Intelligent Transport Systems need to get wiser … or transport will keep on killing us

(The 2nd Futurama exhibition at the 1964 New York World’s Fair displayed a vision for the future that in many ways reflected the concrete highways and highrises constructed at the time. We now recognise that the environments those structures created often failed to support healthy personal and community life. In 50 years’ time, how will we perceive today’s visions of Intelligent Transport Systems? Photo by James Vaughan)


Two weeks ago the Transport Systems Catapult published a “Traveller Needs and UK Capability Study”, which it called “the UK’s largest traveller experience study” – a survey of 10,000 people and their travelling needs and habits, complemented by interviews with 100 industry experts and companies. The survey identifies a variety of opportunities for UK innovators in academia and industry to exploit the predicted £56 billion market for intelligent mobility solutions in the UK by 2025, and £900 billion market worldwide. It is rightly optimistic that the UK can be a world leader in those markets.

This is a great example of the enormous value that the Catapult programme – inspired by Germany’s Fraunhofer Institutes – can play in transferring innovation and expertise out of University research and into the commercial economy, and in enabling the UK’s expert small businesses to reach opportunities in international markets.

But it’s also a great example of failing to connect the ideas of Intelligent Transport with their full impact on society.

I don’t think we should call any transport initiative “intelligent” unless it addresses both the full relationship between the physical mobility of people and goods with social mobility; and the significant social impact of transport infrastructure – which goes far beyond issues of congestion and pollution.

The new study not only fails to address these topics, it doesn’t mention them at all. In that light, such a significant report represents a failure to meet the Catapult’s own mission statement, which incorporates a focus on “wellbeing” – as quoted in the introduction to the report:

“We exist to drive UK global leadership in Intelligent Mobility, promoting sustained economic growth and wellbeing, through integrated, efficient and sustainable transport systems.” [My emphasis]

I’m surprised by this failing in the study as both the engineering consultancy Arup and the Future Cities Catapult – two organisations that have worked extensively to promote human-scale, walkable urban environments and human-centric technology – were involved in its production; as was at least one social scientist (although the experts consulted were otherwise predominantly from the engineering, transport and technology industries or associated research disciplines).

I note also that the list of reports reviewed for the study does not include a single work on urbanism. Jane Jacobs’ “The Death and Life of Great American Cities”, Jan Gehl’s “Cities for People“, Jeff Speck’s “Walkable City” and Charles Montgomery’s “The Happy City“, for example, all describe very well the way that transport infrastructures and traffic affect the communities in which most of the world’s population lives. That perspective is sorely lacking in this report.

Transport is a balance between life and death. Intelligent transport shouldn’t forget that.

These omissions matter greatly because they are not just lost areas of opportunity for the UK economy to develop solutions (although that’s certainly what they are). More importantly, transport systems that are designed without taking their full social impact into account have the most serious social consequences – they contribute directly to deprivation, economic stagnation, a lack of social mobility, poor health, premature deaths, injuries and fatalities.

As town planner Jeff Speck and urban consultant Charles Montgomery recently described at length in “Walkable City” and “The Happy City” respectively, the most vibrant, economically successful urban environments tend to be those where people are able to walk between their homes, places of work, shops, schools, local transport hubs and cultural amenities; and where they feel safe doing so.

But many people do not feel that it is safe to walk about the places in which they live, work and relax. Transport is not their only cause of concern; but it is certainly a significant one.

After motorcyclists (another group of travellers who are poorly represented), pedestrians and cyclists are by far the most likely travellers to be injured in accidents. According to the Royal Society for the Prevention of Accidents, for example, more than 60 child pedestrians are killed or injured every week in the UK – that’s over 3000 every year. No wonder that the number of children walking to school has progressively fallen as car ownership has risen, contributing (though it is obviously far from the sole cause) to rising levels of childhood obesity. In its 60 pages, the Traveller Needs study doesn’t mention the safety of pedestrians at all.

A recent working paper published by Transport for London found that the risk and severity of injury for different types of road users – pedestrians, cyclists, drivers, car passengers, bus passengers etc. – vary in complex and unexpected ways; and that in particular, the risks for each type of traveller vary very differently according to age, as our personal behaviours change, depending on the journeys we undertake, and according to the nature of the transport infrastructure we use.

These are not simple issues, they are deeply challenging. They are created by the tension between our need to travel in order to carry out social and economic interactions, and the physical nature of transport which takes up space and creates pollution and danger.

As a consequence, many of the most persistently deprived areas in cities are badly affected by large-scale transport infrastructure that has been primarily designed in the interests of the travellers who pass through them, and not in the interests of the people who live and work around them.

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the city centre before its redevelopment in 2003, by Birmingham City Council)

Birmingham’s Masshouse circus, for example, was constructed in the 1960s as part of the city’s inner ring-road, intended to improve connectivity to the national economy through the road network. However, the impact of the physical barrier that it created to pedestrian traffic can be seen by the stark difference in land value inside and outside the “concrete collar” that the ring-road created around the city centre. Inside the collar, land is valuable enough for tall office blocks to be constructed on it; whilst outside it is of such low value that it is used as a ground-level carpark. The reason for such a sharp change in value? People didn’t feel safe walking across or under the roundabout. The demolition of Masshouse Circus in 2002 enabled a revitalisation of the city centre that has continued for more than a decade.

Atlanta’s Buford Highway is a seven lane road which for two miles has no pavements, no junctions and no pedestrian crossings, passing through an area of houses, shops and businesses. It is an infrastructure fit only for vehicles, not for people. It allows no safe access along or across it for the communities it passes through – it is closed to them, unless they risk their lives.

In Sheffield, two primary schools were recently forced to close after measurements of pollution from diesel vehicles revealed levels 10-15 times higher than those considered the maximum safe limits, caused by traffic from the nearby M1 motorway. The vast majority of vehicles using the motorway comply to the appropriate emissions legislation depending on their age; and until specific emissions measurements were performed at the precise locations of the schools, the previous regional measurements of air quality had been within legal limits. This illustrates the failure of our transport policies to take into account the nature of the environments within which we live, and the detailed impact of transport on them. That’s why it’s now suspected that up to 60,000 people die prematurely every year in the UK due to the effects of diesel emissions, double previous estimates.

Nathaniel Lichfield and Partners recently published a survey of the 2015 Indices of Multiple Deprivation in the UK – the indices summarise many of the challenges that affect deprived communities such as low levels of employment and income; poor health; poor access to quality education and training; high levels of crime; poor quality living environments and shortages of quality housing and services.

Lichfield and Partners found that most of the UK’s Core Cities (the eight economically largest cities outside London, plus Glasgow and Cardiff) are characterised by a ring of persistently deprived areas surrounding their relatively thriving city centres. Whilst clearly the full causes are complex, it is no surprise that those rings feature a concentration of transport infrastructure passing through them, but primarily serving the interests of those passing in and out of the centre.

Birmingham IMD cropped

(Areas of relative wealth and deprivation in Birmingham as measured by the Indices of Multiple Deprivation. Birmingham, like many of the UK’s Core Cities, has a ring of persistently deprived areas immediately outside the city centre, co-located with the highest concentration of transport infrastructure allowing traffic to flow in and out of the centre)

These issues are not considered at all in the Transport Systems Catapult’s study. The word “walk” appears just three times in the document, all in a section describing the characteristics of only one type of traveller, the “dependent passenger” who does not own a car. Their walking habits are never examined, and walking as a transport choice is never mentioned or presented as an option in any of the sections of the report discussing challenges, opportunities, solutions or policy initiatives, beyond a passing mention that public transport users sometimes undertake the beginnings and ends of their journeys on foot. The word “pedestrian” does not appear at all. Cycling is mentioned only a handful of times; once in the same section on dependent passengers, and later on to note that “bike sharing [schemes have] not yet enjoyed high uptake in the UK”. The reason cited for this is that “it is likely that there are simply not enough use cases where using these types of services is convenient and cost-effective for travellers.”

If that is the case, why not investigate ways to extend the applicability of such schemes to broader use cases?

If only the sharing economy were a walking and cycling economy

The role of the Transport Systems Catapult is to promote the UK transport and transport technology industry, and this perhaps explains why so much of the study is focussed on public and private forms of powered transport and infrastructure. But there are many ways for businesses to profit by providing innovative technology and services that support walking and cycling.

What about way-finding services and street furniture that benefit pedestrians, for example, as the Future Cities Catapult recently explored? What about the cycling industry – including companies providing cargo-carrying bicycles as an alternative to small vans and trucks? What about the wearable technology industry to promote exercise measurement and pedestrian navigation along the safest, least polluted routes?

What about the construction of innovative infrastructure that promotes cycling and walking such as the “SkyCycle” proposal to build cycle highways above London’s railway lines, similar to the pedestrian and cycle roundabouts already built in Europe and China? What about the use of conveyor belts along similar routes to transport freight? What about the use of underground, pneumatically powered distribution networks for recycling and waste processing? All of these have been proposed or explored by UK businesses and universities.

And what about the UK’s world-class community of urban designers, town planners and landscape architects, some of whom are using increasingly sophisticated technologies to complement their professional skills in designing places and communities in which living, working and travelling co-exist in harmony? What about our world class University expertise researching visions for sustainable, liveable cities with less intrusive transport systems?

An even more powerful source of innovations to achieve a better balance between transportation and liveability could be the use of “sharing economy” business models to promote social and economic systems that emphasise local, human-powered travel.

Wikipedia describes the sharing economy as “economic and social systems that enable shared access to goods, services, data and talent“. Usually, these systems employ consumer technologies such as SmartPhones and social media to create online peer-to-peer trading networks that disrupt or replace traditional supply chains and customer channels – eBay is an obvious example for trading second hand goods, Airbnb connects travellers with people willing to rent out a spare room, and Uber connects passengers and drivers.

These business models can be enormously successful. Since its formation 8 years ago, Airbnb has acquired access to over 800,000 rooms to let in more than 190 countries; in 2014 the estimated value of this company which employed only 300 people at the time was $13 billion. Uber has demonstrated similarly astonishing growth.

However, it is much less clear what these businesses are contributing to society. In many cases their rapid growth is made possible by operating business models that side-step – or just ignore – the regulation that governs the traditional businesses that they compete with. Whilst they can offer employment opportunities to the providers in their trading networks, those opportunities are often informal and may not be protected by employment rights and minimum wage legislation. As privately held companies their only motivation is to return a profit to their owners.

By creating dramatic shifts in how transactions take place in the industries in which they operate, sharing economy businesses can create similarly dramatic shifts in transport patterns. For example, hotels in major cities frequently operate shuttle buses to transfer guests from nearby airports – a shared form of transport. Airbnb offer no such equivalent transfers to their independent accommodation. This is a general consequence of replacing large-scale, centrally managed systems of supply with thousands of independent transactions. At present there is very little research to understand these impacts, and certainly no policy to address them.

But what if incentives could be created to encourage the formation of sharing economy systems that promoted local transactions that can take place with less need for powered transport?

For example, Borroclub provides a service that matches someone who needs a tool with a neighbour who owns one that they could borrow. Casserole Club connects people who are unable to cook for themselves with a neighbours who are happy to cook and extra portion and share it. The West Midlands Collaborative Commerce Marketplace identifies opportunities for groups of local businesses to collaborate to win new contracts. Such “hyperlocal” schemes are not a new idea, and there are endless possibilities for them to reveal local opportunities to interact; but they struggle to compete for attention and investment against businesses purely focussed on maximising profits and investor returns.

Surely, a study that includes the Future Cities Catapult, Digital Catapult and Transport Systems Catapult amongst its contributors could have explored possibilies for encouraging and scaling hyperlocal sharing economy business models, alongside all those self-driving cars and multi-modal transport planners that industry seems to be quite willing to invest in on its own?

The study does mention some “sharing economy” businesses, including Uber; but it makes no mention of the controversy created because their profit-seeking focus takes no account of their social, economic and environmental impact.

It also mentions the role of online commerce in providing retail options that avoid the need to travel in person – and cites these as an option for reducing the overall demand for travel. But it fails to adequately explore the impact of the consequent requirements for delivery transport – other than to note the potential for detrimental impact on, let’s wait for it, not local communities but: local traffic!

“Enabling lifestyles is about more than just enabling and improving physical travel. 31% (19bn) of journeys made today would rather not have been made if alternative means were available (e.g. online shopping)” (page 15)

“Local authorities and road operators need to be aware that increased goods delivery can potentially have a negative impact on local traffic flows.” (page 24)

Why promote transactions that we carry out in isolation online rather than transactions that we carry out socially by walking, and that could contribute towards the revitalisation of local communities and town centres? Why mention “enabling lifestyles” without exploring the health benefits of walking, cycling and socialising?

(A poster from the International Sustainability Institute's Commuter Toolkit, depicting the space 200 travellers occupy on Seattle's 2nd Avenue when using different forms of transport, and intended to persuade travellers to adopt those forms that use less public space)

(A poster from the International Sustainability Institute’s Commuter Toolkit, depicting the space 200 travellers occupy on Seattle’s 2nd Avenue when using different forms of transport, and intended to persuade travellers to adopt those forms that use less public space)

Self-driving cars as a consumer product represent selfish interests, not societal interests

The sharing economy is not the only example of a technology trend whose social and economic impact cannot be assumed to be positive. The same challenge applies very much to perhaps the most widely publicised transport innovation today, and one that features prominently in the new study: the self-driving car.

On Friday I attended a meeting of the UK’s Intelligent Transport Systems interest group, ITS-UK. Andy Graham of White Willow Consulting gave a report of the recent Intelligent Transport Systems World Congress in Bordeaux. The Expo organisers had provided a small fleet of self-driving cars to transfer delegates between hotels and conference venues.

Andy noted that the cars drove very much like humans did – and that they kept at least as large, if not a larger, gap between themselves and the car in front. On speaking to the various car manufacturers at the show, he learned that their market testing had revealed that car buyers would only be attracted to self-driving cars if they drove in this familiar way.

Andy pointed out that this could significantly negate one of the promoted advantages of self-driving cars: reducing congestion and increasing transport flow volumes by enabling cars to be driven in close convoys with each other. This focus on consumer motivations rather than the holistic impact of travel choices is repeated in the Transport Systems Catapults’ study’s consideration of self-driving cars.

Cars don’t only harm people, communities and the environment if they are diesel or petrol powered and emit pollution, or if they are involved in collisions: they do so simply because they are big and take up space.

Space – space that is safe for people to inhabit – is vital to city and community life. We use it to walk; to sit and relax; to exercise; for our children to play in; to meet each other. Self-driving cars and electric cars take up no less space than the cars we have driven for decades. Cars that are shared take up slightly less space per journey – but are nowhere near as efficient as walking, cycling or public transport in this regard. Car clubs might reduce the need for vehicles to be parked in cities, but they still take up as much space on the road.

The Transport Systems Catapult’s study does explore many means to encourage the use of shared or public transport rather than private cars; but it does so primarily in the interests of reducing congestion and pollution. The relationship between public space, wellbeing and transport is not explored; and neither is the – at best – neutral societal impact of self-driving cars, if their evolution is left to today’s market forces.

Just as the industry and politicians are failing to enact the policies and incentives that are needed to adapt the Smart Cities market to create better cities rather than simply creating efficiencies in service provision and infrastructure, the Intelligent Transport Systems community will fail to deliver transport that serves our society better if it doesn’t challenge our self-serving interests as consumers and travellers and consider the wider interests of society.

The Catapult’s report does highlight the potential need for city-wide and national policies to govern future transport systems consisting of connected and autonomous vehicles; but once again the emphasis is on optimising traffic flows and the traveller experience, not on optimising the outcomes for everyone affected by transport infrastructure and traffic.

As consumers we don’t always know best. In the words of one of the most famous transport innovators in history: “If I had asked people what they wanted, they would have said ‘faster horses’.” (Henry Ford, inventor of the first mass-produced automobile, and of the manufacturing production line).

A failure that matters

The Transport Systems Catapult’s report doesn’t mention most of the issues I’ve explored in this article, and those that it does touch on are quickly passed over. In 60 pages it only mentions walking and cycling a handful of times; it never analyses the needs of pedestrians and cyclists, and beyond a passing mention of employers’ “cycle to work” schemes and the incorporation of bicycle hire schemes in multi-modal ticketing solutions, these modes of transport are never presented as solutions to our transport and social challenges.

This is a failure that matters. The Transport Systems Catapult is only one voice in the Intelligent Transport Systems community, and many of us would do well to broaden our understanding of the context and consequences of our work. For my part when I worked with IBM’s Intelligent Transport Systeams team several years ago I was similarly disengaged with these issues, and focussed on the narrower economic and technological aspects of the domain. It was only later in my career as I sought to properly understand the wider complexities of Smart Cities that I began to appreciate them.

But the Catapult Centre benefits from substantial public funding, is a high profile influencer across the transport sector, and is perceived to have the authority of a relatively independent voice between the public and private sectors. By not taking into account these issues, its recommendations and initiatives run the risk of creating great harm in cities in the UK, and anywhere else our transport industry exports its ideas to.

Both the “Smart Cities” and “Intelligent Transport” communities often talk in terms of breaking down silos in industry, in city systems and in thinking. But in reality we are not doing so. Too many Smart City discussions separate out “energy”, “mobility” and ”wellbeing” as separate topics. Too few invite town planners, urban designers or social scientists to participate. And this is an example of an “Intelligent Transport” discussion that makes the same mistakes.

(Pedestrian’s attempting to cross Atlanta’s notorious Buford Highway; a 7-lane road with no pavements and 2 miles between junctions and crossings. Photo by PBS)

In the wonderful “Walkable City“, Jeff Speck describe’s the epidemiologist Richard Jackson’s stark realisation of the life-and-death significance of good urban design related to transport infrastructure. Jackson was driving along the notorious two mile stretch of Atlanta’s seven lane Buford highway with no pavements or junctions:

“There, by the side of the road, in the ninety-five degree afternoon, he saw a woman in her seventies, struggling under the burden of two shopping bags. He tried to relate her plight to his own work as an epidemiologist. “If that poor woman had collapsed from heat stroke, we docs would have written the cause of death as heat stroke and not lack of trees and public transportation, poor urban form, and heat-island effects. If she had been killed by a truck going by the cause of death would have been “motor vehicle trauma”, and not lack of sidewalks and transit, poor urban planning and failed political leadership.”

We will only harness technology, transport and infrastructure to create better communities and better cities if we seek out and respect those cross-disciplinary insights that take seriously the needs of everyone in our society who is affected by them; not just the needs of those who are its primary users.

Our failure to do so over the last century is demonstrated by the UK’s disgracefully low social mobility; by those areas of multiple deprivation which in most cases have persisted for decades; and by the fact that as a consequence life expectancy for babies born today in the poorest parts of cities in the UK is 20 years shorter than for babies born today in the richest part of the same city.

That is the life and death impact of the transport strategies that we’ve had in the past; the transport strategies we publish today must do better.

Postscript 3rd November

The Transport Systems Catapult replied very positively on Twitter today to my rather forthright criticisms of their report. They said “Great piece Rick. The study is a first step in an ongoing discussion and we welcome further input/ideas feeding in as we go on.”

I’d like to think I’d respond in a similarly gracious way to anyone’s criticism of my own work!

What my article doesn’t say is that the Catapult’s report is impressively detailed and insightful in its coverage of those topics that it does include. I would absolutely welcome their expertise and resources being applied to a broader consideration of the topic of future transport, and look forward to seeing it. 

4 ways to get on with building Smart Cities. And the societal failure that stops us using them.

(

(William Robinson Leigh’s 1908 painting “Visionary City” envisaged future cities constructed from mile-long buildings of hundreds of storeys connected by gas-lit skyways for trams, pedestrians and horse-drawn carriages. A century later we’re starting to realise not only that developments in transport and power technology have eclipsed Leigh’s vision, but that we don’t want to live in cities constructed from buildings on this scale.)

The Smart City refuses to go away
In 2013 Adam Greenfield wrote “Against the Smart City”  in criticism of the large-scale corporate- and government-led projects in cities such as Masdar, Songdo and Rio that had begun to co-opt the original idea of “Smart Communities” and citizens, given a more powerful voice in their own governance by Internet communication, into what he saw – and what some still see – as a “top-down” approach to infrastructure and services divorced from the interest of ordinary citizens.

But despite regular reprisals of this theme accompanied by assertions that the Smart City is a misguided idea that is doomed to die away, notably last year in the UK’s Guardian newspaper, the Smart City has neither been abandoned as mistaken nor faded from prominence as it would have done by now if it were nothing but a technology buzzword. (Whether they have disappeared entirely or simply become everyday parts of the landscape, ideas that once dominated the technology industry such as “Service Oriented Architecture“, “Web 2.0” and “e-business” have risen to prominence and disappeared again within the lifetime of “Smart Cities”).

Instead, the various industry, community, political, academic and design interests associated with the Smart City idea have gradually learned how to combine the large-scale, intelligent infrastructures needed to support the incredible level and speed of urbanisation around the world with the accessible technologies that allow citizens, communities and businesses to adapt those infrastructures to their own needs and create more successful lives for themselves. As a consequence, new cities and new media organisations are still adding to those already debating the idea – I’ve received invitations to new events in the UK, Ireland, Malaysia, China and the Middle East already this year, and mainstream reputable sources such as the Daily Telegraph, Fortune magazine, the Economist and Forbes have covered the trend.

Yet despite all of this interest from industry and the public sector, the reality is that we still haven’t seen significant investment in those ideas on a sustainable basis.

If you read this blog regularly then you’ll know that I don’t believe that our primary focus for funding Smart City initiatives should be through the innovation funds provided by bodies such as Innovate UK or programmes such as the European Union’s Horizon 2020. Those are both great vehicles for driving innovation out of research organisations into business and public services; but for any city facing an acute challenge the bidding processes take too long and consume too many resources; the high levels of competition mean there can be a relatively low chance of receiving funds; and projects funded in this way often don’t solve the challenge of paying for the resulting solution on an ongoing basis. Most of the sustainable solutions that result from them are new business products and services: once the initial funded pilot with a local authority has finished, where does the money come from to pay for an ongoing commercial solution?

There are, however, a clear set of routes to securing sustainable investment that the most forward-looking cities have demonstrated. They don’t require cities to attract flagship technology industries to invest in them as proving-grounds for new products and services; they don’t require the inward investment that comes from international sporting and cultural events; and they’re not the preserve of rich or fast-growing capital cities on the international stage.

They do require senior city leaders – Mayors, Council Leaders and their Executive officers – to adopt and drive them; and they also require collaboration and partnership with other city institutions and with private sector suppliers.

And they require bravery, integrity and commitment from those private sector suppliers – such as my employer Amey – to offer new partnerships to our customers. Smart Cities won’t come about through us selling our products and services in transactional exchanges; they’ll come about through new partnerships in which we agree to share not just the responsibility to invest in technology and innovation, but also responsibility for the risks involved in achieving the objectives that cities care about.

But while these approaches to delivering Smart Cities will require hard and careful work, and real investment in collaboration, they are all accessible to any city that chooses to use them; and there’s no reason at all why that process can’t begin today.

Getting started: agreeing on aspirations

The starting point to putting a Smart City strategy in place is to create a specific, aspirational vision rooted in the challenges, opportunities and capabilities of a particular place and its communities, and that can win support from local stakeholders. I have seen (broadly) two types of Smart Cities visions of this sort created over the last few years.

1. Local Authority visions for digital services and infrastructure

Many local authorities have developed plans for smart, digital local services, coupled with plans for regional investment in infrastructure (such as 4G and broadband connectivity), digital skills and business-enablement. A good example is Hampshire County Council’s “Digital Hampshire” plan (Hampshire is a relatively large and economically healthy County in the UK with a population of 1.3 million and GDP just over £30billion).

One of the earliest examples was Sunderland’s “Economic Masterplan”, which which has driven around £15m of investment by the City Council so far, with further and potentially more significant initiatives now underway. (Sunderland are a medium-sized city in the UK, with a population of approximately 300,000. The city has been focussed for many years on modernising and diversifying its economy following the decline of the shipbuilding and coalmining industries. They are genuine, if often unacknowledged, thought leaders in Smart Cities).

2. City-wide or region-wide collaborative visions

In some cities and regions a wide variety of stakeholders, usually facilitated by a Local Authority or University leader, have developed collaborative plans including commitments and initiatives from local businesses, Universities, transport organisations and service providers as well as government agencies. These visions tend to contain more ambitious plans, for example the provision of “Smart Home” connectivity in new affordable housing developments, multi-modal transport payment schemes, local renewable energy generation schemes etc. London and Birmingham are good examples of this type of plan; and London in particular have used it to drive significant investments in Smart infrastructure through property development.

In both cities, formal collaborations were established to create these visions and drive the strategies to implement them – Birmingham’s Smart City Commission (which I’ve recently re-joined after having been a member of its first incarnation) and London’s Smart London Board (on which I briefly represented IBM before joining Amey).

Whether the first or the second type of plan is the right approach for any specific city, region or community depends on the level of support and collaboration amongst stakeholders in the local authority and the wider city and region – and of course, many plans in reality are somewhere between those two types. If the enthusiasm and leadership are there, neither type of plan need be a daunting process – Oxford recently built a plan of the second type from scratch between the City Council, local Universities and businesses in around 6 months by working with existing local partnerships and networks.

Moving forward: focussing on delivery and practical funding mechanisms

The degree to which cities and regions have then implemented these strategies is determined by how well they’ve focussed on realistic sources of investment and funding. For example, whilst some cities – notably Sunderland and London – have secured significant investments from sustainable sources rather than from research and innovation funds, many others – so far – have not.

I have probably tested some of my relationships with local authorities and innovation agencies to the limit by arguing repeatedly that many Smart City initiatives and debates focus far too much on applying for central Government funds and grants from Research and Innovation funding agencies; and far too little on sustainable business and investment models for new forms of city infrastructure and services.

I make these arguments because there are at least four approaches that any city can use to exploit existing, ongoing streams of funding and investment to implement a Smart City vision in a sustainable way – if their leaders and stakeholders have the conviction to make them happen; and because I passionately believe that these are the mechanisms that can unlock the opportunity for cities across the country and around the world to realise the huge social, economic and environmental benefits that technology developments can enable if they are harnessed in the right way:

  1. Include Smart City criteria in the procurement of services by local authorities to encourage competitive innovation from private sector providers
  2. Encourage development opportunities to include “smart” infrastructure
  3. Commit to entrepreneurial programmes
  4. Enable and support Social Enterprise

(The Sunderland Software Centre, a multi-£million new technology startup incubation facility in Sunderland’s city centre. The Centre is supported by a unique programme of events and mentoring delivered by IBM’s Academy of Technology as a condition of the award of a contract for provision of IT services to the centre, and arising from Sunderland’s Smart City strategy)

1. Include Smart City criteria in the procurement of services by local authorities to encourage competitive innovation from private sector providers

Sunderland City Council are at the forefront of investing in Smart City technology simply by reflecting their aspirations in their procurement practises for the goods and services they need to operate as a Council. They have included objectives from their Economic Masterplan in four procurements for IT solutions now, totalling around £15m – for example, the transformation of their IT infrastructure from a traditional platform to a Cloud computing platform was awarded to IBM based on IBM’s commitment to help the Council to use the Cloud platform to help local businesses, social enterprises, charities and entrepreneurs to succeed.

Whilst specific procurement choices in any given service are different in every case – whether to procure support for in-house delivery or to outsource to an external provider; or whether to form a PFI, Joint Venture or other such partnership structure for example – the principle of using business-as-usual procurements to invest in the Smart agenda is one that can be applied by any local authority or other organisation responsible for the delivery of public or city services or infrastructure.

This approach is dependent on the procurement of outcomes – for example, the quality of road surfaces, the smoothness of traffic flow, contributions to social mobility and small business growth – rather than of capabilities or resources. Outcomes-based procurements between competing providers create the incentive from the release of the tender through to the completion of the contract for private sector providers to invest in innovation and technology to deliver the most competitive offer to the customer.

Over the last 10 months in Amey, where many of our customer relationships are outcomes-based, whether they are with local governments, other public sector organisations or regulated industries such as utilities, I’ve rapidly put together a portfolio of Smart City initiatives that are supported by very straightforward business cases based on those commitments to outcomes. These initiatives are not just making our own operations more cost effective (and safer) – although they are doing both of those, and that’s what guarantees our ongoing financial commitment to them; they are also delivering new social insights, new forms of citizen engagement and new opportunities for community collaboration for our customers.

The stakeholders whose commitment is needed to implement this approach include Local Authority Chief Executives, Council Leaders, Cabinet members and their Chief Financial Officers or Finance Directors, as well as procuring Executives in services such as highways management, parking services, social care, health and wellbeing and IT. They can also include representatives of local transport organisations for initiatives focussed on transport and mobility.

I won’t pretend that an outcomes-based approach is always easy to adopt, either for local government organisations or their suppliers. In particular, if we want to apply this approach to the highest-level Smart City aspirations for social mobility, economic growth and resilience, then there is a need for dialogue between all parties to establish how to express those outcomes in a way that incentivises the private sector to invest in innovation to deliver them; and to do so in a way that both rewards them appropriately for their achievements whilst giving local government and the citizens and communities they serve good value for money and exemplary service.

In discussions at the last meeting of the UK Government’s Smart Cities Forum, recently re-convened after the general election, there was clearly an appetite for that discussion on both sides: but it needs a neutral, trusted intermediary to facilitate it. That’s not a role that anyone is playing at the moment – neither in government, nor in industry, nor in academia, nor in the conference circuit, nor in the various innovation agencies that are active in Smart Cities. It’s a role that we badly need one – or all of them – to step up to.

(The Urban Sciences Building at Newcastle Science Central, a huge, University-driven regeneration project in central Newcastle that combines facilities for the research and development of new solutions for urban infrastructure with on-site smart infrastructure and services)

2. Encourage development opportunities to include “smart” infrastructure
In 2012 after completing their first Smart City Vision, Birmingham City Council asked what was both an obvious and a fundamentally important question – but one that, to my knowledge, no-one had thought to ask before:

“How should our Planning Framework be updated to reflect our Smart City vision?”

Birmingham’s insight has the potential to unlock an incredible investment stream – the British Property Federation estimates that £14billion is spent each year in the UK on new-build developments alone. Just a tiny fraction of that sum would dwarf the level of direct investment in Smart Cities we’ve seen to date.

Birmingham’s resulting “Digital Blueprint” contains 10 “best practise recommendations” for planning and development drawn in part from a wider set that resulted from a workshop that I facilitated for the Academy of Urbanism, a professional body of town planners, urban designers and architects in the UK. The British Standards Institute has recently taken these ideas forward and published guidance that is starting to be used by other cities.

But progress is slow. To my knowledge the only example of these ideas being put into practise in the UK (though I’d love to be proven wrong) is through the Greater London Authority (GLA) and London Legacy Development Corporation (LLDC) who included criteria from the Smart London Plan in their process last year to award the East Wick and Sweetwater development opportunity to the private sector. This is a multi-£100million investment from a private sector pension fund to build 1,500 new homes on the London Olympics site along with business and retail space.

On behalf of IBM last year I contributed several Smart City elements of the winning proposal; it was astonishing to see how straightforward it was to justify committing multi-£million technology investments from the private sector in the development proposal simply because they would enable the construction and development consortium to win the opportunity to generate long-term profits at a much more significant level. Crucially, the LLDC demanded that the benefits of those investments should be felt not just by residents and businesses in the new development; but by residents and businesses in existing, adjoining neighbourhoods.

There is not much information on this aspect of the development in the public domain, but you can get some idea from this blog by the Master Planner subcontracted to the development. A similar approach is now being taken to an even larger redevelopment in London at Old Oak and Park Royal.

If cities in the UK and beyond are to take advantage of this potentially incredibly powerful mechanism, then we need to win over some crucial stakeholders: Local Authority Directors of Planning, regional development agencies, property developers, financiers and construction companies. Local Universities can be ideal partners for this approach – if they are growing and investing in new property development, there is a clear opportunity for their research departments to collaborate with property and infrastructure developers to create Smart City environments that showcase the capabilities of all parties. Newcastle Science Central is an example of this approach; it’s a real shame that elsewhere in the UK some significant investments are being made to extend University property – often on the basis of increased revenues from student fees – with no incorporation of these possibilities, at the same time that those same Universities’ own research groups are making countless bids into competitive research and innovation funds.

3. Commit to entrepreneurial programmes

[Priya Prakash of the entrepreneurial company Design 4 Social Change describes a project she is leading on behalf of Amey to improve citizen engagement with the services that we deliver for our customers]

Many Smart City initiatives are fundamentally business model innovations – new ways of combining financial success and sustainability with social, economic or environmental improvements in services such as transport, utilities or food. And most business model innovations are created by startup companies, funded by Venture Capital investment. Air B’n’B and Uber are two often-cited examples at the moment of how quickly such businesses, based on new, technology-enabled operating models, can create an enormous impact.

What if you could align that impact with the objectives of a city or region?

The “Cognicity” programme run by the Level 39 technology incubator in London’s Canary Wharf financial district has achieved this alignment by linking Venture Capital- and Angel-backed startup companies to the infrastructure requirements of the next phase of development at Canary Wharf. The West Midlands Public Transport Executive Centro and Innovation Birmingham have agreed a similar initiative to advance transport priorities in Birmingham through externally-funded innovation. Oxford are pursuing the same approach through their “Smart Oxford Challenge” in partnership with Nominet, a trust that supports social innovation. And Amey and our parent company Ferrovial are similarly supporting a “Smart Lab” in collaboration with the University of Sheffield and Sheffield City Council.

A variety of stakeholders are vital to creating entrepreneurial programmes that succeed and that crucially can attract finance to support the ideas that they generate – endless unfunded civic hackathons create ideas but too often fail to have an impact due to a lack of funding and a lack of genuine engagement from local authorities to adopt the solutions they make possible. Innovation funding agencies, especially those with a local or social focus are vital; as are the local Universities, technology incubators and social enterprise support organisations that both attract innovators and have the resources to support them. Finally, where they exist, local Angel Investors or Venture Capital organisations have an obvious role to play.

(Casserole Club, a social enterprise developed by FutureGov uses social media to connect people who have difficulty cooking for themselves with others who are happy to cook an extra portion for a neighbour; a great example of a locally-focused “sharing economy” business model which creates financially sustainable social value.)

4. Enable and support Social Enterprise

The objectives of Smart Cities (which I’d summarise for this purpose as “finding ways to invest in technology to enable social, environmental and economic improvements”) are analogous to the “triple bottom line” objectives of Social Enterprises – organisations whose finances are often sustained by revenues from the products or services that they provide, but that commit themselves to social, environmental or economic outcomes, rather than to maximising their financial returns to shareholders. A vast number of Smart City initiatives are carried out by these organisations when they innovate using technology.

Cities that find a way to systematically enable social enterprises to succeed could unlock a reservoir of beneficial innovation. An international example that began in the UK is the Impact Hub network, a global community of collaborative workspaces. The Impact Hub network has worked with a variety of national and local governments to create support programmes to encourage the formation of socially innovative and responsible organisations.

Social Enterprise UK help and support authorities seeking to work with Social Enterprises in this way through their “Social Enterprise Place” initiative; Oxfordshire was the first County to be awarded “Social Enterprise County” under this initiative in recognition of their engagement programme with Social Enterprise.

Another possibility is for local authorities to work in partnership with crowdfunding organisations. Plymouth City Council, for example, offer to match-fund any money raised from crowdfunding for social innovations. This approach can be tremendously powerful: whilst the availability of match-funding from the local authority attracts crowdfunded donations, often sufficient funds are donated through crowdfunding that ultimately the match funding is not required. Given the sustained pressure we’re seeing on public sector finances, this ability to enable a small amount of local authority investment go a very long way is really powerful.

The stakeholders whose commitment is required to make this approach effective include local authorities – whose financial commitment to support new ideas is vital – as well as representatives of the Charitable and Social Enterprise sectors; businesses with support programmes for Social Enterprise (such as Deloitte Consulting’s Social Innovation Pioneers programme); and local incubators and business support services for Social Enterprise.

Why Smart Cities are a societal failure

Market dynamics guarantee that we’ll see massive investment in smart technology over the next few years – the meteoric rise of Uber and Air B’n’B is just one manifestation of that imperative. Consider also how astonishing your SmartPhone is compared to anything you could have imagined a few years ago – and the phenomenal levels of investment in technology that have driven that development; or how quickly the level of technology available in the average car has increased – let alone what happens when self-driving, connected vehicles become widely available.

But what will be the result of all that investment?

Before the recent UK general election, I admonished a Member of Parliament who closed a Smart Cities discussion with the words “I don’t suppose we’ll be talking about this subject for a couple of months now; we’ve got an election to consider” with the response: “Apple have just posted the largest quarterly profit in Corporate history by selling mobile supercomputers to the ordinary people who vote for you. Why on earth isn’t the topic of “who benefits from this incredibly powerful technology that is reshaping our society” absolutely central to the election debate?” (Apple’s results had just been announced earlier that day).

That exchange (and the fact that these issues indeed barely surfaced at all throughout the election period) marks the core of the Smart Cities debate, and highlights our societal failure to address it.

Most politicians appreciate that technology is changing rapidly and that these changes merit attention; but they do not appreciate quite how fundamentally important and far-reaching those changes are. My sense is that they think they can deal with technology-related issues such as “Smart Cities” as self-contained subjects of secondary importance to the more pressing concerns of educational attainment, economic productivity and international competitiveness.

That is a fundamentally mistaken view. Over the next decade, developments in technology, and the way that we adapt to them, will be one of the most important factors influencing education, the economy and the character of our society.

Let me justify that assertion by considering the skills that any one of us will need in order to have a successful life as our society and economy develop.

It is obvious that we will need the right technical skills in order to use the technologies of the day effectively. But of course we will also need interpersonal skills to interact with colleagues and customers; economic skills to help focus our efforts on creating value for others; and organisational skills to enable us to do so in the context of the public and private institutions from which our society is constructed.

One single force is changing all of those skills more rapidly than we have ever known before: technology. When the Millennium began we would not have dreamed of speaking to our families wherever and whenever we liked using free video-calling, and we could not have started a business using the huge variety of online tools available to us today. From startups to multinational corporations, we are all comfortable building and operating companies that use continually evolving technology to coordinate the activities of people living in different countries on different continents; and to create innovative new ways of doing so.

Whatever you think are the most important issues in the world today, if you are not at least considering the role of technology within them, then you will misunderstand how they will develop over time. And the process of envisioning and creating that future is another way to define what we mean by Smart Cities and smart communities: the challenges and opportunities we face, and the changes that technology will create, come together in the places where we live, work, travel and play; and their outcomes will be determined both by the economics of those places, and by how how they are governed.

Unfortunately, most of us are not even engaged with these ideas. A recent poll conducted by Arqiva on behalf of YouGov found that 96% of respondents were unaware of any Smart City initiatives in the cities they lived in. If ordinary people don’t understand and believe in the value of Smart Cities, they are unlikely to vote for politicians who attempt to build them or enact policies that support them. That lack of appreciation represents a failure on the part of those of us – like me – who do appreciate the significance of the changes we’re living through to communicate them, and to make an effective case to take decisive action.

As an example of that failure, consider again Birmingham’s thought-leading “Digital Blueprint” and it’s ten design principles. To repeat, they are “best practise recommendations”: they are not policies. They are not mandatory or binding. And as a consequence, I am sorry to say that in practise they have not been applied to the literally £billions of investment in development and regeneration taking place in the city that I live in and love.

That’s a lost opportunity that greatly saddens me.

[Drones co-operate to build a rope bridge. As such machines become more capable and able to carry out more cheaply and safely tasks previously performed by people, and that are central to the construction and operation of city infrastructure and services, how do we ensure that society at large benefits from such technology?]

As a society we cannot afford to keep losing such opportunities (and Birmingham is not alone: taking those opportunities is by far the exception, and not the rule). If we do, our aspirations will be simply be overtaken by events, and the consequences could be profound.

Writing in “The 2nd Machine Age”, MIT Professors of Economics Andy McAfee and Erik Brynjolfsson argue that the “platform business models” of Air B’n’B and Uber are becoming a dominant force in the economy – they cite the enormous market valuations of corporations such as Nike, Google, Facebook and Amazon that use such models, in addition to the rapid growth of new businesses. Their analysis further demonstrates that, if left unchecked, the business models and market dynamics of the digital economy will concentrate the value created by those businesses into the hands of a small number of platform creators and shareholders to a far greater extent than traditional business models have done so throughout history to date. I had the opportunity to meet Andy and Erik earlier this year, and they were deeply concerned that we should act to prevent the stark increase in inequality that their findings predict.

These are innovative businesses using Smart technology, but those social and economic outcomes won’t make a smart world, a smart society or Smart Cities. The widespread controversy created by Uber’s business model is just the tip of the iceberg of the consequences that we could see.

As I’ve quoted many, many times on this blog, Jane Jacobs got this right in 1961 when she wrote in “The Death and Life of Great American Cities” that:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machine is adapted to turn out that image.”

We have expressed over and over again the “image of what we want” in countless aspirational visions and documents. But we have not adapted the machine to turn out that image.

Our politicians – locally and nationally – have not understood that the idea of a “Smart City” is really a combination of technology, social, environmental and economic forces that will fundamentally transform the way our society works in a way that will change the life of everyone on this planet; that the outcomes of those changes are in no way understood, and in no way guaranteed to be beneficial; and that enacting the policies, practises and – yes – laws, to adapt those changes to the benefit of everyone is a defining political challenge for our age.

I am not a politician, but this is also a challenge for which I accept responsibility.

As a representative of business – in particular a business that delivers a vast number of services to the public sector – I recognise the enormous responsibility I accept by working in a leadership role for an example of what has become one of the most powerful forces in our economy: the private corporation. It is my responsibility – and that of my peers, colleagues and competitors – to drive our business forward in a way that is responsible to the interests of the society of which we are part, and that is not driven only by the narrow financial concerns of our shareholders.

There should be absolutely no conflict between a responsible, financially successful company and one that operates in the long term interest of the society which ultimately supports it.

But that long-term synergy is only made real by a constant focus on taking the right decisions every day. From the LIBOR scandal to cheating diesel emissions tests it’s all too obvious that there are many occasions when we get those decisions wrong. Businesses are run by people; people are part of society; and we need to treat those simple facts far more seriously as an imperative in everyday decision-making than we currently do.

It is inevitable that our world, our cities and our communities will be dramatically reshaped by the technologies that are developing today, and that will be developed in the near future. They will change – very quickly – out of all recognition from what we know today.

But whether we will honestly benefit from those technologies is a different and uncertain question. Answering that question with a “yes” is a personal, political, business and organisational challenge that all of us need to face up to much more seriously and urgently than we are have done so far.

Six ways to design humanity and localism into Smart Cities

(Birmingham’s Social Media Cafe, where individuals from every part of the city share their experience using social media to promote their businesses and community initiatives. Photograph by Meshed Media)

The Smart Cities movement is sometimes criticised for appearing to focus mainly on the application of technology to large-scale city infrastructures such as smart energy grids and intelligent transportation.

It’s certainly vital that we manage and operate city services and infrastructure as intelligently as possible – there’s no other way to deal with the rapid urbanisation taking place in emerging economies; or the increasing demand for services such as health and social care in the developed world whilst city budgets are shrinking dramatically; and the need for improved resilience in the face of climate change everywhere.

But to focus too much on this aspect of Smart Cities and to overlook the social needs of cities and communities risks forgetting what the full purpose of cities is: to enable a huge number of individual citizens to live not just safe, but rewarding lives with their families.

Maslow’s Hierarchy of Needs identifies our most basic requirements to be food, water, shelter and security. The purpose of many city infrastructures is to answer those needs, either directly (buildings, utility infrastructures and food supply chains) or indirectly (the transport systems that support us and the businesses that we work for).

Important as those needs are, though – particularly to the billions of people in the world for whom they are not reliably met – life would be dull and unrewarding if they were all that we aspired to.

Maslow’s hierarchy next relates the importance of family, friends and “self-actualisation” (which can crudely be described as the process of achieving things that we care about). These are the more elusive qualities that it’s harder to design cities to provide. But unless cities provide them, they will not be successful. At best they will be dull, unrewarding places to live and work, and will see their populations fall as those can migrate elsewhere. At worst, they will create poverty, poor health and ultimately short, unrewarding lives.

A Smart City should not only be efficient, resilient and sustainable; it should improve all of these qualities of life for its citizens.

So how do we design and engineer them to do that?

(Maslow’s Hierarchy of Needs, image by Factoryjoe via Wikimedia Commons)

Tales of the Smart City

Stories about the people whose lives and businesses have been made better by technology tell us how we might answer that question.

In the Community Lover’s Guide to Birmingham, for example, Nick Booth describes the way his volunteer-led social media surgeries helped the Central Birmingham Neighbourhood Forum, Brandwood End Cemetery and Jubilee Debt Campaign to benefit from technology.

Another Birmingham initiative, the Northfield Ecocentre, crowdfunded £10,000 to support their “Urban Harvest” project. The funds helped the Ecocentre pick unwanted fruit from trees in domestic gardens in Birmingham and distribute it between volunteers, children’s centres, food bank customers and organisations promoting healthy eating; and to make some of it into jams, pickles and chutneys to raise money so that in future years the initiative can become self-sustaining.

In the village of Chale on the Isle of Wight, a community not served by the national gas power network and with significant levels of fuel poverty, my colleague Andy Stanford-Clark has helped an initiative not only to deploy smart meters to measure the energy use of each household; but to co-design with residents how they will use that technology, so that the whole community feels a sense of ownership and inclusion in the initiative. The project has resulted in a significant drop in rent arrears as residents use the technology to reduce their utility bills, in some cases by up to 50 percent. Less obviously, the sense of shared purpose has extended to the creation of a communal allotment area in the village and a successful compaign to halve bus fares in the area.

There are countless other examples. Play Fitness “gamify” exercise to persuade children to get fit, and work very hard to ensure that their products are accessible to children in communities of any level of wealth.  Casserole Club use social media to introduce people who can’t cook for themselves to people who are prepared to volunteer to cook for others. The West Midlands Collaborative Commerce Marketplace uses analytics technology to help it’s 10,000 member businesses win more than £4billion in new contracts each year. … and so on.

None of these initiatives are purely to do with technology. But they all use technologies that simply were not available and accessible as recently as a few years ago to achieve outcomes that are important to cities and communities. By understanding how the potential of technology was apparent to the stakeholders in such initiatives, why it was affordable and accessible to them, and how they acquired the skills to exploit it, we can learn how to design Smart Cities in a way that encourages widespread grass-roots, localised innovation.

(Top: Birmingham's Masshouse Circus roundabout, part of the inner-city ringroad that famously impeded the city's growth. Bottom: This pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

(Top: Birmingham’s Masshouse Circus roundabout, part of the inner-city ringroad that famously impeded the city’s growth until it was demolished. Photo by Birmingham City Council. Bottom: Pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

A tale of two roundabouts

History tells us that we should not assume that it will be straightforward to design Smart Cities to achieve that objective, however.

A measure of our success in building the cities we know today from the generations of technology that shaped them – concrete, cars and lifts – is the variation in life expectancy across them. In the UK, it’s common for life expectancy to vary by around 20 years between the poorest and richest parts of the same city.

That staggering difference is the outcome of a complex set of issues including the availability of education and opportunity, lifestyle factors such as diet and exercise, and the accessibility of city services. But a significant influence on many of those issues is the degree to which the large-scale infrastructures built to support our physiological needs and the demands of the economy also create a high-quality environment for daily life.

The photograph on the right shows two city transport infrastructures that are visually similar, but that couldn’t be more different in their influence on the success of the cities that they are part of.

The picture at the top shows Masshouse Circus in Birmingham in 2001 shortly before it was demolished. It was constructed in the 1960s as part of the city’s inner ring-road, intended to improve connectivity to the national economy through the road network. However, the impact of the physical barrier that it created to pedestrian traffic can be seen by the stark difference in land value inside and outside the “concrete collar” of the ring-road. Inside the collar, land is valuable enough for tall office blocks to be constructed on it; whilst outside it is of such low value that it is used as a ground-level carpark.

In contrast, the pedestrian roundabout in Lujiazui, China pictured at the bottom, constructed over a busy road junction, balances the need to support traffic flows through the city with the need for people to walk freely about the areas in which they live and work. As can be seen from the people walking all around it, it preserves the human vitality of an area that many busy roads flow through. 

We should take insight from these experiences when considering the design of Smart City infrastructures. Unless those infrastructures are designed to be accessible to and usable by citizens, communities and local businesses, they will be as damaging as poorly constructed buildings and poorly designed transport networks. If that sounds extreme, then consider the dangers of cyber-stalking, or the implications of the gun-parts confiscated from a suspected 3D printing gun factory in Manchester last year that had been created on general purpose machinery from digital designs shared through the internet. Digital technology has life and death implications in the real world.

For a start, we cannot take for granted that city residents have the basic ability to access the internet and digital technology. Some 18% of adults in the UK have never been online; and children today without access to the internet at home and in school are at an enormous disadvantage. As digital technology becomes even more pervasive and important, the impact of this digital divide – within and between people, cities and nations – will become more severe. This is why so many people care passionately about the principle of “Net Neutrality” – that the shared infrastructure of the internet provides the same service to all of its users; and does not offer preferential access to those individuals or corporations able to pay for it.

These issues are very relevant to cities and their digital strategies and governance. The operation of any form of network requires physical infrastructure such as broadband cables, wi-fi and 4G antennae and satellite dishes. That infrastructure is regulated by city planning policies. In turn, those planning policies are tools that cities can and should use to influence the way in which technology infrastructure is deployed by private sector service providers.

(Photograph of Aesop’s fable “The Lion and the Mouse” by Liz West)

Little and big

Cities are enormous places in which what matters most is that millions of individually small matters have good outcomes. They work well when their large scale systems support the fine detail of life for every one of their very many citizens: when “big things” and “little things” work well together.

A modest European or US city might have 200,000 to 500,000 inhabitants; a large one might have between one and ten million. The United Nations World Urbanisation Prospects 2011 revision recorded 23 cities with more than 10 million population in 2011 (only six of them in the developed world); and predicted that there would be nearly 40 by 2025 (only eight of them in the developed world – as we define it today). Overall, between now and 2050 the world’s urban population will double from 3 billion to 6 billion. 

A good example of the challenges that this enormous level of urbanisation is already creating is the supply of food. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency; and Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America Feeding the 7 to 10 billion people who will inhabit the planet between now and 2050, and the 3 to 6 billion of them that will live in dense cities, is certainly a challenge on an industrial scale. 

In contrast, Casserole Club, the Northfield Eco-Centre, the Chale Project and many other initiatives around the world have demonstrated the social, health and environmental benefits of producing and distributing food locally. Understanding how to combine the need to supply food at city-scale with the benefits of producing it locally and socially could make a huge difference to the quality of urban lives.

The challenge of providing affordable broadband connectivity throughout cities demonstrates similar issues. Most cities and countries have not yet addressed that challenge: private sector network providers will not deploy connectivity in areas which are insufficiently economically active for them to make a profit, and Government funding is not yet sufficient to close the gap.

In his enjoyable and insightful book “Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia“, Anthony Townsend describes a grass-roots effort by civic activists to provide New York with free wi-fi connectivity. I have to admire the vision and motivation of those involved, but – rightly or wrongly; and as Anthony describes – wi-fi has ultimately evolved to be dominated by commercial organisations.  

As technology continues to improve and to reduce in price, the balance of power between large, commercial, resource-rich institutions and small, agile, resourceful  grassroots innovators will continue to changeTechnologies such as Cloud Computing, social media, 3D printing and small-scale power generation are reducing the scale at which many previously industrial technologies are now economically feasible; however, it will remain the case for the foreseeable future that many city infrastructures – physical and digital – will be large-scale, expensive affairs requiring the buying power and governance of city-scale authorities and the implementation resources of large companies.

But more importantly, neither small-scale nor large-scale solutions alone will meet all of our needs. Many areas in cities – usually those that are the least wealthy – haven’t yet been provided with wi-fi or broadband connectivity by either.  

(Cars in Frederiksberg, Copenhagen wishing to join a main road must give way to cyclists and pedestrians)

(A well designed urban interface between people and infrastructure. Cars in Frederiksberg, Copenhagen wishing to join a main road must give way to cyclists and pedestrians passing along it)

We need to find the middle ground between the motivations, abilities and cultures of large companies and formal institutions on one hand; and those of agile, local innovators and community initiatives on the other. The pilot project to provide broadband connectivity and help using the internet to Castle Vale in Birmingham is a good example of finding that balance.

And I am optimistic that we can find it more often. Whilst Anthony is rightly critical of approaches to designing and building city systems that are led by technology, or that overlook the down-to-earth and sometimes downright “messy” needs of people and communities for favour of unrealistic technocratic and corporate utopias; the reality of the people I know that are employed by large corporations on Smart City projects is that they are acutely aware of the limitations as well as the value of technology, and are passionately committed to the human value of their work. That passion is often reflected in their volunteered commitment to “civic hacking“, open data initiatives, the teaching of technology in schools and other activities that help the communities in which they live to benefit from technology.

But rather than relying on individual passion and integrity, how do we encourage and ensure that large-scale investments in city infrastructures and technology enable small-scale innovation, rather than stifle it?

Smart urbanism and massive/small innovation

I’ve taken enormous inspiration in recent years from the architect Kelvin Campbell whose “Massive / Small” concept and theory of “Smart Urbanism” are based on the belief that successful cities emerge from physical environments that encourage “massive” amounts of “small”-scale innovation – the “lively, diversified city, capable of continual, close- grained improvement and change” that Jane Jacobs described in “The Death and Life of Great American Cities“.

We’ll have to apply similar principles in order for large-scale city technology infrastructures to support localised innovation and value-creation. But what are the practical steps that we can take to put those principles into practise?

Step 1: Make institutions accessible

There’s a very basic behaviour that most of us are quite bad at – listening. In particular, if the institutions of Smart Cities are to successfully create the environment in which massive amounts of small-scale innovation can emerge, then they must listen to and understand what local activists, communities, social innovators and entrepreneurs want and need.

Many large organisations – whether they are local authorities or private sector companies – are poor at listening to smaller organisations. Their decision-makers are very busy; and communications, engagement and purchasing occur through formally defined processes with legal, financial and confidentiality clauses that can be difficult for small or informal organisations to comply with. The more that we address these barriers, the more that our cities will stimulate and support small-scale innovation. One way to do so is through innovations in procurement; another is through the creation of effective engagements programmes, such as the Birmingham Community Healthcare Trust’s “Healthy Villages” project which is listening to communities expressing their need for support for health and wellbeing. This is why IBM started our “Smarter Cities Challenge” which has engaged hundreds of IBM’s Executives and technology experts in addressing the opportunities and challenges of city communites; and in so doing immersed them in very varied urban cultures, economies, and issues.

But listening is also a personal and cultural attitude. For example, in contrast to the current enthusiasm for cities to make as much data as possible available as “open data”, the Knight Foundation counsel a process of engagement and understanding between institutions and communities, in order to identify the specific information and resources that can be most usefully made available by city institutions to individual citizens, businesses and social organisations.

(Delegates at Gov Camp 2013 at IBM’s Southbank office, London. Gov Camp is an annual conference which brings together anyone interested in the use of digital technology in public services. Photo by W N Bishop)

In IBM, we’ve realised that it’s important to us to engage with, listen to and support small-scale innovation in its many forms when helping our customers and partners pursue Smarter City initiatives; from working with social enterprises, to supporting technology start-ups through our Global Entrepreneur Programme, to engaging with the open data and civic hacking movements.

More widely, it is often talented, individual leaders who overcome the barriers to engagement and collaboration between city institutions and localised innovation. In “Resilience: why things bounce back“, Andrew Zolli describes many examples of initiatives that have successfully created meaningful change. A common feature is the presence of an individual who shows what Zolli calls”translational leadership“: the ability to engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.

Step 2: Make infrastructure and technology accessible

Whilst we have a long way to go to address the digital divide, Governments around the world recognise the importance of access to digital technology and connectivity; and many are taking steps to address it, such as Australia’s national deployment of broadband internet connectivity and the UK’s Urban Broadband Fund. However, in most cases, those programmes are not sufficient to provide coverage everywhere.

Some businesses and social initiatives are seeking to address this shortfall. CommunityUK, for example, are developing sustainable business models for providing affordable, accessible connectivity, and assistance using it, and are behind the Castle Vale project in Birmingham. And some local authorities, such as Sunderland and Birmingham, have attempted to provide complete coverage for their citizens – although just how hard it is to achieve that whilst avoiding anti-competition issues is illustrated by Birmingham’s subsequent legal challenges.

We should also tap into the enormous sums spent on the physical regeneration of cities and development of property in them. As I first described in June last year, while cities everywhere are seeking funds for Smarter City initiatives, and often relying on central government or research grants to do so, billions of Pounds, Euros, and Dollars are being spent on relatively conventional property development and infrastructure projects that don’t contribute to cities’ technology infrastructures or “Smart” objectives.

Local authorities could use planning regulations to steer some of that investment into providing Smart infrastructure, basic connectivity, and access to information from city infrastructures to citizens, communities and businesses. Last year, I developed a set of “Smart City Design Principles” on behalf a city Council considering such an approach, including:

Principle 4: New or renovated buildings should be built to contain sufficient space for current and anticipated future needs for technology infrastructure such as broadband cables; and of materials and structures that do not impede wireless networks. Spaces for the support of fixed cabling and other infrastructures should be easily accessible in order to facilitate future changes in use.

Principle 6: Any development should ensure wired and wireless connectivity is available throughout it, to the highest standards of current bandwidth, and with the capacity to expand to any foreseeable growth in that standard.

(The Birmingham-based Droplet smartphone payment service, now also operating in London, is a Smart City start-up that has won backing from Finance Birmingham, a venture capital company owned by Birmingham City Council)

Step 3: Support collaborative innovation

Small-scale, local innovations will always take place, and many of them will be successful; but they are more likely to have significant, lasting, widespread impact when they are supported by city institutions with resources.

That support might vary from introducing local technology entrepreneurs to mentors and investors through the networks of contacts of city leaders and their business partners; through to practical assistance for social enterprises, helping them to put in place very basic but costly administration processes to support their operations.

City institutions can also help local innovations to thrive simply by becoming their customers. If Councils, Universities and major local employers buy services from innovative local providers – whether they be local food initiatives such as the Northfield Ecocentre or high-tech innovations such as Birmingham’s Droplet smartphone payment service – then they provide direct support to the success of those businesses.

In Birmingham,for example, Finance Birmingham (a Council-owned venture capital company) and the Entrepreneurs for the Future (e4F) scheme provide real, material support to the city’s innovative companies; whilst Bristol’s Mayor George Ferguson and Lambeth’s Council both support their local currencies by allowing salaries to be paid in them.

It becomes more obvious  why stakeholders in a city might become involved in collaborative innovation when they have the opportunity to co-create a clear set of shared priorities. Those priorities can be compared to the objectives of innovative proposals seeking support, whether from social initiatives or businesses; used as the basis of procurement criteria for goods, services and infrastructure; set as the objectives for civic hacking and other grass-roots creative events; or even used as the criteria for funding programmes for new city services, such as the “Future Streets Incubator” that will shortly be launched in London as a result of the Mayor of London’s Roads Task Force.

In this context, businesses are not just suppliers of products and services, but also local institutions with significant supply chains, carbon and economic footprints, purchasing power and a huge number of local employees. There are many ways such organisations can play a role in supporting the development of an open, Smarter, more sustainable city.

The following “Smart City Design Principles” promote collaborative innovation in cities by encouraging support from development and regeneration initiatives:

Principle 12: Consultations on plans for new developments should fully exploit the capabilities of social media, virtual worlds and other technologies to ensure that communities affected by them are given the widest, most immersive opportunity possible to contribute to their design.

Principle 13: Management companies, local authorities and developers should have a genuinely engaging presence in social media so that they are approachable informally.

Principle 14: Local authorities should support awareness and enablement programmes for social media and related technologies, particularly “grass roots” initiatives within local communities.

Step 4: Promote open systems

A common principle between the open data movement; civic hacking; localism; the open government movement; and those who support “bottom-up” innovations in Smart Cities is that public systems and infrastructure – in cities and elsewhere – should be “open”. That might mean open and transparent in their operation; accessible to all; or providing open data and API interfaces to their technology systems so that citizens, communities and businesses can adapt them to their own needs. Even better, it might mean all of those things.

The “Dublinked” information sharing partnership, in which Dublin City Council, three surrounding County Councils and  service providers to the city share information and make it available to their communities as “open data”, is a good example of the benefits that openness can bring. Dublinked now makes 3,000 datasets available to local authority analysts; to researchers from IBM Research and the National University of Ireland; and to businesses, entrepreneurs and citizens. The partnership is identifying new ways for the city’s public services and transport, energy and water systems to work; and enabling the formation of new, information-based businesses with the potential to export the solutions they develop in Dublin to cities internationally. It is putting the power of technology and of city information not only at the disposal of the city authority and its agencies, but also into the hands of communities and innovators.

(I was delighted this year to join Innovation Birmingham as a non-Executive Director in addition to my role with IBM. Technology incubators – particularly those, like Innovation Birmingham and Sunderland Software City, that are located in city centres – are playing an increasingly important role in making the support of city institutions and major technology corporations available to local communities of entrepreneurs and technology activists)

In a digital future, the more that city infrastructures and services provide open data interfaces and APIs, the more that citizens, communities and businesses will be able to adapt the city to their own needs. This is the modern equivalent of the grid system that Jane Jacobs promoted as the most adaptable urban form. A grid structure is the basis of Edinburgh’s “New Town”, often regarded as a masterpiece of urban planning that has proved adaptable and successful through the economic and social changes of the past 250 years, and is also the starting point for Kelvin Campbell’s work.

But open data interfaces and APIs will only be widely exploitable if they conform to common standards. In order to make it possible to do something as simple as changing a lightbulb, we rely on open standards for the levels of voltage and power from our electricity supply; the physical dimensions of the socket and bulb and the characteristics of their fastenings; specifications of the bulb’s light and heat output; and the tolerance of the bulb and the fitting for the levels of moisture found in bathrooms and kitchens. Cities are much more complicated than lightbulbs; and many more standards will be required on order for us to connect to and re-configure their systems easily and reliably.

Open standards are also an important tool in avoiding city systems becoming “locked-in” to any particular supplier. By specifying common characteristics that all systems are required to demonstrate, it becomes more straightforward to exchange one supplier’s implementation for another.

Some standards that Smarter City infrastructures can use are already in place – for example, Web services and REST that specify the general ways in which computer systems interact, and the Common Alerting Protocol which is more specific to interactions between systems that monitor and control the physical world. But many others will need to be invented and encouraged to spread. The City Protocol Society is one organisation seeking to develop those new standards; and the British Standards Institute recently published the first set of national standards for Smarter Cities in the UK, including a standard for the interoperability of data between Smart City systems.

Some open source technologies will also be pivotal; open source (software whose source code is freely available to anyone, and which is usually written by unpaid volunteers) is not the same as open standards (independently governed conventions that define the way that technology from any provider behaves). But some open source technologies are so widely used to operate the internet infrastructures that we have become accustomed to – the “LAMP” stack of operating system, web server, database and web progamming language, for example – that they are “de facto” standards that convey some of the benefits of wide usability and interoperability of open standards. For example, IBM recently donated MQTT, a protocol for connecting information between small devices such as sensors and actuators in Smart City systems to the open source community, and it is becoming increasingly widely adopted as a consequence.

Once again, local authorities can contribute to the adoption of open standards through planning frameworks and procurement practises:

Principle 7: Any new development should demonstrate that all reasonable steps have been taken to ensure that information from its technology systems can be made openly available without additional expenditure. Whether or not information is actually available will be dependent on commercial and legal agreement, but it should not be additionally subject to unreasonable expenditure. And where there is no compelling commercial or legal reason to keep data closed, it should actually be made open.

Principle 8: The information systems of any new development should conform to the best available current standards for interoperability between IT systems in general; and for interoperability in the built environment, physical infrastructures and Smarter Cities specifically.

(The town plan for Edinburgh’s New Town, clearly showing the grid structure that gives rise to the adaptability that it is famous for showing for the past 250 years. Image from the JR James archive)

Finally, design skills will be crucial both to creating interfaces to city infrastructures that are truly useful and that encourage innovation; and in creating innovations that exploit them that in turn are useful to citizens.

At the technical level, there is already a rich corpus of best practise in the design of interfaces to technology systems and in the architecture of technology infrastructures that provide them.

But the creativity that imagines new ways to use these capabilities in business and in community initiatives will also be crucial. The new academic discipline of “Service Science” describes how designers can use technology to create new value in local contexts; and treats services such as open data and APIs as “affordances” – capabilities of infrastructure that can be adapted to the needs of an individual. In the creative industries, “design thinkers” apply their imagination and skills to similar subjects.

Step 5: Provide common services

At the 3rd EU Summit on Future Internet, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project, identified the specific tools that local innovators need in order to exploit city information infrastructures. They include real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust.

The Dublinked information sharing partnership is already putting some of these ideas into practise. It provides assistance to innovators in using, analysing and visualising data; and now makes available realtime data showing the location and movements of buses in the city. The partnership is based on specific governance processes that protect data privacy and manage the risk associated with sharing data.

As we continue to engage with communities of innovators in cities, we will discover further requirements of this sort. Imperial College’s “Digital Cities Exchange” research programme is investigating the specific digital services that could be provided as enabling infrastructure to support innovation and economic growth in cities, for example. And the British Standards Institute’s Smart Cities programme includes work on standards that will enable small businesses to benefit from Smart City infrastructure.

Local authorities can adapt planning frameworks to encourage the provision of these services:

Principle 9: New developments should demonstrate that they have considered the commercial viability of providing the digital civic infrastructure services recommended by credible research sources.

Step 6: Establish governance of the information economy

From the exponential growth in digital information we’ve seen in recent years, to the emergence of digital currencies such as Bitcoin, to the disruption of traditional industries by digital technology; it’s clear that we are experiencing an “information revolution” just as significant as the “industrial revolution” of the 18th and 19th centuries. We often refer to the resulting changes to business and society as the development of an “information economy“.

But can we speak in confidence of an information economy when the basis of establishing the ownership and value of its fundamental resource – digital information – is not properly established?

(Our gestures when using smartphones may be directed towards the phones, or the people we are communicating with through them; but how are they interpreted by the people around us? “Oh, yeah? Well, if you point your smartphone at me, I’m gonna point my smartphone at you!” by Ed Yourdon)

A great deal of law and regulation already applies to information, of course – such as the European Union’s data privacy legislation. But practise in this area is far less established than the laws governing the ownership of physical and intellectual property and the behaviour of the financial system that underlie the rest of the economy. This is evident in the repeated controversies concerning the use of personal information by social media businesses, consumer loyalty schemes, healthcare providers and telecommunications companies.

The privacy, security and ownership of information, especially personal information, are perhaps the greatest challenges of the digital age. But that is also a reflection of their importance to all aspects of our lives. Jane Jacobs’ description of urban systems in terms of human and community behaviour was based on those concepts, and is still regarded as the basis of our understanding of cities. New technologies for creating and using information are developing so rapidly that it is not only laws specifically concerning them that are failing to keep up with progress; laws concerning the other aspects of city systems that technology is transforming are failing to adapt quickly enough too.

A start might be to adapt city planning regulations to reflect and enforce the importance of the personal information that will be increasingly accessed, created and manipulated by city systems:

Principle 21: Any information system in a city development should provide a clear policy for the use of personal information. Any use of that information should be with the consent of the individual.

The triumph of the commons

I wrote last week that Smarter Cities should be a “middle-out” economic investment – in other words, an investment in common interests – and compared them to the Economist’s report on the efforts involved in distributing the benefits of the industrial revolution to society at large rather than solely to business owners and the professional classes.

One of the major drivers for the current level of interest in Smarter Cities and technology is the need for us to adapt to a more sustainable way of living in the face of rising global populations and finite resources. At large scale, the resources of the world are common; and at local scale, the resources of cities are common too.

For four decades, it has been widely assumed that those with access to common resources will exploit them for short term gain at the expense of long term sustainability – this is the “tragedy of the commons” first described by the economist Garrett Hardin. But in 2009, Elinor Ostrum won the Nobel Prize for economics by demonstrating that the “tragedy” could be avoidedand that a community could manage and use shared resources in a way that was sustainable in the long-term.

Ostrum’s conceptual framework for managing common resources successfully is a set of criteria for designing “institutions” that consist of people, processes, resources and behaviours. These need not necessarily be formal political or commercial institutions, they can also be social structures. It is interesting to note that some of those criteria – for example, the need for mechanisms of conflict resolution that are local, public, and accessible to all the members of a community – are reflected in the development over the last decade of effective business models for carrying out peer-to-peer exchanges using social media, supported by technologies such as reputation systems.

Of course, there are many people and communities who have championed and practised the common ownership of resources regardless of the supposed “tragedy” – not least those involved in the Transition movement founded by Rob Hopkins, and which has developed a rich understanding of how to successfully change communities for the better using good ideas; or the translational leaders described by Andrew Zolli. But Elinor Ostrum’s ideas are particularly interesting because they could help us to link the design, engineering and governance of Smarter Cities to the achievement of sustainable economic and social objectives based on the behaviour of citizens, communities and businesses.

Combined with an understanding of the stories of people who have improved their lives and communities using technology, I hope that the work of Kelvin Campbell, Rob Hopkins, Andrew Zolli, Elinor Ostrum and many others can inspire technologists, urban designers, architects and city leaders to develop future cities that fully exploit modern technology to be efficient, resilient and sustainable; but that are also the best places to live and work that we can imagine, or that we would hope for for our children.

Cities created by people like that really would be Smart.

The sharing economy and the future of movement in smart, human-scale cities

("Visionary City" by William Robinson Leigh)

(William Robinson Leigh’s 1908 painting “Visionary City” envisaged future cities constructed from mile-long buildings of hundreds of stories connected by gas-lit skyways for trams, pedestrians and horse-drawn carriages. A century later we’re starting to realise not only that developments in transport and power technology have eclipsed Leigh’s vision, but that we don’t want to live in cities constructed from buildings on this scale.)

One of the defining tensions throughout the development of cities has been between our desire for quality of life and our need to move ourselves and the things we depend on around.

The former requires space, peace, and safety in which to work, exercise, relax and socialise; the latter requires transport systems which, since the use of horsedrawn transport in medieval cities, have taken up space, created noise and pollution – and are often dangerous. Enrique Penalosa, whose mayorship of Bogota was defined by restricting the use of car transport, often refers to the tens of thousands of children killed by cars on the world’s roads every year and his astonishment that we accept this as the cost of convenient transport.

This tension will intensify rapidly in coming years. Not only are our cities growing larger and denser, but according to the analysis of city systems by Professors Geoffrey West and Louis Bettencourt of the Los Alamos National Laboratory and Professor Ian Robertson’s study of human behaviour, our interactions within them are speeding up and intensifying.

Arguably, over the last 50 years we have designed cities around large-scale buildings and transport structures that have supported – and encouraged – growth in transport and the size of urban economies and populations at the expense of some aspects of quality of life.

Whilst standards of living across the world have improved dramatically in recent decades, inequality has increased to an even greater extent; and many urbanists would agree that the character of some urban environments contributes significantly to that inequality. In response, the recent work of architects such as Jan Gehl and Kelvin Campbell, building on ideas first described by Jane Jacobs in the 1960s, has led to the development of the “human scale cities” movement with the mantra “first life, then space, then buildings”.

The challenge at the heart of this debate, though, is that the more successful we are in enabling human-scale value creation; the more demand we create for transport and movement. And unless we dramatically improve the impact of the systems that support that demand, the cities of the future could be worse, not better, places for us to live and work in.

Human scale technology creates complexity in transport

As digital technology pervades every aspect of our lives, whether in large-scale infrastructures such as road-use charging systems or through the widespread adoption of small-scale consumer technology such as smartphones and social media, we cannot afford to carry out the design of future cities without considering it; nor can we risk deploying it without concern for its affect on the quality of urban life.

Digital technologies do not just make it easier for us to communicate and share information wherever we are: those interactions create new opportunities to meet in person and to exchange goods and services; and so they create new requirements for transport. And as technologies such as 3D printing, open-source manufacturing and small-scale energy generation make it possible to carry out traditionally industrial activities at much smaller scales, some existing bulk movement patterns will be replaced by thousands of smaller, peer-to-peer interactions created by transactions in online marketplaces. We can already see the effects of this trend in the vast growth of traffic delivering goods that are purchased or exchanged online.

Estimates of the size of this “sharing economy“, defined by Wikipedia as “economic and social systems that enable shared access to goods, services, data and talent“, vary widely, but are certainly significant. The UK Economist magazine reports one estimate that it is a $26 billion economy already, whilst 2 Degrees Network report that just one aspect of it – small-scale energy generation – could save UK businesses £33 billion annually by 2030Air B’n’B – a peer-to-peer accommodation service – reported recently that they had contributed $632 million in value to New York’s economy in 2012 by enabling nearly 5,000 residents to earn an average of $7,500 by renting their spare rooms to travellers; and as a consequence of those travellers additionally spending an average of $880 in the city during their stay. The emergence in general of the internet as a platform for enabling sales, marketing and logistics for small and micro-businesses is partly responsible for a significant rise in self-employment and “micro-entrepreneurial” enterprises over the last few years, which now account for 14% of the US economy.

Digital technology will create not just great growth in our desire to travel and move things, but great complexity in the way we will do so. Today’s transport technologies are not only too inefficient to scale to our future needs; they’re not sophisticated and flexible enough to cope with the complexity and variety of demand.

Many of the future components of transport systems have already been envisaged, and deployed in early schemes: elevated cycleways; conveyor belts for freight; self-driving vehicles and convoys; and underground pneumatic networks for recycling. And to some extent, we have visualised the cities that they will create: Professor Miles Tight, for example, has considered the future living scenarios that might emerge from various evolutions of transport policy and human behavioural choices in the Visions 2030 project.

The task for the Smarter Cities movement should be to extend this thinking to envision the future of cities that are also shaped by emerging trends in digital technology and their effect on the wider economy and social systems. We won’t do that successfully by considering these subjects separately or in the abstract; we need to envision how they will collectively enable us to live and work from the smallest domestic scale to the largest city system.

(Packages from Amazon delivered to Google’s San Francisco office. Photo by moppet65535)

What we’ll do in the home of the future

Rather than purchasing and owning goods such as kitchen utensils, hobby and craft items, toys and simple house and garden equipment, we will create them on-demand using small-scale and open-source manufacturing technology and smart-materials. It will even be possible – though not all of us will choose to do so – to manufacture some food in this way.

Conversely, there will still be demand for handmade artisan products including clothing, gifts, jewellery, home decorations, furniture, and food. Many of us will earn a living producing these goods in the home while selling and marketing them locally or through online channels.

So we will leave our home of the future less often to visit shops; but will need not just better transport services to deliver the goods we purchase online to our doorsteps, but also a new utility to deliver the raw materials from which we will manufacture them ourselves; and new transport services to collect the products of our home industries and to deliver supplies to them.

We will produce an increasing amount of energy at home; whether from existing technologies such as solar panels or combined heat and power (CHP) systems; or through new techniques such as bio-energy. The relationships between households, businesses, utilities and transportation will change as we become producers of energy and consumers of waste material.

And whilst remote working means we will continue to be less likely to travel to and from the same office each day, the increasing pace of economic activity means that we will be more likely to need to travel to many new destinations as it becomes necessary to meet face to face with the great variety of customers, suppliers, co-workers and business partners with whom online technologies connect us.

What we’ll do in the neighbourhoods of the future

As we increasingly work remotely from within our homes or by travelling far away from them, less of us work in jobs and for businesses that are physically located within the communities in which we live; and some of the economic ties that have bound those communities in the past have weakened. But most of us still feel strong ties to the places we live in; whether they are historical, created by the character of our homes or their surrounding environment, or by the culture and people around us. These ties create a shared incentive to invest in our community.

Perhaps the greatest potential of social media that we’re only begin to exploit is its power to create more vibrant, sustainable and resilient local communities through the “sharing economy”.

The motivations and ethics of organisations participating in the sharing economy vary widely – some are aggressively commercial, whilst others are “social enterprises” with a commitment to reinvest profits in social growth. The social enterprise sector, comprised of mutuals, co-operatives, employee-owned businesses and enterprises who submit to “triple bottom line” accounting of financial, social and environmental capital, is about 15% of the value of most economies, and has been growing and creating jobs faster than traditional business since the 2008 crash. There is enormous potential for cities to achieve their “Smarter” objectives for sustainable, equitably distributed economic growth through contributions from social enterprises using technology to implement sharing economy business models within their region.

Sharing economy models which enable transactions between participants within a walkable or cyclable area can be a particularly efficient mechanism for collaboration, as the related transport can be carried out using human power. Joan Clos, Exective Director of UN-Habitat, has asserted that cities will only become sustainable when they are built at a sufficient population density that a majority of interactions within them can be carried out in this way (as reported informally by Tim Stonor from Dr. Clos’s remarks at the “Urban Planning for City Leaders” conference at the Crystal, London in 2012).

The Community Lovers’ Guide has published stories from across Europe of people who have collaborated to make the places that they share better, often using technology; and schemes such as Casserole Club and Land Share are linking the supply and demand of land, food, gardening and cooking skills within local communities, helping neighbours to help each other. At local, national and international levels, sharing economy ideas are creating previously unrealised social and economic value, including access to employment opportunities that replace some of those traditional professions that are shrinking as the technology used by industrial business changes.

Revenue-earning businesses are a necessary component of vibrant communities, at a local neighbourhood scale as well as city-wide. At the Academy of Urbanism Congress in Bradford this year, Michael Ward, Chair of the Centre for Local Economic Strategies, asserted that “the key task facing civic leaders in the 21st Century is this: how, in a period of profound and continuing economic changes, will our citizens earn a living and prosper?”

(“Makers” at the Old Print Works in Balsall Heath, Birmingham, sharing the tools, skills and ideas that create successful small businesses)

So whilst we work remotely from direct colleagues, we may chose to work in a collaborative workspace with near neighbours, with whom we can exchange ideas, make new contacts and start new enterprises and ventures. As the “maker” economy emerges from the development of sophisticated, small-scale manufacturing, and the resurgence in interest in artisan products, community projects such as the Old Print Works in Balsall Heath, Birmingham are emerging in low-cost ex-industrial space as people come together to share the tools and expertise required to make things and run businesses.

We will also manage and share our use of resources such as energy and water at neighbourhood scale. The scale and economics of movement of the raw materials for bio-energy generation, for example, currently dictate that neighbourhood-scale generation facilities – as opposed to city-wide, regional or domestic scale – are the most efficient. Aston University’s European Bio-Energy Research Institute is demonstrating these principles in the Aston district of Birmingham. And schemes from the sustainability pilot in Dubuque, Iowa to the Energy Sharing Co-operative in the West Midlands of the UK and the Chale community project on the Isle of Wight have shown that community-scale schemes can create shared incentives to use resources more efficiently.

One traditional centre of urban communities, the retail high street or main street, has fared badly in recent times. The shift to e-commerce, supermarkets and out-of-town shopping parks has led to many of them loosing footfall and trade, and seeing “payday lenders“, betting shops and charity shops take the place of traditional retailers.

High streets needs to be freed from the planning, policy and tax restrictions that are preventing their recovery. The retail-dominated highstreet of the 20th century emerged from a particular and temporary period in the evolution of the private car as the predominant form of transport supporting household-scale economic transactions. Developments in digital and transport technology as well as economy and society have made it non-viable in its current form; but legislation that prevents change in the use of highstreet property, and that keeps business taxes artificially high, is preventing highstreets from adapting in order to benefit from technology and the opportunities of the sharing economy.

Business Improvement Districts, already emerging in the UK and US to replace some local authority services, offer one way forward. They need to be given more freedom to allow the districts they manage to develop as best meets the economic and social needs of their area according to the future, not the past. And they need to become bolder: to invest in the same advanced technology to maximize footfall and spend from their customers as shopping malls do on behalf of their tenants, as recommended by a recent report to UK Government on the future of the high street.

The future high street will not be a street of clothes shops, bookshops and banks: some of those will still exist, but the high street will also be a place for collaborative workers; for makers; for sharing and exchanging; for local food produce and artisan goods; for socialising; and for starting new businesses. We will use social media to share our time and our resources in the sharing economy; and will meet on the high street when those transactions require the exchange of physical goods and services. We will walk and cycle to local shops and transport centres to collect and deliver packages for ourselves, or for our neighbours.

The future of work, life and transport at city-scale

Whilst there’s no universally agreed definition, an urban areas is generally agreed to be a continuously built-up area with a total population of between 2,000 and 40 million people; living at a density of around 1,000 per square kilometre; and employed primarily in non-agricultural activities (the appendices to the 2007 revision of the UN World Urbanisation Prospects summarise such criteria from around the world; 38.7 million is estimated to be the population of the world’s largest city, Tokyo, in 2025 by the UN World Urbanisation Prospects 2011).

(An analysis based on GPS data from mobile phones of end-to-end journeys undertaken by users of Abidjan’s bus services. By comparing existing bus routes to end-to-end journey requirements, the analysis identified four new bus routes and led to changes in many others. As a result, 22 routes now show increased ridership, and city-wide journey times have decreased by 10%.)

That is living at an industrial scale. The sharing economy may be a tremendously powerful force, but – at least for the foreseeable future – it will not scale to completely replace the supply chains that support the needs of such enormous and dense populations.

Take food, for example. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency; and Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America.

Until techniques such as vertical farming and laboratory-grown food become both technically and economically viable, and culturally acceptable – if they ever do – cities will not feed themselves. And these techniques hardly represent locally-grown food exchanged between peers – they are highly technical and likely to operate initially at industrial scale. Sharing economy businesses such as Casserole Club, Kitchen Surfing, and Big Barn will change the way we distribute, process and prepare food within cities, but many of the raw materials will continue to be grown and delivered to cities through the existing industrial-scale distribution networks that import them from agricultural regions.

We are drawn to cities for the opportunities they offer: for work, for entertainment, and to socialise. As rapidly as technology has improved our ability to carry out all of those activities online, the world’s population is still increasingly moving to cities. In many ways, technology augments the way we carry out those activities in the real world and in cities, rather than replacing them with online equivalents.

Technology has already made cultural events in the real world more frequent, accessible and varied. Before digital technology, the live music industry depended on mass-marketing and mass-appeal to create huge stadium-selling tours for a relatively small number of professional musicians; and local circuits were dominated by the less successful but similar-sounding acts for which sufficiently large audiences could be reached using the media of the time. I attempted as an amateur musician in the pre-internet 1990s to find a paying audience for the niche music I enjoyed making: I was not successful. Today, social media can be used to identify and aggregate demand to make possible a variety of events and artforms that would never previously have reached an audience. Culture in the real-world is everywhere, all the time, as a result, and life is the richer for it. We discover much of it online, but often experience it in the real world.

(Birmingham’s annual “Zombie Walk” which uses social media to engage volunteers raising money for charity. Photo by Clare Lovell).

Flashmobs” use smartphones and social media to spontaneously bring large numbers of people together in urban spaces to celebrate; socialise or protest; and while we will play and tell stories in immersive 3D worlds in the future – whether we call them movies, interactive fiction or “massive multi-player online role-playing games” – we’ll increasingly do so in the physical world too, in “mixed reality” games. Technologies such as Google Glasscognitive computing and Brain/Computer Interfaces will accelerate these trends as they remove the barrier between the physical world and information systems.

We will continue to come to city centres to experience those things that they uniquely combine: the joy and excitement of being amongst large numbers of people; the opportunity to share ideas; access to leading-edge technologies that are only economically feasible at city-scale; great architecture, culture and events; the opportunity to shop, eat, drink and be entertained with friends. All of these things are possible anywhere; but it is only in cities that they exist together, all the time.

The challenge for city-scale living will be to support the growing need to transport goods and people into, out of and around urban areas in a way that is efficient and productive, and that minimises impact on the liveability of the urban environment. In part this will involve reducing the impact of existing modes of transport by switching to electric or hydrogen power for vehicles; by predicting and optimising the behaviour of traffic systems to prevent congestion; by optimising public transport as IBM have helped AbidjanDublin, Dubuque and Istanbul to do; and by improving the spatial organisation of transport through initiatives such as Arup’s Regent Street delivery hub.

We will also need new, evolved or rejuvenated forms of transport. In his lecture for the Centenary of the International Federation for Housing and Planning, Sir Peter Hall spoke eloquently of the benefits of Bus Rapid Transit systems, urban railways and trams. All can combine the speed and efficiency of rail for bringing goods and people into cities quickly from outlying regions, with the ability to stop frequently at the many places in cities which are the starting and finishing points of end-to-end journeys.

Vehicle journeys on major roads will be undertaken in the near future by automated convoys travelling safely at a combined speed and density beyond the capability of human drivers. Eventually the majority of journeys on all roads will be carried out by such autonomous vehicles. Whilst it is important that these technologies are developed and introduced in a way that emphasises safety, the majority of us already trust our lives to automated control systems in our cars – every time we use an anti-lock braking system, for example. We will still drive cars for fun, pleasure and sport in the future – but we will probably pay dearly for the privilege; and our personal transport may more closely resemble the rapid transit pods that can already be seen at Heathrow Terminal 5.

Proposals intended to accelerate the adoption of autonomous vehicles include the “Qwik lane” elevated highway for convoy traffic; or the “bi-modal glideway” and “tracked electric vehicle” systems which could allow cars and lorries to travel at great speed safely along railway networks or dedicated “tracked” roads. Alternative possibilities which could achieve similar levels of efficiency and throughput are to extend the use of conveyor belt technology – already recognised as far more efficient than lorries for transporting resources and goods over distances of tens of miles in quarries and factories – to bring freight in and out of cities; or to use pneumatically powered underground tunnel networks, which are already being used in early schemes for transporting recyclable waste in densely populated areas. Elon Musk, the inventor of the Tesla electric supercar, has even suggested that a similar underground “vacuum loop” could be used to replace long-distance train and air travel for humans, at speeds over 1000 kilometres per hour.

The majority of these transport systems won’t offer us as individuals the same autonomy and directness in our travel as we believe the private car offers us today – even though that autonomy is often severely restricted by traffic congestion and delays. Why will we chose to relinquish that control?

(Optimod's vision for integrated, predictive mobile, multi-modal transport information)

(Optimod‘s vision for integrated, predictive mobile, multi-modal transport information)

Some of us will simply prefer to, finding different value in other ways to get around.

Walking and cycling are gaining in popularity over driving in many cities. I’ve personally found it a revelation in recent years to walk around cities rather than drive around them as I might previously have done. Cities are interesting and exciting places, and walking is often an enjoyable as well as efficient way of moving about them. (And for urbanists, of course, walking offers unparalleled opportunities to understand cities). Many of us are also increasingly conscious of the health benefits of walking and cycling, particularly as recent studies in the UK and US have shown that adults today will be the first generation in recorded history to die younger than their parents because of our poor diets and sedentary lifestyles.

Alternatively, we may choose to travel by public transport in the interests of productivity – reading or working while we travel, especially as network coverage for telephony and the internet improves. As the world’s population and economies grow, competition and the need to improve productivity will lead more and more of us to this take this choice.

It is increasingly easy to walk, cycle, or use public or shared transport to travel into and around cities thanks to the availability of bicycle hire schemes, car clubs and walking route information services such as walkit.com. The emergence of services that provide instant access to travel information across all forms of transport – such as the Moovel service in Germany or the Optimod service in Lyon, France – will enhance this usability, making it easier to combine different forms of transport into a single journey, and to react to delays and changes in plans whilst en route.

Legislation will also drive changes in behaviour, from national and international initiatives such as the European Union legislation limiting carbon emissions of cars to local planning and transport policies – such as Birmingham’s recent Mobility Action Plan which announced a consultation to consider closing the city’s famous system of road tunnels.

(Protesters at Occupy Wallstreet using digital technology to coordinate their demonstration. Photo by David Shankbone)

Are we ready for the triumph of the digital city?

Regardless of the amazing advances we’re making in online technology, life is physical. Across the world we are drawn to cities for opportunity; for life-support; to meet, work and live.  The ways in which we interact and transport ourselves and the goods we exchange have changed out of all recognition throughout history, and will continue to do so. The ever increasing level of urbanisation of the world’s population demonstrates that there’s no sign yet that those changes will make cities redundant: far from it, they are thriving.

It is not possible to understand the impact on our lives of new ideas in transport, technology or cities in isolation. Unless we consider them together and in the context of changing lifestyles, working patterns and economics, we won’t design and build cities of the future to be resilient, sustainable, and equitable.  The limitation of our success in doing that in the past is illustrated by the difference in life expectancy of 20 years between the richest and poorest areas of UK cities; the limitation of our success in doing so today is illustrated by the fact that a huge proportion of the world’s population does not have access to the digital technologies that are changing our world.

I recently read the masterplan for a European city district regarded as a good example of Smart City thinking. It contained many examples of the clever and careful design of physical space for living and for today’s forms of transport, but did not refer at all to the changes in patterns of work, life and movement being driven by digital technology. It was certainly a dramatic improvement over some plans of the past; but it was not everything that a plan for the future needs to be. 

Across domains such as digital technology, urban design, public policy, low carbon engineering, economic development and transport we have great ideas for addressing the challenges that urbanisation, population growth, resource constraints and climate change will bring; but a lot of work to do in bringing them together to create good designs for the liveable cities of the future.

A design pattern for a Smarter City: Online Peer-to-Peer and Regional Marketplaces

(Photo of Moseley Farmers’ Market in Birmingham by Bongo Vongo)

(In “Do we need a Pattern Language for Smarter Cities” I suggested that “design patterns“, a tool for capturing re-usable experience invented by the town-planner Christopher Alexander, might offer a useful way to organise our knowledge of successful approaches to “Smarter Cities”. I’m now writing a set of design patterns to describe ideas that I’ve seen work more than once. The collection is described and indexed in “Design Patterns for Smarter Cities” which can be found from the link in the navigation bar of this blog).  

Design Pattern: Online Peer-to-Peer and Regional Marketplaces

Summary of the pattern:

A society is defined by the transactions that take place within it, whether their characteristics are social or economic, and whether they consist of material goods or communication. Many of those transactions take place in some form of marketplace.

As traditional business has globalised and integrated over the last few decades, many of the systems that support us – food production and distribution, energy generation, manufacturing and resource extraction, for example – have optimised their operations globally and consolidated ownership to exploit economies of scale and maximise profits. Those operations have come to dominate the marketplaces for the goods and services they consume and process; they defend themselves from competition through the expense and complexity of the business processes and infrastructures that support their operations; through their brand awareness and sales channels to customers; and through their expert knowledge of the availability and price of the resources and components they need.

However, in recent years dramatic improvements in information and communication technology – especially social mediamobile devicese-commerce and analytics – have made it dramatically easier for people and organisations with the potential to transact with each other to make contact and interact. Information about supply and demand has become more freely available; and it is increasingly easy to reach consumers through online channels – this blog, for instance, costs me nothing to write other than my own time, and now has readers in over 140 countries.

In response, online peer-to-peer marketplaces have emerged to compete with traditional models of business in many industries – Apple’s iTunes famously changed the music industry in this way; YouTube has transformed the market for video content and Prosper and Zopa have created markets for peer-to-peer lending. And as technologies such as 3D printing and small-scale energy generation improve, these ideas will spread to other industries as it becomes possible to carry out activities that previously required expensive, large-scale infrastructure at a smaller scale, and so much more widely.

(A Pescheria in Bari, Puglia photographed by Vito Palmi)

Whilst many of those marketplaces are operated by commercial organisations which exist to generate profit, the relevance of online marketplaces for Smarter Cities arises from their ability to deliver non-financial outcomes: i.e. to contribute to the social, economic or environmental objectives of a city, region or community.

The e-Bay marketplace in second hand goods, for example, has extended the life of over $100 billion of goods since it began operating by offering a dramatically easier way for buyers and sellers to identify each other and conduct business than had ever existed before. This spreads the environmental cost of manufacture and disposal of goods over the creation of greater total value from them, contributing to the sustainability agenda in every country in which e-Bay operates.

Local food marketplaces such as Big Barn and Sustaination in the UK, m-farm in Kenya and the fish-market pricing information service operated by the University of Bari in Puglia, Italy, make it easier for consumers to buy locally produced food, and for producers to sell it; reducing the carbon footprint of the food that is consumed within a region, and assisting the success of local businesses.

The opportunity for cities and regions is to encourage the formation and success of online marketplaces in a way that contributes to local priorities and objectives. Such regional focus might be achieved by creating marketplaces with restricted access – for example, only allowing individuals and organisations from within a particular area to participate – or by practicality: free recycling networks tend to operate regionally simply because the expense of long journeys outweighs the benefit of acquiring a secondhand resource for free. The cost of transportation means that in general many markets which support the exchange of physical goods and services in small-scale, peer-to-peer transactions will be relatively localised.

City systems, communities and infrastructures affected:

(This description is based on the elements of Smarter City ecosystems presented in ”The new Architecture of Smart Cities“).

  • Goals: all
  • People: employees, business people, customers, citizens
  • Ecosystem: private sector, public sector, 3rd sector, community
  • Soft infrastructures: innovation forums; networks and community forums
  • Hard infrastructures: information and communication technology, transport and utilities network

Commercial operating model:

The basic commercial premise of an online marketplace is to invest in the provision of online marketplace infrastructure in order to create returns from revenue streams within it. Various revenue streams can be created: for example, e-Bay apply fees to transactions conducted through their marketplace, as does the crowdfunding scheme Spacehive; whereas Linked-In charges a premium subscription fee to businesses such as recruitment agencies in return for the right to make unsolicited approaches to members.

More complex revenue models are created by allowing value-add service providers to operate in the marketplace – such as the payment service PayPal, which operated in e-Bay long before it was acquired; or the start-up Addiply, who add hyperlocal advertising to online transactions. The marketplace operator can also provide fee-based “white-label” or anonymised access to marketplace services to allow third parties to operate their own niche marketplaces – Amazon WebStore, for example, allows traders to build their own, branded online retail presence using Amazon’s services.

(Photo by Mark Vauxhall of public Peugeot Ions on Rue des Ponchettes, Nice, France)

Online marketplaces are operated by a variety of entities: entrepreneurial technology companies such as Shutl, for example, who offer services for delivering goods bought online through a marketplace provding access to independent delivery agents and couriers; or traditional commercial businesses seeking to “servitise” their business models, create “disruptive business platforms” or create new revenue streams from data.

(Apple’s iTunes was a disruptive business platform in the music industry when it launched – it used a new technology-enabled marketplace to completely change flows of money within the industry; and streaming media services such as Spotify have servitised the music business by allowing us to pay for the right to listen to any music we like for a certain period of time, rather than paying for copies of specific musical works as “products” which we own outright. Car manufacturers such as Peugeot are collaborating with car clubs to offer similar “pay-as-you-go” models for car use, particularly as an alternative to ownership for electric cars. Some public sector organisations are also exploring these innovations, especially those that possess large volumes of data.)

Marketplaces can create social, economic and environmental outcomes where they are operated by commercial, profit-seeking organisations which seek to build brand value and customer loyalty through positive environmental and societal impact. Many private enterprises are increasingly conscious of the need to contribute to the communities in which they operate. Often this results from the desire of business leaders to promote responsible and sustainable approaches, combined with the consumer brand-value that is created by a sincere approach. UniLever are perhaps the most high profile commercial organisation pursuing this strategy at present; and Tesco have described similar initiatives recently, such as the newly-launched Tesco Buying Club which helps suppliers secure discounts through collective purchasing. There is a clearly an opportunity for local communities and local government organisations to engage with such initiatives from private enterprise to explore the potential for online marketplaces to create mutual benefit.

In other cases, marketplaces are operated by not-for-profit organisations or social enterprises for whom creating social or economic outcomes in a financially and environmentally sustainable way is the first priority. The social enterprise approach is important if cities everywhere are to benefit from information marketplaces: most commercially operated marketplaces with a geographic focus operate in large, capital cities: these provide the largest customer base and minimise the risk associated with the investment in creating the market. If towns, cities and regions elsewhere wish to benefit from online marketplaces, they may need to encourage alternative models such as social enterprise to deliver them.

Finally, Some schemes are operated entirely on free basis, for example the Freecycle recycling network; or as charitable or donor-sponsored initiatives, for example the Kiva crowdfunding platform for charitable initiatives.

Soft infrastructures, hard infrastructures and assets required:

(The SMS for Life project uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa. Photo by Novartis AG)

The technology infrastructures required to implement online marketplaces include those associated with e-commerce technology and social media: catalogues of goods and services; pricing mechansims; support for marketing campaigns; networks of individuals and organisations and the ability to make connections between them; payments services and multi-channel support.

Many e-commerce platforms offer support for online payments integrated with traditional banking systems; or mobile payments schemes such as the M-Pesa scheme in Kenya can be used. Alternatively, the widespread growth in local currencies and alternative trading systems might offer innovative solutions that are particularly relevant for marketplaces with a regional focus.

In order to be successful, marketplaces need to create an environment of trust in which transactions can be undertaken safely and reliably. As the internet has developed over the past two decades, technologies such as certificate-based identity assurance, consumer reviews and reputation schemes have emerged to create trust in online transactions and relationships. However, many online marketplaces provide robust real-world governance models in addition to tools to create online trust: the peer-to-peer lender Zopa created “Zopa Safeguard“, for example, an independent, not-for-profit entity with funds to re-imburse investors whose debtors are unable to repay them.

Marketplaces which involve the transaction of goods and services with some physical component – whether in the form of manufactured goods, resources such as water and energy or services such as in-home care – will also require transport services; and the cost and convenience of those services will need to be appropriate to the value of exchanges in the marketplace. Shutl’s transportation marketplace is in itself an innovation in delivering more convenient, lower cost delivery services to online retail marketplaces. By contrast, community energy schemes, which attempt to create local energy markets that reduce energy usage and maximise consumption of power generated by local, renewable resources, either need some form of smart grid infrastructure, or a commercial vehicle, such as a shared energy performance contract.

Driving forces:

  • The desire of regional authorities and business communities to form supply chains, market ecosystems and trading networks that maximise the creation and retention of economic value within a region; and that improve economic growth and social mobility.
  • The need to improve efficiency in the use of assets and resources; and to minimise externalities such as the excessive transport of goods and services.
  • The increasing availability and reducing cost of enabling technologies providing opportunities for new entrants in existing marketplaces and supply chains.

Benefits:

  • Maximisation of regional integration in supply networks.
  • Retention of value in the local economy.
  • Increased efficiency of resource usage by sharing and reusing goods and services.
  • Enablement of new models of collaborative asset ownership, management and use.
  • The creation of new business models to provide value-add products and services.

Implications and risks:

(West Midlands police patrolling Birmingham’s busy Frankfurt Market in Christmas, 2012. Photo by West Midlands Police)

Marketplaces must be carefully designed to attract a critical mass of participants with an interest in collaborating. It is unlikely, for example, that a group of large food retailers would collaborate in a single marketplace in which to sell their products to citizens of a particular region. The objective of such organisations is to maximise shareholder value by maximising their share of customers’ weekly household budgets. They would have no interest in sharing information about their products alongside their competitors and thus making it easier for customers to pick and choose suppliers for individual products.

Small, specialist food retailers have a stronger incentive to join such marketplaces: by adding to the diversity of produce available in a marketplace of specialist suppliers, they increase the likelihood of shoppers visiting the marketplace rather than a supermarket; and by sharing the cost of marketplace infrastructure – such as payments and delivery services – each benefits from access to a more sophisticated infrastructure than they could afford individually.

Those marketplaces that require transportation or other physical infrastructures will only be viable if they create transactions of high enough value to account for the cost of that infrastructure. Such a challenge can even apply to purely information-based marketplaces: producing high quality, reliable information requires a certain level of technology infrastructure, and marketplaces that are intended to create value through exchanging information must pay for the cost of that infrastructure. This is one of the challenges facing the open data movement.

If the marketplace does not provide sufficient security infrastructure and governance processes to create trust between participants – or if those participants do not believe that the infrastructure and governance are adequate – then transactions will not be carried out.

Some level of competition is inevitable between participants in a marketplace. If that competition is balanced by the benefits of better access to trading partners and supporting services, then the marketplace will succeed; but if competitive pressures outweigh the benefits, it will fail.

Alternatives and variations:

  • Local currencies and alternative trading systems are in many ways similar to online marketplace; and are often a supporting component
  • Some marketplaces are built on similar principles, and certainly achieve “Smart” outcomes, but do not use any technology. The Dhaka Waste Concern waste recycling scheme in Bangladesh, for example, turns waste into a market resource, creating jobs in the process.

Examples and stories:

Sources of information:

I’ve written about digital marketplaces several times on this blog, including the following articles:

Industry experts and consultancies have published work on this topic that is well worth considering:

Seven steps to a Smarter City; and the imperative for taking them (updated 8th September 2013)

(Interior of the new Library of Birmingham, opened in September 2013. Photo by Andy Mabbett)

(Interior of the new Library of Birmingham, opened in September 2013. Photo by Andy Mabbett licensed under Creative Commons via Wikimedia Commons)

(This article originally appeared in September 2012 as “Five steps to a Smarter City: and the philosophical imperative for taking them“. Because it contains an overall framework for approaching Smart City transformations, I keep it updated to reflect the latest content on this blog; and ongoing developments in the industry. It can also be accessed through the page link “Seven steps to a Smarter City” in the navigation bar above).

As I’ve worked with cities over the past two years developing their “Smarter City” strategies and programmes  to deliver them, I’ve frequently written articles on this blog exploring the main challenges they’ve faced: establishing a cross-city consensus to act; securing funding; and finding the common ground between the institutional and organic natures of city ecosystems.

We’ve moved beyond exploration now. There are enough examples of cities making progress on the “Smart” agenda for us to identify  the common traits that lead to success. I first wrote “Five steps to a Smarter City: and the philosophical imperative for taking them” in September 2012 to capture what at the time seemed to be emerging practises with promising potential, and have updated it twice since then. A year later, it’s time for a third and more confident revision.

In the past few months it’s also become clear that an additional step is required to recognise the need for new policy frameworks to enable the emergence of Smarter City characteristics, to complement the direct actions and initiatives that can be taken by city institutions, businesses and communities.

The revised seven steps involved in creating and achieving a Smarter City vision are:

  1. Define what a “Smarter City” means to you (Updated)
  2. Convene a stakeholder group to co-create a specific Smarter City vision; and establish governance and a credible decision-making process (Updated)
  3. Structure your approach to a Smart City by drawing on the available resources and expertise (Updated)
  4. Establish the policy framework (New)
  5. Populate a roadmap that can deliver the vision (Updated)
  6. Put the financing in place (Updated)
  7. Enable communities and engage with informality: how to make “Smarter” a self-sustaining process (Updated)

I’ll close the article with a commentary on a new form of leadership that can be observed at the heart of many of the individual initiatives and city-wide programmes that are making the most progress. Described by Andrew Zolli in “Resilience: why things bounce back” as “translational leadership“, it is characterised by an ability to build unusually broad collaborative networks across the institutions and communities – both formal and informal – of a city.

But I’ll begin with what used to be the ending to this article: why Smarter Cities matter. Unless we’re agreed on the need for them, it’s unlikely we’ll take the steps required to achieve them.

The Smarter City imperative

(Why Smarter Cities matter: "Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(Why Smarter Cities matter: “Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy across London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

I think it’s vitally important to take a pro-active approach to Smarter Cities.

According to the United Nations Department of Economic and Social Affairs’ 2011 revision to their “World Urbanisation Prospects” report, between now and 2050 the world’s population will rise by 2-3 billion. The greatest part of that rise will be accounted for by the growth of Asian, African and South American “megacities” with populations of between 1 and 35 million people.

As a crude generalisation, this unprecedented growth offers four challenges to cities in different circumstances:

  • For rapidly growing cities: we have never before engineered urban infrastructures to support such growth. Whenever we’ve tried to accommodate rapid urban growth before, we’ve failed to provide adequate infrastructure, resulting in slums. One theme within Smarter Cities is therefore the attempt to use technology to respond more successfully to this rapid urbanisation.
  • For cities in developed economies with slower growth: urbanisation in rapidly growing economies is creating an enormous rise in the size of the world’s middle-class, magnifying global growth in demand for resources such as energy, water, food and materials; and creating new competition for economic activity. So a second theme of Smarter Cities that applies in mature economies is to remain vibrant economically and socially in this context, and to improve the distribution of wealth and opportunity, against a background of modest economic growth, ageing populations with increasing service needs, legacy infrastructure and a complex model of governance and operation of city services.
  • For cities in countries that are still developing slowly: increasing levels of wealth and economic growth elsewhere  create an even tougher hurdle than before in creating opportunity and prosperity for the populations of those countries not yet on the path to growth. At the same time that economists and international development organisations attempt to ensure that these nations benefit from their natural resources as they are sought by growing economies elsewhere, a third strand of Smarter Cities is concerned with supporting wider growth in their economies despite a generally low level of infrastructure, including technology infrastructure.
(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

We have only been partly successful in meeting these challenges in the past. As public and private sector institutions in Europe and the United States evolved through the previous period of urbanisation driven by the Industrial Revolution they achieved mixed results: standards of living rose dramatically; but so unequally that life expectancy between the richest and poorest areas of a single UK city often varies by 10 to 20 years.

In the sense that city services and businesses will always seek to exploit the technologies available to them, our cities will become smarter eventually as an inevitable consequence of the evolution of technology and growing competition for resources and economic activity.

But if those forces are allowed to drive the evolution of our cities, rather than supporting a direction of evolution that is proactively chosen by city stakeholders, then we will not solve many of the challenges that we care about most: improving the distribution of wealth and opportunity, and creating a better, sustainable quality of life for everyone. As I argued in “Smarter City myths and misconceptions“, “business as usual” will not deliver what we want and need – we need new approaches.

I do not pretend that it will be straightforward to apply our newest tool – digital technology – to achieve those objectives. In “Death, Life and Place in Great Digital Cities“, I explored the potential for unintended consequences when applying technology in cities, and compared them to the ongoing challenge of balancing the impacts and benefits of the previous generations of technology that shaped the cities we live in today – elevators, concrete and the internal combustion engine. Those technologies enabled the last century of growth; but in some cases have created brutal and inhumane urban environments which limit the quality of life that is possible within them.

But there are nevertheless many ways for cities in every circumstance imaginable to benefit from Smarter City ideas, as I described in my presentation earlier this year to the United Nations Commission on Science and Technology for Development, “Science, technology and innovation for sustainable cities and peri-urban communities“.

The first step in doing so is for each city and community to decide what “Smarter Cities “means to them.

Singapore Traffic Prediction

(A prediction of traffic speed and volume 30 minutes into the future in Singapore. In a city with a growing economy and a shortage of space, the use of technology to enable an efficient transportation system has long been a priority)

1. Define what a “Smarter City” means to you

Many urbanists and cities have grappled with how to define what a “Smart City”, a “Smarter City” or a “Future City” might be. It’s important for cities to agree to use an appropriate definition because it sets the scope and focus for what will be a complex collective journey of transformation.

In his article “The Top 10 Smart Cities On The Planet“, Boyd Cohen of Fast Company defined a Smart City as follows:

“Smart cities use information and communication technologies (ICT) to be more intelligent and efficient in the use of resources, resulting in cost and energy savings, improved service delivery and quality of life, and reduced environmental footprint–all supporting innovation and the low-carbon economy.”

IBM describes a Smarter City in similar terms, more specifically stating that the role of technology is to create systems that are “instrumented, interconnected and intelligent.”

Those definitions are useful; but they don’t reflect the different situations of cities everywhere, which are only very crudely described by the four contexts I identified above. We should not be critical of any of the general definitions of Smarter Cities; they are useful in identifying the nature and scope of powerful ideas that could have widespread benefits. But a broad definition will never provide a credible direction for any individual city given the complexities of its challenges, opportunities, context and capabilities.

Additionally, definitions of “Smarter Cities” that are based on relatively advanced technology concepts don’t reflect the origins of the term “Smart” as recognised by the social scientists I met with in July at a workshop at the University of Durham.  The “Smart” idea is more than a decade old, and emerged from the innovative use of relatively basic digital technologies to stimulate economic growth, community vitality and urban renewal.

As I unifying approach, I’ve therefore come recently to conceive of a Smarter City as follows:

A Smarter City systematically creates and encourages innovations in city systems that are enabled by technology; that change the relationships between the creation of economic and social value and the consumption of resources; and that contribute in a coordinated way to achieving a vision and clear objectives that are supported by a consensus amongst city stakeholders.

In co-creating a consensual approach to “Smarter Cities” in any particular place, it’s important to embrace the richness and variety of the field. Many people are very sceptical of the idea of Smarter Cities; often I find that their scepticism arises from the perception that proponents of Smarter Cities are intent on applying the same ideas everywhere, regardless of their suitability, as I described in Smarter City myths and misconceptions” in July.

For example, highly intelligent, multi-modal transport infrastructures are vital in cities such as Singapore, where a rapidly growing economy has created an increased demand for transport; but where there is no space to build new road capacity. But they are much less relevant – at least in the short term – for cities such as Sunderland where the priority is to provide better access to digital technology to encourage the formation and growth of new businesses in high-value sectors of the economy. Every city, individual or organisation that I know of that is successfully pursuing a Smarter City initiative or strategy recognises and engages with that diversity,

Creating a specific Smarter City vision is therefore a task for each city to undertake for itself, taking into account its unique character, strengths and priorities. This process usually entails a collaborative act of creativity by city stakeholders – I’ll explore how that takes place in the next section.

To conclude, it’s likely that the following generic objectives should be considered and adapted in that process:

  • A Smarter City is in a position to make a success of the present: for example, it is economically active in high-value industry sectors and able to provide the workforce and infrastructure that companies in those sectors need.
  • A Smarter City is on course for a successful future: with an education system that provides the skills that will be needed by future industries as technology evolves.
  • A Smarter City creates sustainable, equitably distributed growth: where education and employment opportunities are widely available to all citizens and communities, and with a focus on delivering social and environmental outcomes as well as economic growth.
  • A Smarter City operates as efficiently & intelligently as possible: so that resources such as energy, transportation systems and water are used optimally, providing a low-cost, low-carbon basis for economic and social growth, and an attractive, healthy environment in which to live and work.
  • A Smarter City enables citizens, communities, entrepreneurs & businesses to do their best; because making infrastructures Smarter is an engineering challenge; but making cities Smarter is a societal challenge; and those best placed to understand how societies can change are those who can innovate within them.
  • A Smarter City harnesses technology effectively and makes it accessible; because technology continues to define the new infrastructures that are required to achieve efficiencies in operation; and to enable economic and social growth.

2. Convene a stakeholder group to co-create a specific Smarter City vision

For a city to agree a shared “Smarter City” vision involves bringing an unusual set of stakeholders together in a single forum: political leaders, community leaders, major employers, transport and utility providers, entrepreneurs and SMEs, universities and faith groups, for example. The task for these stakeholders is to agree a vision that is compelling, inclusive; and specific enough to drive the creation of a roadmap of individual projects and initiatives to move the city forward.

It’s crucial that this vision is co-created by a group of stakeholders; as a city leader commented to me last year: “One party can’t bring the vision to the table and expect everyone else to buy into it”.

This is a process that I’m proud to be taking part in in Birmingham through the City’s Smart City Commission, whose vision for the city was published in December. I discussed how such processes can work, and some of the challenges and activities involved, in July 2012 in an article entitled “How Smarter Cities Get Started“.

To be sufficiently creative, empowered and inclusive, the group of stakeholders needs to encompass not only the leaders of key city institutions and representatives of its breadth of communities; it needs to contain original thinkers; social entrepreneurs and agents of change. As someone commented to me recently following a successful meeting of such a group: “this isn’t a ‘usual’ group of people”. In a similar meeting this week, a colleague likened the process of assembling such a group to that of building the Board of a new company.

To attract the various forms of investment that are required to support a programme of “Smart” initiatives, these stakeholder groups need to be decision-making entities, such as Manchester’s “New Economy” Commission, not discussion forums.  They need to take investment decisions together in the interest of shared objectives; and they need a mature understanding and agreement of how risk is shared and managed across those investments.

Whatever specific form a local partnership takes, it needs to demonstrate transparency and consistency in its decision-making and risk management, in order that its initiatives and proposals are attractive to investors. These characteristics are straightforward in themselves; but take time to establish amongst a new group of stakeholders taking a new, collaborative approach to the management of a programme of transformation.

Finally, to create and execute a vision that can succeed, the group needs to tell stories. A Smarter City encompasses all of a city’s systems, communities and businesses; the leaders in that ecosystem can only act with the support of their shareholders, voters, citizens, employees and neighbours. We will only appeal to such a broad constituency by telling simple stories that everyone can understand. I discussed some of the reasons that lead to this in “Better stories for Smarter Cities: three trends in urbanism that will reshape our world” in January and “Little/big; producer/consumer; and the story of the Smarter City” in March. Both articles cover similar ground; and were written as I prepared for my TEDxWarwick presentation, “Better Stories for Smarter Cities”, also in March.

The article “Smart ideas for everyday cities” from December 2012 discusses all of these challenges, and examples of groups that have addressed them, in more detail.

3. Structure your approach to a Smart City by drawing on the available resources and expertise

Any holistic approach to a Smarter City needs to recognise the immensely complex context that a city represents: a rich “system of systems” comprising the physical environment, economy, transport and utility systems, communities, education and many other services, systems and human activities.

(The components of a Smart City architecture I described in “The new architecture of Smart Cities“)

In “The new architecture of Smart Cities” in September 2012 I laid out a framework  for thinking about that context; in particular highlighting the need to focus on the “soft infrastructure” of conversations, trust, relationships and engagement between people, communities, enterprises and institutions that is fundamental to establishing a consensual view of the future of a city.

In that article  I also asserted that whilst in Smarter Cities we are often concerned with the application of technology to city systems, the context in which we do so – i.e. our understanding of the city as a whole – is the same context as that in which other urban professionals operate: architects, town planners and policy-makers, for example. An implication is that when looking for expertise to inform an approach to “Smarter Cities”, we should look broadly across the field of urbanism, and not restrict ourselves to that material which pertains specifically to the application of technology to cities.

Formal sources include:

  • UN-HABITAT, the United Nations agency for human settlements, which recently published its “State of the World’s Cities 2012/2013” report. UNHABITAT promote socially and environmentally sustainable towns and cities, and their reports and statistics on urbanisation are frequently cited as authoritative. Their 2012/2013 report includes extensive consultation with cities around the world, and proposes a number of new mechanisms intended to assist decision-makers.
  • The Academy of Urbanism, a UK-based not-for-profit association of several hundred urbanists including policy-makers, architects, planners and academics, publishes the “Friebrug Charter for Sustainable Urbanism” in collaboration with the city of Frieburg, Germany. Frieburg won the Academy’s European City of the Year award in 2010 but its history of recognition as a sustainable city goes back further. The charter contains a number of useful principles and ideas for achieving consensual sustainability that can be applied to Smarter Cities.
  • The UK Technology Strategy Board’s “Future Cities” programme (link requires registration) and the ongoing EU investments in Smart Cities are both investing in initiatives that transfer Smarter City ideas and technology from research into practise, and disseminating the knowledge created in doing so.

(Photo by lecercle of a girl in Mumbai doing her homework on whatever flat surface she could find. Her use of a stationary tool usually employed for physical mobility to enhance her own social mobility is an example of the very basic capacity we all have to use the resources available to us in innovative ways)

It is also important to consider how change is achieved in systems as complex as cities. In “Do we need a Pattern Language for Smarter Cities” I noted some of the challenges involve in driving top-down programmes of change; and contrasted them to what can happen when an environment is created that encourages innovation and attempts to influence it to achieve desired outcomes, rather than to adopt particular approaches to doing so. And in “Zen and the art of messy urbanism” I explored the importance of unplanned, informal and highly creative “grass-roots” activity in creating growth in cities, particularly where resources and finances are constrained.

Some very interesting such approaches have emerged from thinking in policy, economics, planning and architecture: the Collective Research Initiatives Trust‘s study of Mumbai, “Being Nicely Messy“; Colin Rowe and Fred Koetter’s “Collage City“; Manu Fernandez’s “Human Scale Cities” project; and the “Massive / Small” concept and associated “Urban Operating System” from Kelvin Campbell and Urban Initiatives, for example have all suggested an approach that involves a “toolkit” of ideas for individuals and organisations to apply in their local context.

The “tools” in such toolkits are similar to the “design patterns“ invented by the town planner Christopher Alexander in the 1970s as a tool for capturing re-usable experience in town planning, and later adopted by the Software industry. I believe they offer a useful way to organise our knowledge of successful approaches to “Smarter Cities”, and am slowly creating a catalogue of them, including the “City information partnership” and “City-centre enterprise incubation“.

A good balance between the top-down and bottom-up approaches can be found in the large number of “Smart Cities” and “Future Cities” communities on the web, such as UBM’s “Future Cities” site; Next City; the Sustainable Cities Collective; the World Cities Network; and Linked-In discussion Groups including “Smart Cities and City 2.0“, “Smarter Cities” and “Smart Urbanism“.

Finally, I published an extensive article on this blog in December 2012 which provided a framework for identifying the technology components required to support Smart City initiatives of different kinds – “Pens, paper and conversations. And the other technologies that will make cities smarter“.

4. Establish the policy framework

The influential urbanist Jane Jacobs wrote in her seminal 1961 work ”The Death and Life of Great American Cities“:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

Jacobs’ was concerned with redressing the focus of urban design away from vehicle traffic and back to meeting the daily requirements of human lives; but today, it is similarly true that our planning and procurement practises do not recognise the value of the Smart City vision, and therefore are not shaping the financial instruments to deliver it. This is not because those practises are at fault; it is because technologists, urbanists, architects, procurement officers, policy-makers and planners need to work together to evolve those practises to take account of the new possibilities available to cities through technology.

It’s vitally important that we do this. As I described in November 2012 in “No-one is going to pay cities to become Smarter“, the sources of research and innovation funding that are supprting the first examples of Smarter City initiatives will not finance the widespread transformation of cities everywhere. But there’s no need for them to: the British Property Federation, for example, estimate that £14 billion is invested in the development of new space in the UK each year – that’s 500 times the annual value of the UK Government’s Urban Broadband Fund. If planning regulations and other policies can be adapted to promote investment in the technology infrastructures that support Smarter Cities, the effect could be enormous.

I ran a workshop titled “Can digital technology help us build better cities?” to explore these themes in May at the annual Congress of the Academy of Urbanism in Bradford; and have been exploring them with a number of city Councils and institutions such as the British Standards Institute throughout the year. In June I summarised the ideas that emerged from that work in the article “How to build a Smarter City: 23 design principles for digital urbanism“.

Two of the key issues to address are open data and digital privacy.

As I explored in “Open urbanism:  why the information economy will lead to sustainable cities” in December 2012, open data is a vital resource for creating successful, sustainable, equitable cities. But there are thousands of datasets relevant to any individual city; owned by a variety of public and private sector institutions; and held in an enormous number of fragmented IT systems of varying ages and designs. Creating high quality, consistent, reliable data in this context is a “Brownfield regeneration challenge for the information age”, as I described in October 2012. Planning and procurement regulations that require city information to be made openly available will be an important tool in creating the investment required to overcome that challenge.

(The image on the right was re-created from an MRI scan of the brain activity of a subject watching the film shown in the image on the left. By Shinji Nishimoto, Alex G. Huth, An Vu and Jack L. Gallant, UC Berkley, 2011)

(The image on the right was re-created from an MRI scan of the brain activity of a subject watching the film shown in the image on the left. By Shinji Nishimoto, Alex G. Huth, An Vu and Jack L. Gallant, UC Berkley, 2011)

Digital privacy matters to Smarter Cities in part because technology is becoming ever more fundamental to our lives as more and more of our business is transacted online through e-commerce and online banking. Additionally, the boundary between technology, information and the physical world is increasingly disappearing – as shown recently by the scientists who demonstrated that one person’s thoughts could control another’s actions, using technology, not magic or extrasensory phenomena. That means that our physical safety and digital privacy are increasingly linked – the emergence this year of working guns 3D-printed from digital designs is one of the most striking examples. 

Jane Jacobs defined cities by their ability to provide privacy and safety amongst their citizens; and her thinking is still regarded by many urbanists as the basis of our understanding of cities. As digital technology becomes more pervasive in city systems, it is vital that we evolve the policies that govern digital privacy to ensure that those systems continue to support our lives, communities and businesses successfully.

5. Populate a roadmap that can deliver the vision

In order to fulfill a vision for a Smarter City, a roadmap of specific projects and initiatives is needed, including both early “quick wins” and longer term strategic programmes.

Those projects and initiatives take many forms; and it can be worthwhile to concentrate initial effort on those that are simplest to execute because they are within the remit of a single organisation; or because they build on cross-organisational initiatives within cities that are already underway.

In my August 2012 article “Five roads to a Smarter City” I gave some ideas of what those initiatives might be, and the factors affecting their viability and timing, including:

  1. Top-down, strategic transformations across city systems;
  2. Optimisation of individual infrastructures such as energy, water and transportation;
  3. Applying “Smarter” approaches to “micro-city” environments such as industrial parks, transport hubs, university campuses or leisure complexes;
  4. Exploiting the technology platforms emerging from the cost-driven transformation to shared services in public sector;
  5. Supporting the “Open Data” movement.

In “Pens, paper and conversations. And the other technologies that will make cities smarter” in December 2012, I described a framework for identifying the technology components required to support Smart City initiatives of different kinds, such as:

  1. Re-engineering the physical components of city systems (to improve their efficiency)
  2. Using information  to optimise the operation of city systems
  3. Co-ordinating the behaviour of multiple systems to contribute to city-wide outcomes
  4. Creating new marketplaces to encourage sustainable choices, and attract investment

The Smarter City design patterns I described in the previous section also provide potential ideas, including City information partnerships and City-centre enterprise incubation; I’m hoping shortly to add new patterns such as Community Energy Initiatives, Social Enterprises, Local Currencies and Information-Enabled Resource Marketplaces.

It is also worthwhile to engage with service and technology providers in the Smart City space; they have knowledge of projects and initiatives with which they have been involved elsewhere. Many are also seeking suitable locations in which to invest in pilot schemes to develop or prove new offerings which, if successful, can generate follow-on sales elsewhere. The “First of a Kind” programme in IBM’s Research division is one example or a formal programme that is operated for this purpose.

A roadmap consisting of several such individual activities within the context of a set of cross-city goals, and co-ordinated by a forum of cross-city stakeholders, can form a powerful programme for making cities Smarter.

(Photo of the Brixton Pound by Charlie Waterhouse)

6. Put the financing in place

A crucial factor in assessing the viability of those activities, and then executing them, is putting in place the required financing. In many cases, that will involve cities approaching investors or funding agencies. In “Smart ideas for everyday cities” in December 2012 I described some of the organisations from whom funds could be secured; and some of the characteristics they are looking for when considering which cities and initiatives to invest in.

But for cities to seek direct funding for Smarter Cities is only one approach; I compared it to four other approaches in “Gain and responsibility: five business models for sustainable cities” in August:

  1. Cross-city Collaborations
  2. Scaling-up Social Enterprise
  3. Creativity in finance
  4. Making traditional business sustainable
  5. Encouraging entrepreneurs everywhere

The role of traditional business is of particular importance. Billions of us depend for our basic needs – not to mention our entertainment and leisure – on global supply chains operated on astounding scales by private sector businesses. Staples such as food, cosmetics and cleaning products consume a vast proportion of the world’s fresh water and agricultural capacity; and a surprisingly small number of organisations are responsible for a surprisingly large proportion of that consumption as they produce the products and services that many of us use. We will only achieve smarter, sustainable cities, and a smarter, sustainable world, in collaboration with them. The CEOs of  Unilever and Tesco have made statements of intent along these lines recently, and IBM and Hilton Hotels are two businesses that have described the progress they have already made.

There are very many individual ways in which funds can be secured for Smart City initiatives, of course; I described some more in “No-one is going to pay cities to become Smarter” in November 2012, and several others in two articles in September 2012:

In “Ten ways to pay for a Smarter City (part one)“:

And in “Ten ways to pay for a Smarter City (part two):

I’m a technologist, not a financier or economist; so those articles are not intended to be exhaustive or definitive. But they do suggest a number of practical options that can be explored.

(The discussion group at #SmartHack in Birmingham, described in “Tea, trust and hacking – how Birmingham is getting Smarter“, photographed by Sebastian Lenton)

 

7. Think beyond the future and engage with informality: how to make “Smarter” a self-sustaining process

Once a city has become “Smart”, is that the end of the story?

I don’t think so. The really Smart city is one that has put in place soft and hard infrastructures that can be used in a continuous process of reinvention and creativity.

In the same way that a well designed urban highway should connect rather than divide the city communities it passes through, the new technology platforms put in place to support Smarter City initiatives should be made open to communities and entrepreneurs to constantly innovate in their own local context. As I explored in “Smarter city myths and misconceptions” this idea should really be at the heart of our understanding of Smarter Cities.

I’ve explored those themes frequently in articles on this blog; including the two articles that led to my TEDxWarwick presentation, “Better stories for Smarter Cities: three trends in urbanism that will reshape our world” and “Little/big; producer/consumer; and the story of the Smarter City“. Both of them explored the importance of large city institutions engaging with and empowering the small-scale hyperlocal innovation that occurs in cities and communities everywhere; and that is often the most efficient way of creating social and economic value.

I described that process along with some examples of it in “The amazing heart of a Smarter City: the innovation boundary” in August 2012. In October 2012, I described some of the ways in which Birmingham’s communities are exploring that boundary in “Tea, trust and hacking: how Birmingham is getting smarter“; and in November I emphasised in “Zen and the art of messy urbanism” the importance of recognising the organic, informal nature of some of the innovation and activity within cities that creates value.

The Physicist Geoffrey West is one of many scientists who has explored the roles of technology and population growth in speeding up city systems; as our world changes more and more quickly, our cities will need to become more agile and adaptable – technologists, town planners and economists all seem to agree on this point. In “Refactoring, nucleation and incubation: three tools for digital urban adaptability” I explored how ideas from all of those professions can help them to do so.

Smarter, agile cities will enable the ongoing creation of new products, services or even marketplaces that enable city residents and visitors to make choices every day that reinforce local values and synergies. I described some of the ways in which technology could enable those markets to be designed to encourage transactions that support local outcomes in “Open urbanism: why the information economy will lead to sustainable cities” in October 2012 and “From Christmas lights to bio-energy: how technology will change our sense of place” in August 2012. The money-flows within those markets can be used as the basis of financing their infrastructure, as I discussed in “Digital Platforms for Smarter City Market-Making” in June 2012 and in several other articles described in “5. Put the financing in place” above.

Commentary: a new form of leadership

Andrew Zolli’s book “Resilience: why things bounce back” contains many examples of “smart” initiatives that have transformed systems such as emergency response, agriculture, fishing, finance and gang culture, most, but not all, of which are enabled by technology.

A common theme from all of them is productive co-operation and co-creation between large formal organisations (such as businesses and public sector institutions) and informal community groups or individuals (examples in Resilience include subsistence farmers, civic activitists and pacific island fishermen). Jared Diamond made similar observations about successful examples of socially and environmentally sustainable resource extraction businesses, such as Chevron’s sustainable operations in the Kutubu oilfield in Papua New Guinea, in his book “Collapse“.

Zolli identified a particular style of individual behaviour that was crucial in bringing about these collaborations that he called “translational leadership“: the ability to build new bridges; to bring together the resources of local communities and national and international institutions; to harness technology at appropriate cost for collective benefit; to step in and out of institutional and community behaviour and adapt to different cultures, conversations and approaches to business; and to create business models that balance financial health and sustainability with social and environmental outcomes.

That’s precisely the behaviour and leadership that I see in successful Smarter Cities initiatives. It’s sometimes shown by the leaders of public authorities, Universities or private businesses; but it’s equally often shown by community activists or entrepreneurs.

For me, this is one of the most exciting and optimistic insights about Smarter Cities: the leaders who catalyse their emergence can come from anywhere. And any one of us can choose to take a first step in the city where we live.

How to build a Smarter City: 23 design principles for digital urbanism

(Bradford’s City Park, winner of the Academy of Urbanism’s “Great Place” award for 2013. The park is a public space that has been reclaimed for city life from traffic, and which evolves from a daytime public square into an evening water-feature. The fountains and lighting can adapt to and follow individual or crowd movements. Photo by Chloe Blanchfield. )

At the same time that cities everywhere are seeking funds for Smarter City initiatives, and often relying on central government or research grants to do so, I know of literally billions of Pounds, Euros, and Dollars that are being spent on relatively conventional development and infrastructure projects that aren’t particularly “smart”.

Why is that?

One reason is that we have yet to turn our experience to date into prescriptive, re-usable guidance. Many examples of “Smarter City” projects have demonstrated that in principle technologies such as social media, information marketplaces and the “internet of things” can support city-level objectives such as wellbeing, social mobility, economic growth and infrastructure resilience. But these individual results do not yet constitute a normalised evidence base to indicate which approaches apply in which situations, and to predict in quantitative terms what the outcomes will be.

And whilst a handful of cities such as Portland and Dublin have implemented information platforms on which sophisticated research can be carried out to predict the effect that technology and other interventions will have on a specific city, elsewhere we are in the early stages of considering the strategic role that technology should play in the overall design, planning and governance of cities.

We have been in this position before. In her seminal 1961 work “The Death and Life of Great American Cities“, Jane Jacobs wrote of the extant planning regime that in her opinion was impeding, or even destroying, the growth of healthy, urban cities in favour of a misguided faith in the suburban “Garden City” vision and its derivatives:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

(The White Horse Tavern in Greenwich Village, New York. The rich urban life of the area was described by one of the Taverns’ many famous patrons, the urbanist Jane Jacobs. Photo by Steve Minor).

Similarly, today’s planning and procurement practises do not explicitly recognise the value of the Smart City vision, and therefore are not shaping the financial instruments to deliver it.

This is not because those practises are at fault; it is because technologists, urbanists, architects, procurement officers, policy-makers and planners need to work together to evolve those practises to take account of the new possibilities available to cities through technology.

I was recently asked by a city that I work closely with to contribute suggestions for how their next planning strategy could reflect the impact of the technology agenda. Drawing on experiences and conversations with cities, Universities, government bodies and professional organisations over the last year, including the “Digital Urbanism” workshop help at the Academy of Urbanism Congress 2013 in Bradford, UK on 16th May, I put together a set of intentionally provocative candidate “design principles” for them to consider.

I’ve reproduced those principles in this article. They will not be universally accepted, and it is not possible yet to provide a mature body of evidence to support them. Whilst some will seem obvious, some may be controversial – or simply naive. Many will change or be discarded in time; some will be found to be misguided or unworkable. Because the outcomes we are seeking are often qualitative – “vibrant communities”, for example – and because research into city systems and the work of standards bodies is still ongoing, many of them are aspirational and subjective. But by presenting active principles rather than passive observations, my hope is to stimulate a useful debate.

A final caveat: my profession is technology, not the architecture of buildings and structures, urban design or town-planning. I therefore lack the depth of background in urban thinking that will be shared by many of those who I hope to engage in this debate; and as a consequence, some of this material may duplicate well-established thinking; be unsophisticated in content or expression; or just plain wrong. I hope that you will forgive and accept the attempts of a passionate newcomer to contribute thinking from a new domain into one that is well established; and help me to improve on this first attempt.

Candidate Design Principles for Digital Urbanism

(Tina Saaby, Copenhagen's City Architect, addressing the Academy of Urbanism Congress in Bradford)

(Tina Saaby, Copenhagen’s City Architect, addressing the Academy of Urbanism Congress in Bradford)

The importance of “place” in town planning and urban design has come to encapsulate experience from a variety of domains about what makes urban environments successful from the perspective of the people, businesses and communities who use them. It was summarised by Copenhagen’s City Architect, Tina Saaby, in her address to the Academy of Urbanism Congress 2013 as “Consider urban life before urban space; consider urban space before buildings”.

In identifying “urban life” as the starting point, I think Tina was reminding us to begin always by considering the needs and behaviour of individual people, and then their interactions with each other. This was the basis of Jane Jacobs’ understanding of cities and systems such as their economies and governments; and more recently it has been used by Professor Geoffrey West of the Sante Fe Institute to perform detailed, quantitative analyses of the performance of city systems.

It’s equally important to use urban life and “place” as our starting points when guiding the application of technology in city systems, and so by analogy, a candidate principle for the digital agenda in cities could be:

Principle 1: Consider urban life before urban place; consider urban place before technology.

Recent scientific work has shown that the rate of change is increasing in modern society – and specifically in cities as they grow. For example, Geoffrey West’s work shows that larger cities create more wealth, more efficiently, than smaller cities. In doing so, they attract residents, grow bigger still, and accelerate wealth creation further. This self-reinforcing process results in an ever-increasing demand for resources. It powered the growth of cities in the developed world through the Industrial Revolution; it is powering the growth of cities in emerging markets today; and it is driving the overall growth in global population. Professor Ian Robertson of Trinity College Dublin has even shown that as cities get bigger, people in them walk faster.

So in the many cities which are growing both organically and by continuing to attract immigration, two further candidate principles could be:

Principle 2: Demonstrate sustainability, scalability and resilience over an extended timeframe.

Principle 3: Demonstrate flexibility over an extended timeframe.

Physical Infrastructures and Construction

A difficulty in most existing buildings is to adapt them to support new technology infrastructures – to update wiring, or to add cabling for new network technologies, for example. Any specific prediction concerning our needs for such infrastructures in the future will likely be wrong; but it is certain that those needs will be different from today; and so:

Principle 4: New or renovated buildings should be built to contain sufficient space for current and anticipated future needs for technology infrastructure such as broadband cables; and of materials and structures that do not impede wireless networks. Spaces for the support of fixed cabling and other infrastructures should be easily accessible in order to facilitate future changes in use.

Furthermore, broader trends that are influenced by technology – such as mobile working, collaborative working spaces, pop-up shops and the demise of some traditional retail enterprises – are evidence that the rate of change in the uses to which we want to put buildings and urban spaces is increasing. This leads to another candidate principle:

Principle 5: New or renovated buildings should be constructed so as to be as functionally flexible as possible, especially in respect to their access, infrastructure and the configuration of interior space; in order to facilitate future changes in use.

Connectivity and Information Accessibility

Sources as respected as McKinsey and Imperial College have asserted that we are entering an age in which economic value will be created through the use of the digital information that is increasingly ubiquitous not just in our online activities but in the systems that operate physical services such as transport, utilities and buildings.

A fundamental requirement to participate in the information economy is to be connected to digital networks, leading to candidate design principle six:

Principle 6: Any development should ensure wired and wireless connectivity is available throughout it, to the highest standards of current bandwidth, and with the capacity to expand to any foreseeable growth in that standard.

(An analysis based on GPS data from mobile phones of end-to-end journeys undertaken by users of Abidjan’s bus services. By comparing existing bus routes to end-to-end journey requirements, the analysis identified four new bus routes and led to changes in many others. As a result, 22 routes now show increased ridership, and city-wide journey times have decreased by 10%.)

Organisations of all types and sizes are competing for the new markets and opportunities that digital information creates – that is simply the natural consequence of the emergence of a new resource in a competitive economy. Much of that information results from data created by the actions and activities of all of us as individuals; so we are the ultimate stakeholders in the information economy, and should seek to establish an equitable consensus for how our data is used.

However, in most cases converting the data that is created by our actions into useful information with a business value requires either a computing infrastructure to process the data or human expertise to assess it. Both of those have a cost associated with them that must be borne by some individual or organisation.

Those forces of the information economy may only ever be resolved in specific contexts rather than in universal principle. But any new development or supporting technology system that adds to the cost of allowing data associated with it to be openly exploited in principle adds a potential impediment to future economic and social productivity. So, even if the means to bear the costs associated with providing useful information are not agreed initially:

Principle 7: Any new development should demonstrate that all reasonable steps have been taken to ensure that information from its technology systems can be made openly available without additional expenditure. Whether or not information is actually available will be dependent on commercial and legal agreement, but it should not be additionally subject to unreasonable expenditure. And where there is no compelling commercial or legal reason to keep data closed, it should actually be made open.

A central tenet of the Smarter Cities movement is to create value by integrating systems. The integration of technology systems is made simpler and less expensive when those systems conform to standards for the format, meaning, encoding and interchange of data. However, standards for interoperability for Smarter City systems are in the early stages of development, including contributions from initiatives such as the British Standards Institute’s Smarter Cities Strategy, the City Protocol Society, and IBM’s SCRIBE Research project into city information models. Candidate principle eight therefore states that:

Principle 8: The information systems of any new development should conform to the best available current standards for interoperability between IT systems in general; and for interoperability in the built environment, physical infrastructures and Smarter Cities specifically.

There is much debate as to whether, beyond basic network connectivity, higher-level digital services should form part of a national or civic infrastructure to support businesses and communities in creating growth through digital technologies. The EU “Future Internet” project FI-WARE and Imperial College’s “Digital Cities Exchange” research programme are both investigating the specific digital services that could be provided as enabling infrastructure to support this growth; and the British Standards Institute is exploring related standards to encourage growth amongst SMEs.

A further candidate principle expresses the potential importance of this research to the economic competitiveness of cities in the information economy:

Principle 9: New developments should demonstrate that they have considered the commercial viability of providing the digital civic infrastructure services recommended by credible research sources.

Sustainable Consumerism

(Graphic of energy use in Amsterdam from "Smart City Amsterdam" by Daan Velthauzs)

(Graphic of energy use in Amsterdam from “Smart City Amsterdam” by Daan Velthauzs)

The price of energy is expected to rise in the long term until new energy sources are scalably commercialised; and the UK specifically is expected to experience power shortfalls by 2015. Many urban areas are already short of power, limited simply by the capacity of existing delivery subsystems.

Overall it is clear that it is economically and environmentally sensible to reduce our use of energy. One way to do so is to make better use of the information from city systems and buildings that describe energy usage. Property developers in Amsterdam used such information to lower the cost of energy infrastructure for new developments by collaborating to create an investment case for smart grid infrastructure.

Candidate principle ten is therefore:

Principle 10: Any data concerning a new development that could be used to reduce energy consumption within that development, or in related areas of a city, should be made open.

As consumer awareness of energy costs and sustainability has increased, developers of residential communities that have provided state-of-the-art technologies for sustainable living have reported strong demand, leading to a further candidate principle:

Principle 11: Property development proposals should indicate how they will attract business and residential tenants through providing up-to-date sustainable infrastructures for heat and power such as CHP, smart metering, local energy grids and solar energy.

Urban Communities

Developments carried out according to plans developed in collaboration with existing residents have provided some of the most interesting examples of successful placemaking. Social media, virtual reality and other digital technologies offer the opportunity to enable richer, more widespread consultations and explorations of planned developments by the communities that they will effect. Candidate principles twelve and thirteen express the possibility for these technologies to contribute to placemaking and successful urban developments:

Principle 12: Consultations on plans for new developments should fully exploit the capabilities of social media, virtual worlds and other technologies to ensure that communities affected by them are given the widest, most immersive opportunity possible to contribute to their design.

Principle 13: Management companies, local authorities and developers should have a genuinely engaging presence in social media so that they are approachable informally.

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

City communities are not passive observers to the Smarter City phenomenon. They may be crowd-sourcing mapping information for OpenStreetMap; running or participating in hacking events such as the Government Open Hackday in Birmingham last year; or they may be creating new social enterprises or regional technology startups, such as the many city currencies and trading schemes that are appearing.

But access to and familiarity with social media is far from ubiquitous; the potential for new communities to adopt and benefit from such technology is enormous, and need not be expensive. Informal programmes to spread awareness and provide education, such as the social media surgeries started by Podnosh in Birmingham, can have a powerful effect helping communities to exploit social technology to uncover hidden synergies and connections.

Principle 14: Local authorities should support awareness and enablement programmes for social media and related technologies, particularly “grass roots” initiatives within local communities.

Local food initiatives – in which local food processing is more important than local food growing in cities with limited open space but plentiful manufacturing space – have the potential to strengthen community ties; provide employment opportunities; promote healthier diets; and reduce the carbon impact of food supply systems. They can be supported by measures such as the provision of generous gardens, allotments or public space in the physical environment; and by the use of technology to enable online food markets or related distribution systems.

Such initiatives are generally operated by private sector organisations – often small-scale entrepreneurial or social enterprises; but their formation may be facilitated by local authorities or developers during the course of development or regeneration programmes. Candidate principle fifteen is therefore:

Principle 15: Urban development and regeneration programmes should support the formation, activity and success of local food initiatives by cooperating with local community and business support programmes to support the infrastructures they need to succeed and grow.

Demographic and economic trends indicate that we are living longer and needing to support ourselves later in life. A variety of technologies can provide or contribute to that support:

Principle 16: Residential accommodation should incorporate space for environmental monitoring, interactive portals, and connectivity to enable remote support, telehealth systems and homeworking.

Economic Development and Vitality

(The Custard Factory in Birmingham, at the heart of the city’s creative media sector)

In his address to the Academy of Urbanism Congress, economist Michael Ward, Chair of the Centre for Local Economic Strategies, asserted that:

“The key task facing civic leaders in the 21st Century is this: how, in a period of profound and continuing economic changes, will our citizens earn a living and prosper?”

For cities to provide jobs, they need successful businesses; and technology will have a dramatic effect on what it means to be a successful business in the 21st Century.

Over the last two decades, the internet, mobile phone and social media have redefined the boundaries of the communications, technology, media, publishing and technology industries. The companies that thrived through those changes were those who best understood how to use technology to merge capabilities from across those industries into new business models. In the coming decade as digitisation extends to industries such as manufacturing through technologies such as 3D printing and smart materials, more and more industry sectors will be redefined by similar levels of disruption and convergence.

So how are the economies of our cities placed to be successful in that world of change?

Many have the mix of technology, creative and industrial capabilities to be successful in future economies in principle; but in practise those capabilities are in separate geographical locations, between which it is difficult for serendipitous interactions to create new innovations – I discussed these issues in the context of Birmingham, my home city, in an article a few weeks ago.

Spatial modelling techniques can predict the impact of planned developments on these characteristics of the cities surrounding them – i.e. whether they will improve or worsen connectivity between value-creating districts in different economic sectors. Candidate principles seventeen and eighteen express how these techniques could be used:

Principle 17: New developments should demonstrate through the use of the latest urban modelling techniques that they will increase connectivity – particularly by walking and cycling – between important value-creating districts and economic priority zones that are adjacent or near to them.

Principle 18: Developments should offer the opportunity of serendipitous interaction and innovation between stakeholders from different occupations.

The nature of work, business and employment in many industries is changing, driven by technology. Whilst these changes may not take place at the same speed in all businesses, in all industries, in all places; it will become increasingly important over time that cities and districts provide the facilities that future enterprises will require:

Principle 19: Developments should provide, or should be adaptable to provide, facilities to enable the location and success of future ways of working including remote and mobile working, “fab labs” (3d printing facilities), “pop-up”  establishments and collaborative working spaces.

Governance

Most urban spaces and developments do not succeed immediately; time is required for them to attract and adapt to the uses that they will eventually successfully support. That condition of success will be more rapidly achieved or new developments, and will be sustained for longer, if it is possible to easily adapt them. Such adaptability is particularly important given the speed of change and innovation that digital technology can enable, leading to candidate principle twenty:

Principle 20: Planning, usage and other policies governing the use of urban space and structures should facilitate innovation and changes of use, including temporary changes of use.

Privacy and Public Safety

Privacy and security are perhaps the greatest current challenges of the digital age; but that is simply a reflection of their importance in all aspects of our lives. Jane Jacobs’ description of urban systems in terms of human and community behaviour was based on those concepts, and is still regarded as the basis of our understanding of cities.

But new technologies are changing the relationship between physical and digital environments with the consequence that a failure in privacy or security digital systems could affect community vitality or public safety in cities. So candidate principle twenty-one is:

Principle 21: Any information system in a city development should provide a clear policy for the use of personal information. Any use of that information should be with the consent of the individual.

Transport

(Packages from Amazon delivered to Google’s San Francisco office. Photo by moppet65535)

There is a truth about social media, information marketplaces and related “Smarter City” technologies that is far too rarely explored, but that has serious implications. It is that rather than removing the need to travel and transport things, these technologies can dramatically increase our requirements to do so. Candidate principle twenty-two expresses the need for transport plans to take account of this potential:

Principle 22: Transport plans supporting new developments should demonstrate that they have not only provided for traditional transport demand, but also that which might be created by online business models and other social technologies.

Extensions

This article is an early attempt to express candidate design principles for Smarter Cities; and I have not attempted to systematically address all of the potential domains of city systems where technology may have a role to play. Such an exercise would undoubtably yield further candidate principles. In addition, many other efforts are underway to encode emerging knowledge about the successful use of technology in city systems through organisations such as the City Protocol Society and the British Standards Institute or research programmes such as Imperial College’s Digital Cities Exchange. And so a final candidate principle encourages continuous awareness of the progress of such initiatives:

Principle 23: New developments should demonstrate that their design takes account of the latest best and emerging practises and patterns from Smarter Cities, smart urbanism, digital urbanism and placemaking.

Conclusion

When I first began to extract candidate design principles from my workshop and meeting notes, I doubted whether I would identify more than a handful; I was certainly not expecting to identify more than twenty. I think that it is encouraging to observe that there is so much that can be stated positively about the potential of technology to create value in cities.

My sense, though, is that an overarching set of five to ten principles would be much more useful in defining an approach to Smarter Cities that could be broadly adopted. In order to identify what those principles should be, I will need to more clearly define their audience and purpose. Such an exercise will probably form the basis of a subsequent article for this blog.

But in the meantime, I hope that I have offered food for thought; and I look forward to hearing your views.

My thanks to those who have commented on the principles I shared on twitter ahead of posting this: Leo HollisTony SmithWe Make GoodIan OwenOsvaldoFred Bartels and Frederico Muñoz.

Can digital technology help us build better cities? A workshop at the Academy of Urbanism Annual Congress, Bradford, Thursday 16th May

(Protesters at Occupy Wallstreet using digital technology to coordinate their demonstration. Photo by David Shankbone)

Over the course of the last two decades, digital technologies such as the Internet, mobile telephone and touchscreen have transformed the way we communicate, work and live; and in so doing have caused industries such as publishing and music to change out of all recognition.

These developments clearly change the way that we behave in cities – the way we travel; and where and when we work, shop and communicate.

And they lead to new demands on the urban environment from residents, visitors, businesses and communities: the availability of mobile and broadband connectivity; open data portals; and transient working environments such as the Hub Westminster collaborative workspace – or simply cafes with wi-fi and power outlets.

Should these technologies change the way we design and build cities, and if so, how? Do technologies offer solutions to difficult problems such as offering more flexible, coordinated transport services? Or are they a distraction on focussing on what really matters – the physical, social and economic needs of people and their communities? And how do they compare to long-standing debates within the more traditional domains of urbanism about how good cities are created, regardless of technology?

(The collaborative working space of Hub Westminster which is constantly refactored to support new uses, exploiting furniture and spatial technology laser-cut from digital designs)
(The collaborative working space of Hub Westminster which is constantly refactored to support new uses, exploiting furniture and spatial technology laser-cut from digital designs)

The Academy of Urbanism, a body of several hundred professionals, researchers and policy-makers involved in the design and operation of cities from perspectives as diverse as town planning, social science and technology is holding a workshop at it’s Annual Congress in Bradford this year to explore these issues.

The workshop will feature opening contributions from speakers from a variety of backgrounds, and with differing opinions on the value and relevance of digital technology to good urbanism. Our intention is to stimulate an informed and frank debate to follow;  from which we hope that useful, practical insights will emerge on whether and how the technology agenda is relevant to cities.

Some of the questions we’d like to consider in the debate are:

  • Do emerging uses of technology in cities have implications for spatial or master-planning – for example, the provision of physical space for cabling, or the specification of policies or standards for information from city infrastructures to be made openly available?
  • What implications do technology trends such as online commerce and virtual working have for requirements for physical space and transport in cities?
  • If cities need the flexibility in their physical infrastructure implied by such approaches as “Smart Urbanism“, then can technology enable that flexibility? And what are the design principles for technology that should be applied in order to do so?
  • If technology professionals and urban designers are applying their skills in the same context domain (city systems) can we use tools common to both professions, such as design patterns, to combine and share our expertise?
  • What are the new investment and management models for funding, delivering and governing “smart” systems? How do they reflect the achievement of long term social, economic and environment objectives? How can the achievements of entrepreneurial and social enterprises be replicated at city-scale?

Our plans are still forming; so I’d value your thoughts on the theme and scope of the workshop; the structure of the debate; questions that will stimulate a constructive and worthwhile discussion … and any speakers on this topic – whether they are proponents or sceptics of technology in cities – who you think would be particularly interesting. (I’ll update this blog soon with our initial speakers once I’ve confirmed them).

And of course, I’d love you to simply attend the conference and the workshop and join the debate! I hope to see some of you there.

The need for sympathetic digital urbanism

(Photo of me wearing the Emotiv headset, which measures the magnetic waves created by brain activity.)

(Photo of me wearing the Emotiv headset, which measures the magnetic waves caused by brain activity.)

(I’m a guest blogger on UBM’s Future Cities community; this article was published there last week. It builds on themes I first explored here in the article “Little/big; producer/consumer; and the story of the Smarter City“)..

Technology is changing how we understand cities, and how we will understand ourselves in the context of urban environments. We’re only at the beginning of this complex revolution.

Consider that scientists from Berkeley have used a Magnetic Resonance Imaging (MRI) scanner to reconstruct images perceived by a test subject’s brain activity while the subject watched a video. A less sensitive mind-reading technology is already available as a headset from Emotiv. (My colleagues have used Emotiv to help a paralysed person communicate by sending directional instructions from his thoughts to a computer.)

Developments in biotechnology, nanotechnology, and advanced manufacturing show similarly remarkable interactions between information systems and the physical and biological world: solar panels that can mend themselves; living biological tissues that can be printed.

These technologies, combined with our ability to process and draw insight from digital information, could offer real possibilities to engineer more efficient and sustainable city systems, such as transportation, energy, water, and food. But using them to address the demographic, financial, and environmental challenges of cities will raise questions about our relationship with the natural world, what it means to live in an ethical society, and what defines us as human.

(The remainder of this article, which explores ways in which we might answer those questions, can be found on UBM’s Future Cities site, as “Make Way for Sensitive Cities“).

Do we need a Pattern Language for Smarter Cities?

(Photo of the Athens Olympic Sports Complex from Space by the NASA Goddard Space Flight Center)

The UK Department of Business, Innovation and Skills held a workshop recently to determine how to create guidance for cities considering their approach to Smarter Cities.

A robust part of the debate centred on the challenge of providing “delivery guidance” for cities embarking on Smarter Cities initiatives: whilst there are many visions for smart and future cities; and many examples of projects that have been carried out; there is little prescriptive guidance to assist cities in defining and delivering their own strategy (although I’ve provided my own humble contribution in “Six steps to a smarter city” on this blog; an article which organises a broad set of resources into an admittedly very high level framework).

In setting out a transformative smarter city vision and then taking the steps to achieve it, a great deal of change is involved. Large, formal organisations tend to approach change with prescriptive , process-driven techniques – for all that the objective of change might be defined disruptively by individual insight and leadership or through the application of techniques such as “design thinking“; the execution of the changes required to achieve that objective is usually driven by a controlled process with well defined roles, scope, milestones, risks and performance indicators.

My own employer, IBM, is a vast organisation with over 400,000 employees; a similar number of people to the population of a city of modest size. It was the subject of one of the most famous transformations in corporate history when Lou Gerstner saved it from near-failure in the 1990s. The transformation was achieved by brilliant personal leadership; trial and error; and a variety of techniques and ideas from different sources – there was no “off-the-shelf” process to follow at this scale of organisational change.

But transforming a city is not the same thing as changing an organisation, however big. A city is a complex system of systems, and we have comparatively little knowledge about how to drive change in such an environment. Arguably,we should not even think about “driving change” in city ecosystems, but rather consider how to influence the speed and direction of the changes that will emerge from them anyway.

Some very different approaches to process-driven change have emerged from thinking in policy, economics, planning and architecture: the Collective Research Initiatives Trust‘s study of Mumbai, “Being Nicely Messy“; Colin Rowe and Fred Koetter’s “Collage City“; Manu Fernandez’s “Human Scale Cities” project; the “Massive / Small” concept and associated “Urban Operating System” from Kelvin Campbell and Urban Initiatives; and CHORA’s Taiwan Strait Atlas, for example have all suggested an approach that involves a “toolkit” of ideas for individuals and organisations to apply in their local context.

(In this light, it’s interesting to observe that in order to steer the ongoing growth of IBM following the transformation led by Lou Gerstner, his successor as CEO, Sam Palmisano, took the organic approach of seeking to inspire a consistent evolution of business behaviour across all 400,000 individual IBMers by co-creating and adopting a common and explicit set of “values”).

(Stories of Mumbai: an exploration of Mumbai’s history of urban development, and its prospects for the future, using storytelling and puppetshows, by the BMW Guggenheim Lab)

In “Resilience: Why Things Bounce Back“, Andrew Zolli and Ann Marie Healy, give a fascinating description of the incredible impact such approaches can achieve through the example of the response to the earthquake near Port-au-Prince in Haiti on January 10, 2010 that was led by Patrick Meier, the Ushahidi information crowd-sourcing platform and the Tufts Fletcher School of Law and Diplomacy in Massachusetts. Meier catalysed an incredible multi-national response to the earthquake that included the resources of organisations such as Thomson Reuters, Digicel (the largest mobile phone company in Haiti), and MedicMobile; and just as importantly hundreds of individuals literally spread across the world, with nothing more in common than a desire to do what they could to contribute:

“I told people, ‘We’re going to let this be emergent,’” Meier explained. “There are so many things that need to happen every single hour and so many things that need to keep evolving in such a short amount of time. I have to just let it flourish and deal with what happens when it starts getting inefficient.” The open nature of the platform – both the code that powers Ushahidi and the collaborative nature of the mapping – meant that people could easily be recruited to perform discrete, useful tasks with a minimum of formal authority.”

(Patrick Meier, quoted in “Resilience: Why Things Bounce Back“, p179, by Andrew Zolli and Ann Marie Healy)

In my own work, I’ve tried to follow a similar course, inspired first by the Knight Foundation’s report on the Information Needs of Communities. The Knight Foundation counsel a process of engagement and understanding between institutions and communities, in order to identify the specific information and resources that can be most usefully made available by city institutions to individual citizens, businesses and social organisations. As I described in “The Amazing Heart of a Smarter City: the Innovation Boundary“, the resulting portfolio provides a toolkit customised to the needs of a city, and that can be used to shape a collective case for investment in the development of that city.

The idea of a toolkit recognises both that no one approach, philosophy or framework is applicable to every city, or to every context within a single city; and that an idea that works in one place might work in many others.

For example, in the UK, the regions around the cities of Birmingham and Manchester are of similar size in terms of population and economic activity; but they are very different in the structure of their political administrations and economies. The approach that one of these cities adopts as its Smarter City strategy will not necessarily transfer to the other.

In contrast, however, specific ideas concerning economic development and the attraction of talented young people that I’ve found useful in Sunderland in the UK have been inspired by past experience in Wuxi, China and New York State; and in turn have informed initiatives in Spain, Singapore and Nairobi; in other words they have transcended contexts of vastly different size, culture and economics.

A tool that emerged from town planning in the 1970s and that was then adopted across the information technology industry in the 1980s and 1990s might just provide the approach we need to harness this information. And it’s perhaps not surprising that a tool with such provenance should become relevant at at time when the architects of information technology systems, buildings and cities are finding that they are working within a common context.

That tool is the “Design Pattern”.

A Pattern Language for Smarter Cities

(A pattern language for social software features, image by Amber Case)

The town planner Christopher Alexander invented “design patterns” in the 1970s. He addressed the challenge that many problems in planning were (and are) too large and complex for one person to consider them in their entirety at one time; and that it is hence necessary to break them down into sub-problems.

The difficulty is that it is not at all straightforward to break a problem into sub-problems that can be solved effectively in isolation from each other.

Consider city transport systems: in many cases, road management, bus operations and the rail network are the responsibility of different organisations. It “makes sense” to break up transport systems in this way because each is different; and so different organisations are better at running them effectively.

But from the perspective of the users of transport systems, it doesn’t make sense to do this. Bus and rail timetables don’t work together; cars, buses, freight vehicles, bicycles and pedestrians have conflicting requirements of road space; and the overall system does not behave as though it is designed to serve travellers consistently.

In “Notes on the Synthesis of Form” in 1969, Alexander described a mathematical technique that could be used to manage the complexity of large problems and to break them down into sub-problems in a way that accommodated interdependencies between them. As a result, those sub-problems could be solved separately from each other, then integrated to form an overall solution.

This process of decomposition, solution and integration is fundamental to process-driven approaches to the design and delivery of complex solutions. It is not possible, for example, to assign responsibilities to individuals and teams without going through it. Many projects that fail do so because the  problem that they are addressing is not decomposed effectively so that individual teams find that they have overlapping areas of responsibility and therefore experience duplication and conflict.

However, in developing his technique for decomposing problems, Alexander concluded that it was overly complex, rigid and impractical; and he recommended that it should never be used. Instead, he suggested that it was more useful to focus not on how we deal with problems; but on how we re-use successful solutions.

By identifying and characterising the components of solutions that have been proven to work, we enable them to be reused elsewhere. Christopher Alexander’s particular insight was to recognise that to do so successfully, it is vitally important to precisely describe the context in which a solution is applicable. He called the resulting description of reusable solutions a “design pattern”; and a collection of such descriptions, a “pattern language“.

Design patterns and pattern languages offer a useful combination of formal and informal approaches. They are formal in that each pattern is described in a consistent way, using a structured framework of characteristics. And they are informal in that the description isn’t constrained to that framework of characteristics; and because design patterns do not assert that they should be used: they are simply there to be used by anyone who chooses to do so.

Christopher Alexander’s patterns for town planning and architecture can be found in his books, or online at the “Pattern Language” community; in information technology, Martin Fowler’s “Enterprise Application Architecture Patterns” provide a similar example.

To my knowledge, no-one is yet curating a similar set of Smarter Cities patterns; I believe that there would be great value in doing so; and that in order to do so skills and expertise across domains such as planning, architecture, technology, social science and many others would be required.

In the final part of this article, I’d like to suggest some examples of Smarter City initiatives and ideas that I think can be usefully described as patterns; and to give one example of such a description. Please do share your views on whether this approach is useful by commenting on this blog, or through one of the Linked-In discussion groups where I’ve posted links to this article.

Design Patterns for Smarter Cities

Here are just a few of the ideas I’ve seen applied successfully in more than one place, either as part of a Smarter City strategy, or simply as valuable initiatives in their own right. It is certainly not an exhaustive list – a quick survey of Linked-In discussion Groups such as “Smart Cities and City 2.0“, “Smarter Cities” and “Smart Urbanism” will reveal many other examples that could be described in this way.

  • Information Partnerships – collaborations between city institutions, communities, service providers and research institutions to share and exploit city data in a socially and financially sustainable system. (I’ve provided a more detailed description of this example below).
  • Incubation Clouds – the use of Cloud Computing platforms and hybrid public/private commercial models to enable co-operative investment in technology capabilities that can lower the barriers to successful innovations in city services. Examples: Sunderland’s “City Cloud” and the Wuxi iPark.
  • Community Energy Initiatives – the formation of local energy companies to exploit “smart grid” technology, local energy generation (such as solar panels, wind power, wave power, geo-thermal power and bio-energy) and collaborative energy consumption to reduce carbon emissions and reliance on external energy sources. Examples: Eco-island and Birmingham Energy Savers.
  • Social Enterprises – a collective term for models of business that audit themselves against social and environmental outcomes, as well as financial sustainability and returns. Examples: co-operatives, credit unions and organisations using “triple-bottom-line” accounting.

(The components of a Smart City architecture I described in “The new architecture of Smart Cities“)

In order to describe these concepts more completely as re-usable patterns; and in a way that allows them to be compared, selected in comparison to each other, or used together; it is important that they are described consistently, and in a way that accurately identifies the context in which they are applicable.

To do so requires that we describe the same aspects of each pattern; and that we describe each aspect using a common language. For example:

  • The city systems, communities and infrastructures affected; using a framework such as the “The new architecture of Smart Cities” that I described last year, shown in the diagram above.
  • The commercial operating model that makes the pattern financially sustainable.
  • The driving forces that make the pattern applicable, such as traffic congestion; persistent localised economic inactivity; the availability of local energy sources; or the need to reduce public sector spending.
  • The benefits of using the pattern; including financial, social, environmental and long-term economic benefits.
  • The implications and risks of implementing the pattern – such as the risk that consumers will not chose to change their behaviour to adopt more sustainable modes of transport; or the increasing long-term costs of healthcare implied by initiatives that raise life-expectancy by creating a healthier environment.
  • The alternatives and variations that describe how the pattern can be adapted to particular local contexts.
  • Examples of where the pattern has been applied; what was involved in making it work; and the outcomes that were achieved as a result.
  • Sources of information that provide further explanation, examples of use and guidance for implementation.

I’ll finish this article by given an example of a Smarter City pattern described in that way – the “City Information Partnership”.

(Coders at work exploiting city information at the Birmingham “Smart Hack”, photographed by Sebastian Lenton)

An Example Pattern: City Information Partnership

(Note: the following description is not intended to be written in the fluent style that I usually hope to achieve in my blog articles; instead, it is meant to illustrate the value in bringing together a set of concisely expressed ideas in a structured format).

Summary of the pattern: a collaboration between city institutions, communities, service providers and research institutions to share and exploit city data in a socially and financially sustainable system.

City systems, communities and infrastructures affected:

(This description is based on the elements of Smarter City ecosystems presented in “The new Architecture of Smart Cities“).

  • Goals: Any.
  • People: Citizens; innovators.
  • Ecosystem: All.
  • Soft infrastructures: Innovation forums; networks and community organisations.
  • City systems: Any.
  • Hard infrastructures: Information and communications technology.

Commercial operating model:

City information partnerships are often incorporated as “Special Purpose Vehicles” (SPVs) jointly owned by city institutions such as local authorities; universities; other public sector organisations such as schools, healthcare providers and emergency services; services providers such as transportation authorities and utilities; asset owners and operators such as property developers and facility managers; local employers; and private sector providers such as technology companies.

A shared initial investment in technology infrastructure is often required; and in order to address legal issues such as intellectual property rights and liability agreements.

Long-term financial sustainability is dependent on the generation of commercial revenues by licensing the use of data by commercial operations. In cases where such initiatives have been supported only by public sector or research funding, that funding has eventually been reduced or terminated leading to the stagnation or cessation of the initiative.

Soft infrastructures, hard infrastructures and assets required:

Information partnerships only succeed where they are a component of a co-creative dialogue between individuals and organisations in city institutions such as entrepreneurs, community associations, local authorities and social enterprises.

Institutional support is required to provide the models of legal liability and intellectual property ownership that create a trusted and transparent context for collaborative innovation.

Technologies such as Cloud Computing platforms; information management; security; analytics, reporting; visualisation; and data catalogues are required to manage city information and make it available and useful to end users.

Information partnerships require the participation of organisations which between them own and are prepared to make available a sufficiently broad and rich collection of datasets.

Driving forces:

Information is transforming the world’s economy; it provides new insight to support business model creation and operation; makes new products and services possible; and creates new markets.

At the same time global and local demographic trends mean that the cost-base and resource usage of city systems must change.

Information partnerships expose city information to public, private, social and academic research and innovation to discover, create and operate new models for city services; with the potential for resale elsewhere; leading in turn to economic and social growth.

(A visualisation created by Daniel X O Neil of data from Chicago’s open data portal showing the activities of paid political lobbyists and their customers in the city)

Benefits:

Community hacktivism can usually be engaged by information partnerships to create useful community “apps” such as local transport information and accessibility advice.

The creation of new information-based businesses creates local employment opportunities, and economic export potential.

Information partnerships can provide information resources for technology education in schools, colleges and universities.

New city services developed as a result of the information partnership may provide lower-carbon alternatives to existing city systems such as transportation.

Implications and risks:

If participating organisations such as local authorities include the requirement to contribute data to the information partnership in procurement criteria, then tendering organisations will include any associated costs in their proposals.

For information partnerships to be sustainable, the operating entity needs to be able to accrue and reinvest profits from licenses to exploit data commercially.

The financial returns and economic growth created by information partnerships can take time to develop.

Genuinely constructive partnerships rely on effective engagement between city institutions, businesses and communities.

Existing contracts between local authorities and service providers are unlikely to require that data is contributed to the partnership; and the costs associated with making the data associated with those services available will need to be negotiated.

Alternatives and variations:

Some organisations have provided single-party open data platforms. These can be effective – for example, the APIs offered by e-Bay and Amazon; but individual organisations within cities will rarely have a critical mass of valuable data; or the resources required to operate effective and sustained programmes of engagement with the local community.

Many advocates of open data argue that such data should be freely available. However, the majority of platforms that have made data available freely have struggled to make data available in a form that is usable; to expand the data available; to offer data at a reliable level of service; or to sustain their operations over time. Making good quality data available reliably requires effort, and that effort needs to be paid for.

Examples:

Sources of information:

The UK Open Data Institute is championing open data in the UK – http://www.theodi.org/

O’Reilly Media have published many informative articles on their “Radar” website – http://search.oreilly.com/?q=open+data&x=0&y=0&tmpl=radar

The report “Information Marketplaces: The new economics of cities” published by Arup, The Climate Group, Accenture and Horizon, University of Nottingham – http://www.arup.com/Publications/Information_Marketplaces_the_new_economics_of_cities.aspx

Finally, I have written a series of articles on this blog that explore the benefits and challenges associated with the collaborative exploitation of city information:

What next?

It has been an interesting exercise for me to write this article. Many of the ideas and examples that I have included will not be new to regular readers of this blog. But in describing the idea of an “Information Partnership” as a formal design pattern I have brought them together in a particularly focussed and organised manner. There are many, many more ideas and examples of initiatives within the Smarter Cities domain that could be described in this way; and I personally believe that it would be valuable to do so.

But my opinion on that subject is less valuable than yours. I would really appreciate your thoughts on whether the “Smarter City Design Patterns” I’ve suggested and explored in this article would be a valuable contribution to our collective knowledge.

I look forward to hearing from you.