminal 1961 work “The Death and Life of Great American Cities“:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close-grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

Overcoming these challenges won’t be easy, and doing so will require each of the various stakeholder organisations facing them to take bold steps this year.

Local Government

Whilst their finances throughout the developed world have been under severe pressure for a long time now, local government bodies are still responsible for procuring a significant volume of goods and services. Smart Cities will only become a reality when local authority visions for the future are reflected in procurement practises and scoring criteria for contracts issued today. It’s only very recently that procurements for contracts to build, update and manage physical infrastructures such as roads and pavements have been based on outcomes such as minimising congestion or increasing the overall quality of performance throughout the lifetime of the asset within the contract value, rather than on securing the maximum volume of concrete (or number of traffic wardens).

Outcomes-based procurements are challenging to be sure, both for the purchaser and the provider; especially so when they are for such new solutions. But service and infrastructure providers will only be motivated to propose and deliver innovative, smart solutions when they’re rewarded for doing so.

Local authorities can also exploit indirect mechanisms such as planning and development frameworks. I worked last year with one authority which asked how its planning framework should evolve in order to promote the development of a “Smart City”, and published a set of 23 “Design principles for a Smarter City” as a result. They require that investments in property also deliver technology infrastructures such as wi-fi, broadband, open-data, and multi-channel self-service access.

(An analysis based on GPS data from mobile phones of end-to-end journeys undertaken by users of Abidjan’s bus services. By comparing existing bus routes to end-to-end journey requirements, the analysis identified four new bus routes and led to changes in many others. As a result, 22 routes now show increased ridership, and city-wide journey times have decreased by 10%. The techniques and technologies behind the project build on those developed for projects in Dubuque, Istanbul and Dublin.)

Private Sector

The technology companies associated with Smart Cities have sometimes been criticised for focussing too much on the technology that can be applied to city infrastructures, and not enough on the improvements to people’s work and lives that technology can enable, or on the business cases for investing in it.

To make the business case clearer, my colleague the economist Mary Keeling has been working for IBM’s Institute for Business Value to more clearly analyse and express the benefits of Smart approaches – in water management and transportation, for example. And I’ll be contributing along with representatives from many of the other companies that provide technology and infrastructure for Smart Cities to the TSB’s Future Cities Catapult’s finance initiative.

But we also need to respect the principles of Living Labs and the experience of urban designers – not least the writing of Jane Jacobs – which reflect that our starting point for thinking about Smart Cities should be the everyday lives and experiences of individual citizens in their family lives; at work; and moving through cities. In one sense, this is business as usual in the technology industry – “user-centered design“, “use cases” and “user stories” have been at the heart of software development since the 1980s. So one of our challenges is simply to communicate that approach more clearly within our descriptions of Smart Cities. This is a topic I’ve written about in many articles on this blog that you can find described in “7 Steps to a Smarter City“; and that I tried to address in IBM’s new Smarter Cities video.

The other challenge is for technology companies to become more familiar and expert in the disciplines associated with good quality urban design – town planning, architecture, social science and the psychology of human behaviour, for example. This is one of the reasons why IBM started the “Smarter Cities Challenge” programme through which we have donated our technology expertise to 100 cities worldwide to help them address the opportunities and challenges they face; and in so doing become more familiar with their very varied cultures, economies, issues and capabilities. It’s also why I joined the Academy of Urbanism, along with representatives of several other technology companies.

We also need to embrace the “Smart Urbanism” thinking exemplified by Kelvin Campbell. Kelvin’s “Massive / Small” approach is intended to design large-scale urban infrastructures that encourage and support “massive” amounts of “small-scale” innovation. I think that’s an extremely powerful idea that we should embrace in Smarter Cities; and that translates directly to the practise of providing open-standard, public interfaces to city technology infrastructures – open data feeds and APIs (“Application Programming Interfaces”), for example – that not only reduce the risk that city systems become “locked-in” to any proprietary provider; but that also open up the power of large scale technology systems and “big data” sources so that local businesses, innovators and communities are able to adapt public infrastructures to their own needs. I think of these interfaces as creating an “innovation boundary” between a city’s infrastructure and its stakeholders.

(George Ferguson, Mayor of Bristol, one of the few cities in the UK with an elected Mayor with significant authority and responsibility. His salary is paid in the city’s local currency, the Bristol Pound, rather than in the national currency. His red trousers are famous. Photo by PaulNUK)

Central Government

In most countries in the developed world – i.e. those which are not being driven by rapid urbanisation today because they urbanised during the Industrial Revolution – the majority of Smart City initiatives that have momentum are driven by Mayors convening city stakeholders and institutions to co-create, finance and deliver those initiatives. Correspondingly, in countries without strong mayoral systems – such as the UK – progress can be slower. Worryingly, Centre for Cities’ recent Outlook 2014 report pointed out that only 17% of funding for UK cities comes from locally administered taxation, as opposed to the OECD average of 55%.

To risk stating the obvious, every city is different, and different in very many important ways, from its geographical situation to its linkage to national and international transport infrastructure; from its economic and business capabilities to the skills and wealth of its population; from its social challenges and degree of social mobility to its culture and heritage. Successful Smart City initiatives are specific, not generic; and the greater degree of autonomy that cities are allowed in setting strategy and securing financing, the greater their capability to pursue those initiatives. Programmes such as “City Deals” and the recent reforms resulting from Lord Heseltine’s “No Stone Unturned” report are examples of progress towards greater autonomy for the UK’s cities, but they are not enough.

Central government will always have a significant role in funding the infrastructures that cities rely on, of course; whether that’s national infrastructures that connect cities (such as the planned “HS2” high-speed train network in the UK, or Australia’s national deployment of broadband internet connectivity), or specific infrastructures within cities, such as Birmingham’s new city-centre tram. And so just as local governments should consider how they can use procurement practises and planning frameworks to encourage investments in property and infrastructure that deliver “Smart” solutions, so central government should consider how the funding programmes that it administers can contribute to cities’ “Smart” objectives.

Financial Services

If the challenge is to unlock investment in new assets and outcomes, then we should turn to banks, insurers and investors to help us shape the new financial vehicles that we will require to do so. In Canada, for example, a collaboration between Canadian insurers and cities has developed a set of tools to create a common understanding of the financial risk created by the effects of climate change on the resilience of city infrastructures. These tools are the first step towards creating investment and insurance models for city infrastructures that will be exposed to new levels of risk; that will need to exhibit new levels of resilience; and that in turn may require Smart solutions to achieve them.

(Luciana Berger, Shadow Minister for Energy and Climate Change pictured talking to Northfield, Birmingham resident Abraham Weekes and James McKay, Birmingham City Council’s Cabinet Member for a Green, Safe and Smart city. Abraham lives in the house pictured, which has been fitted with exterior house covering, solar panels and energy efficient windows through the Birmingham Energy Savers scheme. Photo by Birmingham City Council)

More internationally, the “Little Rock Accord” between the Madrid Club of former national Presidents and Prime Ministers and the P80 group of pension funds agreed to create a task force to increase the degree to which pension and sovereign wealth funds invest in the deployment of technology to address climate change issues, shortages in resources such as energy, water and food, and sustainable, resilient growth. And more locally, I’m proud to note that my home city of Birmingham is a pioneer in this area through the Birmingham Energy Savers project, financed through a mixture of prudential borrowing and private sector investment.

It has taken us too long to get to this point, but I’m encouraged that several initiatives are now convening discussions between the traditionally understood stakeholders in Smart Cities – local authorities, technology companies, universities and built-environment companies – and the financial sector. For example, in addition to the Future Cities Catapult’s financing programme, on March 13th, I’ll be speaking at an event organised by the Lord Mayor of the City of London to encourage the City’s financial institutions and UK city authorities to undertake a similar collaboration to develop new financing models for future city infrastructures.

Are Smarter Cities a “middle out” economic intervention?

In his 2011 Presidential Campaign speech Barack Obama promised an economic strategy based on “middle-out” economics – the philosophy that equitable, sustainable growth is driven by the spending power of middle class consumers, as an alternative to “trickle-down” economics – the philosophy that growth is best created when very rich “wealth-creators” are free to become as successful as possible.

As this analysis in “The Atlantic” shows, job creation does depend on the investments of the wealthiest; but also on the spending power of the masses; and on a lot of very hard work making sure that a reasonable portion of the profits created by both of those activities are used to invest in making skills, education and opportunity available to all. The Economist magazine made the same point in a recent article by reminding us of the enormous investments made into public institutions in the past in order to distribute the benefits of the Industrial Revolution to society at large rather than concentrate them on behalf of business owners and the professional classes; though with only partial success.

(The discussion group at the #SmartHack event in Birmingham)

(The discussion group at the #SmartHack event in Birmingham, described in “Tea, trust and hacking – how Birmingham is getting Smarter“, photographed by Sebastian Lenton)

 Those ideas are reflected in what it takes to craft an investment in a technology-enabled Smart City initiative that successfully creates social and economic improvements in a city.

Whilst a huge number of effective “Smart” ideas will be created “bottom-up” by innovators and social entrepreneurs intimately familiar with specific local communities and context, those ideas will not succeed as well or rapidly as we need them to without significant investment in new infrastructures – such as wi-fi, broadband and realtime open data – that are deployed everywhere, not just in the most economically active areas of cities that reward commercial investment most quickly. Accessibility to these infrastructures creates the “innovation boundary” between city institutions and infrastructures, and local innovators and communities.

This is not an abstract concept; it is an idea that some cities are making very real today. For example, the “Dublinked” information-sharing partnership between Dublin County Council, three surrounding County Councils and the National University of Ireland now makes available 3,000 city datasets as “open data” – including a realtime feed showing the location of buses in the city. That’s a resource that local innovators can use to create their own new applications and services. Similarly, in Birmingham the “West Midlands Open Data Forum” has emerged as a community in which city local businesses and innovators can negotiate access to data held by city institutions and service providers.

(David Willets, MP, Minister for Universities and Science, launches the UK Government’s Smart Cities Forum)

At launch of the UK Government’s “Smart Cities Forum” last year, I remarked that we were not inviting key stakeholders to the Smarter Cities debate – specifically, banks, investors, insurers and entrepreneurs. Some of the initiatives I’ve described in this article are starting to address that omission; and to recognise that the most significant challenges are to do with finance, politics, social issues and economics, not engineering and technology.

And those are challenges that all of us should focus on. No-one is going to pay for our cities to become Smarter, more successful, more sustainable and fairer: we will have to figure out how to pay for  those things ourselves.

The sharing economy and the future of movement in smart, human-scale cities

("Visionary City" by William Robinson Leigh)

(William Robinson Leigh’s 1908 painting “Visionary City” envisaged future cities constructed from mile-long buildings of hundreds of stories connected by gas-lit skyways for trams, pedestrians and horse-drawn carriages. A century later we’re starting to realise not only that developments in transport and power technology have eclipsed Leigh’s vision, but that we don’t want to live in cities constructed from buildings on this scale.)

One of the defining tensions throughout the development of cities has been between our desire for quality of life and our need to move ourselves and the things we depend on around.

The former requires space, peace, and safety in which to work, exercise, relax and socialise; the latter requires transport systems which, since the use of horsedrawn transport in medieval cities, have taken up space, created noise and pollution – and are often dangerous. Enrique Penalosa, whose mayorship of Bogota was defined by restricting the use of car transport, often refers to the tens of thousands of children killed by cars on the world’s roads every year and his astonishment that we accept this as the cost of convenient transport.

This tension will intensify rapidly in coming years. Not only are our cities growing larger and denser, but according to the analysis of city systems by Professors Geoffrey West and Louis Bettencourt of the Los Alamos National Laboratory and Professor Ian Robertson’s study of human behaviour, our interactions within them are speeding up and intensifying.

Arguably, over the last 50 years we have designed cities around large-scale buildings and transport structures that have supported – and encouraged – growth in transport and the size of urban economies and populations at the expense of some aspects of quality of life.

Whilst standards of living across the world have improved dramatically in recent decades, inequality has increased to an even greater extent; and many urbanists would agree that the character of some urban environments contributes significantly to that inequality. In response, the recent work of architects such as Jan Gehl and Kelvin Campbell, building on ideas first described by Jane Jacobs in the 1960s, has led to the development of the “human scale cities” movement with the mantra “first life, then space, then buildings”.

The challenge at the heart of this debate, though, is that the more successful we are in enabling human-scale value creation; the more demand we create for transport and movement. And unless we dramatically improve the impact of the systems that support that demand, the cities of the future could be worse, not better, places for us to live and work in.

Human scale technology creates complexity in transport

As digital technology pervades every aspect of our lives, whether in large-scale infrastructures such as road-use charging systems or through the widespread adoption of small-scale consumer technology such as smartphones and social media, we cannot afford to carry out the design of future cities without considering it; nor can we risk deploying it without concern for its affect on the quality of urban life.

Digital technologies do not just make it easier for us to communicate and share information wherever we are: those interactions create new opportunities to meet in person and to exchange goods and services; and so they create new requirements for transport. And as technologies such as 3D printing, open-source manufacturing and small-scale energy generation make it possible to carry out traditionally industrial activities at much smaller scales, some existing bulk movement patterns will be replaced by thousands of smaller, peer-to-peer interactions created by transactions in online marketplaces. We can already see the effects of this trend in the vast growth of traffic delivering goods that are purchased or exchanged online.

Estimates of the size of this “sharing economy“, defined by Wikipedia as “economic and social systems that enable shared access to goods, services, data and talent“, vary widely, but are certainly significant. The UK Economist magazine reports one estimate that it is a $26 billion economy already, whilst 2 Degrees Network report that just one aspect of it – small-scale energy generation – could save UK businesses £33 billion annually by 2030Air B’n’B – a peer-to-peer accommodation service – reported recently that they had contributed $632 million in value to New York’s economy in 2012 by enabling nearly 5,000 residents to earn an average of $7,500 by renting their spare rooms to travellers; and as a consequence of those travellers additionally spending an average of $880 in the city during their stay. The emergence in general of the internet as a platform for enabling sales, marketing and logistics for small and micro-businesses is partly responsible for a significant rise in self-employment and “micro-entrepreneurial” enterprises over the last few years, which now account for 14% of the US economy.

Digital technology will create not just great growth in our desire to travel and move things, but great complexity in the way we will do so. Today’s transport technologies are not only too inefficient to scale to our future needs; they’re not sophisticated and flexible enough to cope with the complexity and variety of demand.

Many of the future components of transport systems have already been envisaged, and deployed in early schemes: elevated cycleways; conveyor belts for freight; self-driving vehicles and convoys; and underground pneumatic networks for recycling. And to some extent, we have visualised the cities that they will create: Professor Miles Tight, for example, has considered the future living scenarios that might emerge from various evolutions of transport policy and human behavioural choices in the Visions 2030 project.

The task for the Smarter Cities movement should be to extend this thinking to envision the future of cities that are also shaped by emerging trends in digital technology and their effect on the wider economy and social systems. We won’t do that successfully by considering these subjects separately or in the abstract; we need to envision how they will collectively enable us to live and work from the smallest domestic scale to the largest city system.

(Packages from Amazon delivered to Google’s San Francisco office. Photo by moppet65535)

What we’ll do in the home of the future

Rather than purchasing and owning goods such as kitchen utensils, hobby and craft items, toys and simple house and garden equipment, we will create them on-demand using small-scale and open-source manufacturing technology and smart-materials. It will even be possible – though not all of us will choose to do so – to manufacture some food in this way.

Conversely, there will still be demand for handmade artisan products including clothing, gifts, jewellery, home decorations, furniture, and food. Many of us will earn a living producing these goods in the home while selling and marketing them locally or through online channels.

So we will leave our home of the future less often to visit shops; but will need not just better transport services to deliver the goods we purchase online to our doorsteps, but also a new utility to deliver the raw materials from which we will manufacture them ourselves; and new transport services to collect the products of our home industries and to deliver supplies to them.

We will produce an increasing amount of energy at home; whether from existing technologies such as solar panels or combined heat and power (CHP) systems; or through new techniques such as bio-energy. The relationships between households, businesses, utilities and transportation will change as we become producers of energy and consumers of waste material.

And whilst remote working means we will continue to be less likely to travel to and from the same office each day, the increasing pace of economic activity means that we will be more likely to need to travel to many new destinations as it becomes necessary to meet face to face with the great variety of customers, suppliers, co-workers and business partners with whom online technologies connect us.

What we’ll do in the neighbourhoods of the future

As we increasingly work remotely from within our homes or by travelling far away from them, less of us work in jobs and for businesses that are physically located within the communities in which we live; and some of the economic ties that have bound those communities in the past have weakened. But most of us still feel strong ties to the places we live in; whether they are historical, created by the character of our homes or their surrounding environment, or by the culture and people around us. These ties create a shared incentive to invest in our community.

Perhaps the greatest potential of social media that we’re only begin to exploit is its power to create more vibrant, sustainable and resilient local communities through the “sharing economy”.

The motivations and ethics of organisations participating in the sharing economy vary widely – some are aggressively commercial, whilst others are “social enterprises” with a commitment to reinvest profits in social growth. The social enterprise sector, comprised of mutuals, co-operatives, employee-owned businesses and enterprises who submit to “triple bottom line” accounting of financial, social and environmental capital, is about 15% of the value of most economies, and has been growing and creating jobs faster than traditional business since the 2008 crash. There is enormous potential for cities to achieve their “Smarter” objectives for sustainable, equitably distributed economic growth through contributions from social enterprises using technology to implement sharing economy business models within their region.

Sharing economy models which enable transactions between participants within a walkable or cyclable area can be a particularly efficient mechanism for collaboration, as the related transport can be carried out using human power. Joan Clos, Exective Director of UN-Habitat, has asserted that cities will only become sustainable when they are built at a sufficient population density that a majority of interactions within them can be carried out in this way (as reported informally by Tim Stonor from Dr. Clos’s remarks at the “Urban Planning for City Leaders” conference at the Crystal, London in 2012).

The Community Lovers’ Guide has published stories from across Europe of people who have collaborated to make the places that they share better, often using technology; and schemes such as Casserole Club and Land Share are linking the supply and demand of land, food, gardening and cooking skills within local communities, helping neighbours to help each other. At local, national and international levels, sharing economy ideas are creating previously unrealised social and economic value, including access to employment opportunities that replace some of those traditional professions that are shrinking as the technology used by industrial business changes.

Revenue-earning businesses are a necessary component of vibrant communities, at a local neighbourhood scale as well as city-wide. At the Academy of Urbanism Congress in Bradford this year, Michael Ward, Chair of the Centre for Local Economic Strategies, asserted that “the key task facing civic leaders in the 21st Century is this: how, in a period of profound and continuing economic changes, will our citizens earn a living and prosper?”

(“Makers” at the Old Print Works in Balsall Heath, Birmingham, sharing the tools, skills and ideas that create successful small businesses)

So whilst we work remotely from direct colleagues, we may chose to work in a collaborative workspace with near neighbours, with whom we can exchange ideas, make new contacts and start new enterprises and ventures. As the “maker” economy emerges from the development of sophisticated, small-scale manufacturing, and the resurgence in interest in artisan products, community projects such as the Old Print Works in Balsall Heath, Birmingham are emerging in low-cost ex-industrial space as people come together to share the tools and expertise required to make things and run businesses.

We will also manage and share our use of resources such as energy and water at neighbourhood scale. The scale and economics of movement of the raw materials for bio-energy generation, for example, currently dictate that neighbourhood-scale generation facilities – as opposed to city-wide, regional or domestic scale – are the most efficient. Aston University’s European Bio-Energy Research Institute is demonstrating these principles in the Aston district of Birmingham. And schemes from the sustainability pilot in Dubuque, Iowa to the Energy Sharing Co-operative in the West Midlands of the UK and the Chale community project on the Isle of Wight have shown that community-scale schemes can create shared incentives to use resources more efficiently.

One traditional centre of urban communities, the retail high street or main street, has fared badly in recent times. The shift to e-commerce, supermarkets and out-of-town shopping parks has led to many of them loosing footfall and trade, and seeing “payday lenders“, betting shops and charity shops take the place of traditional retailers.

High streets needs to be freed from the planning, policy and tax restrictions that are preventing their recovery. The retail-dominated highstreet of the 20th century emerged from a particular and temporary period in the evolution of the private car as the predominant form of transport supporting household-scale economic transactions. Developments in digital and transport technology as well as economy and society have made it non-viable in its current form; but legislation that prevents change in the use of highstreet property, and that keeps business taxes artificially high, is preventing highstreets from adapting in order to benefit from technology and the opportunities of the sharing economy.

Business Improvement Districts, already emerging in the UK and US to replace some local authority services, offer one way forward. They need to be given more freedom to allow the districts they manage to develop as best meets the economic and social needs of their area according to the future, not the past. And they need to become bolder: to invest in the same advanced technology to maximize footfall and spend from their customers as shopping malls do on behalf of their tenants, as recommended by a recent report to UK Government on the future of the high street.

The future high street will not be a street of clothes shops, bookshops and banks: some of those will still exist, but the high street will also be a place for collaborative workers; for makers; for sharing and exchanging; for local food produce and artisan goods; for socialising; and for starting new businesses. We will use social media to share our time and our resources in the sharing economy; and will meet on the high street when those transactions require the exchange of physical goods and services. We will walk and cycle to local shops and transport centres to collect and deliver packages for ourselves, or for our neighbours.

The future of work, life and transport at city-scale

Whilst there’s no universally agreed definition, an urban areas is generally agreed to be a continuously built-up area with a total population of between 2,000 and 40 million people; living at a density of around 1,000 per square kilometre; and employed primarily in non-agricultural activities (the appendices to the 2007 revision of the UN World Urbanisation Prospects summarise such criteria from around the world; 38.7 million is estimated to be the population of the world’s largest city, Tokyo, in 2025 by the UN World Urbanisation Prospects 2011).

(An analysis based on GPS data from mobile phones of end-to-end journeys undertaken by users of Abidjan’s bus services. By comparing existing bus routes to end-to-end journey requirements, the analysis identified four new bus routes and led to changes in many others. As a result, 22 routes now show increased ridership, and city-wide journey times have decreased by 10%.)

That is living at an industrial scale. The sharing economy may be a tremendously powerful force, but – at least for the foreseeable future – it will not scale to completely replace the supply chains that support the needs of such enormous and dense populations.

Take food, for example. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency; and Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America.

Until techniques such as vertical farming and laboratory-grown food become both technically and economically viable, and culturally acceptable – if they ever do – cities will not feed themselves. And these techniques hardly represent locally-grown food exchanged between peers – they are highly technical and likely to operate initially at industrial scale. Sharing economy businesses such as Casserole Club, Kitchen Surfing, and Big Barn will change the way we distribute, process and prepare food within cities, but many of the raw materials will continue to be grown and delivered to cities through the existing industrial-scale distribution networks that import them from agricultural regions.

We are drawn to cities for the opportunities they offer: for work, for entertainment, and to socialise. As rapidly as technology has improved our ability to carry out all of those activities online, the world’s population is still increasingly moving to cities. In many ways, technology augments the way we carry out those activities in the real world and in cities, rather than replacing them with online equivalents.

Technology has already made cultural events in the real world more frequent, accessible and varied. Before digital technology, the live music industry depended on mass-marketing and mass-appeal to create huge stadium-selling tours for a relatively small number of professional musicians; and local circuits were dominated by the less successful but similar-sounding acts for which sufficiently large audiences could be reached using the media of the time. I attempted as an amateur musician in the pre-internet 1990s to find a paying audience for the niche music I enjoyed making: I was not successful. Today, social media can be used to identify and aggregate demand to make possible a variety of events and artforms that would never previously have reached an audience. Culture in the real-world is everywhere, all the time, as a result, and life is the richer for it. We discover much of it online, but often experience it in the real world.

(Birmingham’s annual “Zombie Walk” which uses social media to engage volunteers raising money for charity. Photo by Clare Lovell).

Flashmobs” use smartphones and social media to spontaneously bring large numbers of people together in urban spaces to celebrate; socialise or protest; and while we will play and tell stories in immersive 3D worlds in the future – whether we call them movies, interactive fiction or “massive multi-player online role-playing games” – we’ll increasingly do so in the physical world too, in “mixed reality” games. Technologies such as Google Glasscognitive computing and Brain/Computer Interfaces will accelerate these trends as they remove the barrier between the physical world and information systems.

We will continue to come to city centres to experience those things that they uniquely combine: the joy and excitement of being amongst large numbers of people; the opportunity to share ideas; access to leading-edge technologies that are only economically feasible at city-scale; great architecture, culture and events; the opportunity to shop, eat, drink and be entertained with friends. All of these things are possible anywhere; but it is only in cities that they exist together, all the time.

The challenge for city-scale living will be to support the growing need to transport goods and people into, out of and around urban areas in a way that is efficient and productive, and that minimises impact on the liveability of the urban environment. In part this will involve reducing the impact of existing modes of transport by switching to electric or hydrogen power for vehicles; by predicting and optimising the behaviour of traffic systems to prevent congestion; by optimising public transport as IBM have helped AbidjanDublin, Dubuque and Istanbul to do; and by improving the spatial organisation of transport through initiatives such as Arup’s Regent Street delivery hub.

We will also need new, evolved or rejuvenated forms of transport. In his lecture for the Centenary of the International Federation for Housing and Planning, Sir Peter Hall spoke eloquently of the benefits of Bus Rapid Transit systems, urban railways and trams. All can combine the speed and efficiency of rail for bringing goods and people into cities quickly from outlying regions, with the ability to stop frequently at the many places in cities which are the starting and finishing points of end-to-end journeys.

Vehicle journeys on major roads will be undertaken in the near future by automated convoys travelling safely at a combined speed and density beyond the capability of human drivers. Eventually the majority of journeys on all roads will be carried out by such autonomous vehicles. Whilst it is important that these technologies are developed and introduced in a way that emphasises safety, the majority of us already trust our lives to automated control systems in our cars – every time we use an anti-lock braking system, for example. We will still drive cars for fun, pleasure and sport in the future – but we will probably pay dearly for the privilege; and our personal transport may more closely resemble the rapid transit pods that can already be seen at Heathrow Terminal 5.

Proposals intended to accelerate the adoption of autonomous vehicles include the “Qwik lane” elevated highway for convoy traffic; or the “bi-modal glideway” and “tracked electric vehicle” systems which could allow cars and lorries to travel at great speed safely along railway networks or dedicated “tracked” roads. Alternative possibilities which could achieve similar levels of efficiency and throughput are to extend the use of conveyor belt technology – already recognised as far more efficient than lorries for transporting resources and goods over distances of tens of miles in quarries and factories – to bring freight in and out of cities; or to use pneumatically powered underground tunnel networks, which are already being used in early schemes for transporting recyclable waste in densely populated areas. Elon Musk, the inventor of the Tesla electric supercar, has even suggested that a similar underground “vacuum loop” could be used to replace long-distance train and air travel for humans, at speeds over 1000 kilometres per hour.

The majority of these transport systems won’t offer us as individuals the same autonomy and directness in our travel as we believe the private car offers us today – even though that autonomy is often severely restricted by traffic congestion and delays. Why will we chose to relinquish that control?

(Optimod's vision for integrated, predictive mobile, multi-modal transport information)

(Optimod‘s vision for integrated, predictive mobile, multi-modal transport information)

Some of us will simply prefer to, finding different value in other ways to get around.

Walking and cycling are gaining in popularity over driving in many cities. I’ve personally found it a revelation in recent years to walk around cities rather than drive around them as I might previously have done. Cities are interesting and exciting places, and walking is often an enjoyable as well as efficient way of moving about them. (And for urbanists, of course, walking offers unparalleled opportunities to understand cities). Many of us are also increasingly conscious of the health benefits of walking and cycling, particularly as recent studies in the UK and US have shown that adults today will be the first generation in recorded history to die younger than their parents because of our poor diets and sedentary lifestyles.

Alternatively, we may choose to travel by public transport in the interests of productivity – reading or working while we travel, especially as network coverage for telephony and the internet improves. As the world’s population and economies grow, competition and the need to improve productivity will lead more and more of us to this take this choice.

It is increasingly easy to walk, cycle, or use public or shared transport to travel into and around cities thanks to the availability of bicycle hire schemes, car clubs and walking route information services such as walkit.com. The emergence of services that provide instant access to travel information across all forms of transport – such as the Moovel service in Germany or the Optimod service in Lyon, France – will enhance this usability, making it easier to combine different forms of transport into a single journey, and to react to delays and changes in plans whilst en route.

Legislation will also drive changes in behaviour, from national and international initiatives such as the European Union legislation limiting carbon emissions of cars to local planning and transport policies – such as Birmingham’s recent Mobility Action Plan which announced a consultation to consider closing the city’s famous system of road tunnels.

(Protesters at Occupy Wallstreet using digital technology to coordinate their demonstration. Photo by David Shankbone)

Are we ready for the triumph of the digital city?

Regardless of the amazing advances we’re making in online technology, life is physical. Across the world we are drawn to cities for opportunity; for life-support; to meet, work and live.  The ways in which we interact and transport ourselves and the goods we exchange have changed out of all recognition throughout history, and will continue to do so. The ever increasing level of urbanisation of the world’s population demonstrates that there’s no sign yet that those changes will make cities redundant: far from it, they are thriving.

It is not possible to understand the impact on our lives of new ideas in transport, technology or cities in isolation. Unless we consider them together and in the context of changing lifestyles, working patterns and economics, we won’t design and build cities of the future to be resilient, sustainable, and equitable.  The limitation of our success in doing that in the past is illustrated by the difference in life expectancy of 20 years between the richest and poorest areas of UK cities; the limitation of our success in doing so today is illustrated by the fact that a huge proportion of the world’s population does not have access to the digital technologies that are changing our world.

I recently read the masterplan for a European city district regarded as a good example of Smart City thinking. It contained many examples of the clever and careful design of physical space for living and for today’s forms of transport, but did not refer at all to the changes in patterns of work, life and movement being driven by digital technology. It was certainly a dramatic improvement over some plans of the past; but it was not everything that a plan for the future needs to be. 

Across domains such as digital technology, urban design, public policy, low carbon engineering, economic development and transport we have great ideas for addressing the challenges that urbanisation, population growth, resource constraints and climate change will bring; but a lot of work to do in bringing them together to create good designs for the liveable cities of the future.

A design pattern for a Smarter City: Online Peer-to-Peer and Regional Marketplaces

(Photo of Moseley Farmers’ Market in Birmingham by Bongo Vongo)

(In “Do we need a Pattern Language for Smarter Cities” I suggested that “design patterns“, a tool for capturing re-usable experience invented by the town-planner Christopher Alexander, might offer a useful way to organise our knowledge of successful approaches to “Smarter Cities”. I’m now writing a set of design patterns to describe ideas that I’ve seen work more than once. The collection is described and indexed in “Design Patterns for Smarter Cities” which can be found from the link in the navigation bar of this blog).  

Design Pattern: Online Peer-to-Peer and Regional Marketplaces

Summary of the pattern:

A society is defined by the transactions that take place within it, whether their characteristics are social or economic, and whether they consist of material goods or communication. Many of those transactions take place in some form of marketplace.

As traditional business has globalised and integrated over the last few decades, many of the systems that support us – food production and distribution, energy generation, manufacturing and resource extraction, for example – have optimised their operations globally and consolidated ownership to exploit economies of scale and maximise profits. Those operations have come to dominate the marketplaces for the goods and services they consume and process; they defend themselves from competition through the expense and complexity of the business processes and infrastructures that support their operations; through their brand awareness and sales channels to customers; and through their expert knowledge of the availability and price of the resources and components they need.

However, in recent years dramatic improvements in information and communication technology – especially social mediamobile devicese-commerce and analytics – have made it dramatically easier for people and organisations with the potential to transact with each other to make contact and interact. Information about supply and demand has become more freely available; and it is increasingly easy to reach consumers through online channels – this blog, for instance, costs me nothing to write other than my own time, and now has readers in over 140 countries.

In response, online peer-to-peer marketplaces have emerged to compete with traditional models of business in many industries – Apple’s iTunes famously changed the music industry in this way; YouTube has transformed the market for video content and Prosper and Zopa have created markets for peer-to-peer lending. And as technologies such as 3D printing and small-scale energy generation improve, these ideas will spread to other industries as it becomes possible to carry out activities that previously required expensive, large-scale infrastructure at a smaller scale, and so much more widely.

(A Pescheria in Bari, Puglia photographed by Vito Palmi)

Whilst many of those marketplaces are operated by commercial organisations which exist to generate profit, the relevance of online marketplaces for Smarter Cities arises from their ability to deliver non-financial outcomes: i.e. to contribute to the social, economic or environmental objectives of a city, region or community.

The e-Bay marketplace in second hand goods, for example, has extended the life of over $100 billion of goods since it began operating by offering a dramatically easier way for buyers and sellers to identify each other and conduct business than had ever existed before. This spreads the environmental cost of manufacture and disposal of goods over the creation of greater total value from them, contributing to the sustainability agenda in every country in which e-Bay operates.

Local food marketplaces such as Big Barn and Sustaination in the UK, m-farm in Kenya and the fish-market pricing information service operated by the University of Bari in Puglia, Italy, make it easier for consumers to buy locally produced food, and for producers to sell it; reducing the carbon footprint of the food that is consumed within a region, and assisting the success of local businesses.

The opportunity for cities and regions is to encourage the formation and success of online marketplaces in a way that contributes to local priorities and objectives. Such regional focus might be achieved by creating marketplaces with restricted access – for example, only allowing individuals and organisations from within a particular area to participate – or by practicality: free recycling networks tend to operate regionally simply because the expense of long journeys outweighs the benefit of acquiring a secondhand resource for free. The cost of transportation means that in general many markets which support the exchange of physical goods and services in small-scale, peer-to-peer transactions will be relatively localised.

City systems, communities and infrastructures affected:

(This description is based on the elements of Smarter City ecosystems presented in ”The new Architecture of Smart Cities“).

  • Goals: all
  • People: employees, business people, customers, citizens
  • Ecosystem: private sector, public sector, 3rd sector, community
  • Soft infrastructures: innovation forums; networks and community forums
  • Hard infrastructures: information and communication technology, transport and utilities network

Commercial operating model:

The basic commercial premise of an online marketplace is to invest in the provision of online marketplace infrastructure in order to create returns from revenue streams within it. Various revenue streams can be created: for example, e-Bay apply fees to transactions conducted through their marketplace, as does the crowdfunding scheme Spacehive; whereas Linked-In charges a premium subscription fee to businesses such as recruitment agencies in return for the right to make unsolicited approaches to members.

More complex revenue models are created by allowing value-add service providers to operate in the marketplace – such as the payment service PayPal, which operated in e-Bay long before it was acquired; or the start-up Addiply, who add hyperlocal advertising to online transactions. The marketplace operator can also provide fee-based “white-label” or anonymised access to marketplace services to allow third parties to operate their own niche marketplaces – Amazon WebStore, for example, allows traders to build their own, branded online retail presence using Amazon’s services.

(Photo by Mark Vauxhall of public Peugeot Ions on Rue des Ponchettes, Nice, France)

Online marketplaces are operated by a variety of entities: entrepreneurial technology companies such as Shutl, for example, who offer services for delivering goods bought online through a marketplace provding access to independent delivery agents and couriers; or traditional commercial businesses seeking to “servitise” their business models, create “disruptive business platforms” or create new revenue streams from data.

(Apple’s iTunes was a disruptive business platform in the music industry when it launched – it used a new technology-enabled marketplace to completely change flows of money within the industry; and streaming media services such as Spotify have servitised the music business by allowing us to pay for the right to listen to any music we like for a certain period of time, rather than paying for copies of specific musical works as “products” which we own outright. Car manufacturers such as Peugeot are collaborating with car clubs to offer similar “pay-as-you-go” models for car use, particularly as an alternative to ownership for electric cars. Some public sector organisations are also exploring these innovations, especially those that possess large volumes of data.)

Marketplaces can create social, economic and environmental outcomes where they are operated by commercial, profit-seeking organisations which seek to build brand value and customer loyalty through positive environmental and societal impact. Many private enterprises are increasingly conscious of the need to contribute to the communities in which they operate. Often this results from the desire of business leaders to promote responsible and sustainable approaches, combined with the consumer brand-value that is created by a sincere approach. UniLever are perhaps the most high profile commercial organisation pursuing this strategy at present; and Tesco have described similar initiatives recently, such as the newly-launched Tesco Buying Club which helps suppliers secure discounts through collective purchasing. There is a clearly an opportunity for local communities and local government organisations to engage with such initiatives from private enterprise to explore the potential for online marketplaces to create mutual benefit.

In other cases, marketplaces are operated by not-for-profit organisations or social enterprises for whom creating social or economic outcomes in a financially and environmentally sustainable way is the first priority. The social enterprise approach is important if cities everywhere are to benefit from information marketplaces: most commercially operated marketplaces with a geographic focus operate in large, capital cities: these provide the largest customer base and minimise the risk associated with the investment in creating the market. If towns, cities and regions elsewhere wish to benefit from online marketplaces, they may need to encourage alternative models such as social enterprise to deliver them.

Finally, Some schemes are operated entirely on free basis, for example the Freecycle recycling network; or as charitable or donor-sponsored initiatives, for example the Kiva crowdfunding platform for charitable initiatives.

Soft infrastructures, hard infrastructures and assets required:

(The SMS for Life project uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa. Photo by Novartis AG)

The technology infrastructures required to implement online marketplaces include those associated with e-commerce technology and social media: catalogues of goods and services; pricing mechansims; support for marketing campaigns; networks of individuals and organisations and the ability to make connections between them; payments services and multi-channel support.

Many e-commerce platforms offer support for online payments integrated with traditional banking systems; or mobile payments schemes such as the M-Pesa scheme in Kenya can be used. Alternatively, the widespread growth in local currencies and alternative trading systems might offer innovative solutions that are particularly relevant for marketplaces with a regional focus.

In order to be successful, marketplaces need to create an environment of trust in which transactions can be undertaken safely and reliably. As the internet has developed over the past two decades, technologies such as certificate-based identity assurance, consumer reviews and reputation schemes have emerged to create trust in online transactions and relationships. However, many online marketplaces provide robust real-world governance models in addition to tools to create online trust: the peer-to-peer lender Zopa created “Zopa Safeguard“, for example, an independent, not-for-profit entity with funds to re-imburse investors whose debtors are unable to repay them.

Marketplaces which involve the transaction of goods and services with some physical component – whether in the form of manufactured goods, resources such as water and energy or services such as in-home care – will also require transport services; and the cost and convenience of those services will need to be appropriate to the value of exchanges in the marketplace. Shutl’s transportation marketplace is in itself an innovation in delivering more convenient, lower cost delivery services to online retail marketplaces. By contrast, community energy schemes, which attempt to create local energy markets that reduce energy usage and maximise consumption of power generated by local, renewable resources, either need some form of smart grid infrastructure, or a commercial vehicle, such as a shared energy performance contract.

Driving forces:

  • The desire of regional authorities and business communities to form supply chains, market ecosystems and trading networks that maximise the creation and retention of economic value within a region; and that improve economic growth and social mobility.
  • The need to improve efficiency in the use of assets and resources; and to minimise externalities such as the excessive transport of goods and services.
  • The increasing availability and reducing cost of enabling technologies providing opportunities for new entrants in existing marketplaces and supply chains.

Benefits:

  • Maximisation of regional integration in supply networks.
  • Retention of value in the local economy.
  • Increased efficiency of resource usage by sharing and reusing goods and services.
  • Enablement of new models of collaborative asset ownership, management and use.
  • The creation of new business models to provide value-add products and services.

Implications and risks:

(West Midlands police patrolling Birmingham’s busy Frankfurt Market in Christmas, 2012. Photo by West Midlands Police)

Marketplaces must be carefully designed to attract a critical mass of participants with an interest in collaborating. It is unlikely, for example, that a group of large food retailers would collaborate in a single marketplace in which to sell their products to citizens of a particular region. The objective of such organisations is to maximise shareholder value by maximising their share of customers’ weekly household budgets. They would have no interest in sharing information about their products alongside their competitors and thus making it easier for customers to pick and choose suppliers for individual products.

Small, specialist food retailers have a stronger incentive to join such marketplaces: by adding to the diversity of produce available in a marketplace of specialist suppliers, they increase the likelihood of shoppers visiting the marketplace rather than a supermarket; and by sharing the cost of marketplace infrastructure – such as payments and delivery services – each benefits from access to a more sophisticated infrastructure than they could afford individually.

Those marketplaces that require transportation or other physical infrastructures will only be viable if they create transactions of high enough value to account for the cost of that infrastructure. Such a challenge can even apply to purely information-based marketplaces: producing high quality, reliable information requires a certain level of technology infrastructure, and marketplaces that are intended to create value through exchanging information must pay for the cost of that infrastructure. This is one of the challenges facing the open data movement.

If the marketplace does not provide sufficient security infrastructure and governance processes to create trust between participants – or if those participants do not believe that the infrastructure and governance are adequate – then transactions will not be carried out.

Some level of competition is inevitable between participants in a marketplace. If that competition is balanced by the benefits of better access to trading partners and supporting services, then the marketplace will succeed; but if competitive pressures outweigh the benefits, it will fail.

Alternatives and variations:

  • Local currencies and alternative trading systems are in many ways similar to online marketplace; and are often a supporting component
  • Some marketplaces are built on similar principles, and certainly achieve “Smart” outcomes, but do not use any technology. The Dhaka Waste Concern waste recycling scheme in Bangladesh, for example, turns waste into a market resource, creating jobs in the process.

Examples and stories:

Sources of information:

I’ve written about digital marketplaces several times on this blog, including the following articles:

Industry experts and consultancies have published work on this topic that is well worth considering:

Three mistakes we’re still making about Smart Cities

(David Willets, MP, Minister for Universities and Science, launches the UK Government’s Smart Cities Forum)

(I was asked this week to contribute my view of the present state of the Smart Cities movement to the UK Government’s launch of it’s Smart Cities forum, which will report to the Government’s Information Economy Council. This article is based on my remarks at the event).

One measure of how successfully we have built today’s cities using the technologies that shaped them over the last century – concrete, steel and the internal combustion engine – is the variation of life expectancy within them. In the UK, people born in the poorest areas of our large cities can expect to live lives that are two decades shorter than those born in the wealthiest areas.

We need to do much better than that as we apply the next generation of technology that will shape our lives – digital technology.

The market for Smart Cities, which many define as the application of digital technology to city systems, is growing. Entrepreneurial businesses such as Droplet and Shutl are delivering new city services, enabled by technology. City Councils, service providers and transport authorities are investing in Smart infrastructures, such as Bradford’s City Park, whose fountains and lights react to the movements of people through it. Our cities are becoming instrumented, interconnected and intelligent, creating new opportunities to improve the performance and efficiency of city systems.

But we are still making three mistakes that limit the scale at which truly innovative Smart City projects are being deployed.

1. We don’t use the right mix of skills to define Smart City initiatives

Over the last year, I’ve seen a much better understanding develop between some of the creative professions in the Smart Cities domain: technologists, design thinkers, social innovators, entrepreneurs and urban designers. Bristol’s “Hello Lamppost” is a good example of a project that uses technology to encourage playful interaction with an urban environment, thereby bringing the life to city streets that the urbanist Jane Jacobs‘ taught us is so fundamental to healthy city communities.

Internationally, cities have a great opportunity to learn from each others’ successes: smart, collective, sustainable urbanism in Scandinavia, as exemplified by Copenhagen’s Nordhavnen district; intelligent city planning and management in Asia and increasingly in the United States, where cities such as Chicago have also championed the open data movement; and the phenomenal level of small-scale, non-institutional innovation in communities in UK cities.

But this debate does not extend to some important institutions that are also beginning to explore how they can contribute towards the social and environmental wellbeing of cities and communities. Banks and investors, for example, who have the funds to support large-scale initiatives, or the skills to access them; or supermarkets and other retailers who operate across cities, nations and continents; but whose operational and economic footprint in cities is significant, and whose supply chains support or contribute to billions of lives.

It’s important to engage with these institutions in defining Smart City initiatives which not only cut across traditional silos of responsibility and budgets in cities, but also cut across the traditional asset classes and revenue streams that investors understand. A Smart City initiative that is crafted without their involvement will be difficult for them to understand, and they will be unlikely to support it. Instead, we need to craft Smart initiatives with them.

(The masterplan for Copenhagen’s regeneration of Nordhavnen, which was co-created with local residents and communities. Photo by Thomas Angermann)

2. We ask researchers to answer the wrong challenges

University research is a great source of new technologies for creating Smart solutions. But our challenge is rarely the availability of new technology – we have plenty of that already.

The real challenge is that we are not nearly exploiting the full potential of the technology already available to us; and that’s because in many cases we do not have a quantified evidence base for the financial, social, economic and environmental benefits of applying technology in city systems. Without that evidence, it’s hard to create a business case to justify investment.

This is the really valuable contribution that research could make to the Smart Cities market today: quantify the benefits of applying technology in city systems and communities; identify the factors that determine the degree to which those benefits can be realised in specific cities and communities; align the benefits to the financial and operating models of the public and private institutions that operate city services and assets; and provide the detailed data from which clear businesses cases with quantified risks and returns can be constructed.

3. We don’t listen to the quiet voices that matter

It’s my experience that the most powerful innovations that make a difference to real lives and communities occur when “little things” and “big things” work well together.

Challenges such as transport congestion, social mobility, responsible energy usage or small business growth are often extremely specific to local contexts. Successful change in those contexts is usually created when the people, community groups and businesses involved create, or co-create, initiatives to improve them.

But often, the resources available locally to those communities are very limited. How can the larger resources of institutional organisations be made available to them?

In “Resilience: why things bounce back“, Andrew Zolli describes many examples of initiatives that have successfully created meaningful change; and characterises the unusual qualities of the “translational leaders” that drive them – people who can engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.

It’s my hope that we can enable more widespread changes not by relying only on such rare individuals, but by changing the way that we think about the design of city infrastructures. Rather than designing the services that they deliver, we should design what Service Scientists call the “affordances” they offer. An affordance is a capability of an infrastructure that can be adapted to the needs of an individual.

An example might be a smart grid power infrastructure that provides an open API allowing access to data from the grid. Developers, working together with community groups, could create schemes specific to each community which use that information to encourage more responsible energy usage. My colleagues in IBM Research explored this approach in partnership with the Sustainable Dubuque partnership resulting in a scheme that improved water and energy conservation in the city.

We can also apply this approach to the way that food is supplied to cities. The growing and distribution of food will always be primarily a large-scale, industrial operation: with 7 billion people living on a planet with limited resources, and with more than half of them living in dense cities, there is no realistic alternative. An important challenge for the food production and distribution industry, and for the technology industry, is to find ways to make those systems more efficient and sustainable.

But we can also act locally to change the way that food is processed, prepared and consumed; and in doing so create social capital and economic opportunity in some of the places that need it most. A good example is “Casserole Club“, which uses social media as the basis of a peer-to-peer model which connects people who are unable to cook for themselves with people who are willing to cook for, and visit, others.

These two movements to improve our food systems in innovative ways currently act separately; what new value could we create by bringing them together?

We’re very poor at communicating effectively between such large-scale and small-scale activities. Their cultures are different; they use different languages, and those involved spend their working lives in systems focussed on very different objectives.

There’s a very simple solution. We need to listen more than we talk.

We all have strong opinions and great ideas. And we’re all very capable of quickly identifying the aspects of someone else’s idea that mean it won’t work. For all of those reasons, we tend to talk more than we listen. That’s a mistake; it prevents us from being open to new ideas, and focussing our attention on how we can help them to succeed.

New conversations

By coincidence, I was asked earlier this year to arrange the agenda for the annual meeting of IBM’s UK chapter of our global Academy of Technology. The Academy represents around 500 of IBM’s technology leaders worldwide; and the UK chapter brings 70 or so of our highest achieving technologists together every year to share insights and experience about the technology trends that are most important to our industry, and to our customers.

(Daden's visualisation of the new Library of Birmingham, created before construction started and used to familiarise staff with the new building they would be working in. Taken from Daden's brochure describing the work more fully).

(Daden’s visualisation of the new Library of Birmingham, created before construction started and used to familiarise staff with the new building they would be working in. Taken from Daden’s brochure describing the work more fully).

This year, I’m bringing them to Innovation Birmingham for two days next week to explore how technology is changing Britain’s second city. We’ll be hearing about Birmingham City Council’s Smart City Strategy and Digital Birmingham‘s plans for digital infrastructure; and from research initiatives such as the University of Birmingham’s Liveable Cities programme; Aston University’s European Bio-Energy Research Institute; and Birmingham City University’s European Platform for Intelligent Cities.

But we’ll also be hearing from local SMEs and entrepreneurs creating innovations in city systems using technology, such as Droplet‘s smartphone payment system; 3D visualisation and analytics experts Daden, who created a simulation of Birmingham’s new Library; and Maverick Television whose innovations in using technology to create social value include the programmes Embarrassing Bodies and How to Look Good Naked. And we’ll hear from a number of social innovators, such as Localise West Midlands, a not-for-profit think-tank which promotes localisation for social, environmental and economic benefit, and Hub Launchpad, a business-accelerator for social enterprise who are building their presence in the city. You can follow our discussions next week on twitter through the hashtag #IBM_TCG.

This is just one of the ways I’m trying to make new connections and start new conversations between stakeholders in cities and professionals with the expertise to help them achieve their goals. I’m also arranging to meet some of the banks, retailers and supply-chain operators who seem to be most focussed on social and environmental sustainability, in order to explore how those objectives might align with the interests of the cities in which they operate. The British Standards Institute is undertaking a similar project to explore the financing of Smart Cities as part of their Smart Cities programme. I’m also looking at the examples set by cities such as Almere whose collaborative approach to urban design, augmented by their use of analytics and technology, is inspirational.

This will not be a quick or easy process; but it will involve exciting conversations between people with passion and expertise. Providing we remember to listen as much as we talk, it’s the right place to start.

%d bloggers like this: