Creating successful Smart Cities in 2014 will be an economic, financial and political challenge, not an engineering accomplishment

Why insurers, pension funds and politics will be more important to Smart Cities in 2014 than “Living Labs” or technology.

(The 2nd Futurama exhibition at the 1964 New York World’s Fair. In 50 years’ time, how will we perceive today’s visions of Smart Cities? Photo by James Vaughan)

I hope that 2014 will be the year in which we see widespread and large-scale investments in future city technology infrastructures that enable sustainable, equitably distributed economic and social growth. The truth is that we are still in the very early stages of that process.

In 2012 I spoke with a Director at a financial consultancy who’d performed a survey of European Smart City initiatives. She confirmed something that I suspected at the time: that the great majority of Smart City initiatives up to that point in the mature markets of Europe and North America had been financed by research funding, rather than on a commercial basis.

Four trends characterised the subsequent development of Smart Cities throughout 2013. Firstly, emerging markets continued to invest in supporting the rapid urbanisation they are experiencing; and businesses, Universities and national governments in developed nations recognised the commercial opportunity for them to supply that market with “Smart” solutions.

Secondly, it remains the case that the path to growth for undeveloped nations is still extremely slow and complex; so whilst there is private sector and national government interest in investing in those nations – IBM’s new Research centre in Nairobi being an example – many “smart” initiatives are carried out at small scale by local innovators, the third sector or development agencies.

In Europe and North America, a third trend was the continuing announcement of investments by the European Union and national governments in the applied research and innovation agenda in cities – such as the EU’s Horizon 2020 programme, for example.

Perhaps most importantly, though, the final trend was for cities in Europe and North America to start to make investments in the underlying technology platforms for Smart Cities from their own operational budgets, on the basis of their ability to deliver cost savings or improvements in outcomes. For example, some cities are replacing traditional parking management and enforcement services with “smart parking” schemes that are reducing congestion and pollution whilst paying for themselves through improved revenues. Others are investing their allocation of central government infrastructure funds in Smart solutions – such as Cambridge, Ontario’s use of the Canadian government’s Gas Tax Fund to invest in a sensor network and analytics infrastructure to manage the city’s physical assets intelligently.

This trend to create business cases for investment from normal operating budgets or infrastructure investment programmes is important not only because it shows that these cities are developing the business models to support investment in “Smart” solutions locally, where the finances associated with rapid economic growth and urbanisation are not present; but also because (at the risk of simplifying a challenging and complex issue) some of those business models might serve as a template for self-sustainable adoption in less developed nations.

(Downtown Cambridge, Ontario. Photo by Justin Scott Campbell)

Whilst the idea of a “Smart City” has been capturing the imagination for several years now, the reality is that many cities are still deciding what that idea might mean for them. For example, London’s “Smart London Board” published it’s Smart London plan in December, following Birmingham’s Smart City Commission report earlier in the year. And most cities who are considering such plans now or who have recently published them are still determining how to put the finance in place to carry them out.

Will “Living Labs” be the death of Smart Cities?

A concept that I see in many such plans that is intended to assist in securing finance, but that I think risks being a distraction from addressing it properly, is the “Living Lab”. 

Living labs emerged as a set of best practises for carrying out applied research into consumer or citizen services with a focus on collaborative, user-centred design and co-creation. Many cities are now seeking to win funding for their Smarter Cities initiatives by offering themselves as “Living Labs” in which consortia constructing proposals for applied research funding can carry out their activities.

The issue is not that Living Lab’s aren’t a good idea – on the contrary, they are undoubtably a very good set of prescriptions for carrying out such research and design successfully. The problem is that there are now so many cities intending to follow this approach that it no longer makes them stand out as particularly effective environments in which to perform research.

Research programmes will continue to fund the first deployments of new Smart City ideas and technology; but competition for those funds will be fierce. Cities, universities and companies that bid for them will invest many months – often more than a year – in developing their proposals; and in competitions, most entrants do not win.

The real need in cities is for the development and regeneration of infrastructure. There are certainly research topics concerning infrastructure that will attract funding from national and international government bodies; but those funds will not support the rollout of citywide infrastructure to every city in every country.

(Birmingham's new city-centre tram)

(Birmingham’s new city-centre tram is an infrastructure investment that will contribute to the same objectives as the city’s Smart City vision.)

The big questions for European and American cities in 2014 are then:

Will they continue to invest resources competing for applied research and innovation funding, limiting the speed at which the widespread deployment of new infrastructure will take place?

Or will they focus on developing independently viable business cases for investment in the infrastructure to support their
Smarter City visions?

There’s a real need for clarity about these issues. Whilst the enormous level of innovation funding being made into smart buildings, smart transport and smart cities by the EU Horizon 2020 programme and national equivalents such as the UK’s Technology Strategy Board will stimulate the field and fund important demonstration projects that deliver real value, these bodies will not pay for all of our cities to become Smarter.

The same is true for the research investments made by commercial organisations including technology companies such as IBM. Commercial research investments fund the first attempts to apply technology to solve problems or achieve objectives in new ways; those that succeed are subsequently deployed elsewhere on a commercial basis.

The risk is that in seeking investment from research programmes, we become distracted from addressing the real challenge: how to make the case for private sector investment in new technology infrastructures based on the economic and social improvements they will enable; or on the direct financial returns that they will generateIn the UK, for example, a specialist body in Government, Infrastructure UK, coordinates private sector funding for public infrastructure. And if we can persuade property developers of the value of “Smart” technologies, then cities could benefit from the enormous investments made in property every year that currently don’t result in the deployment of technology – the British Property Federation, for example, estimate that £14 billion is invested in the development of new space in the UK each year.

(This pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

This is an opportunity we should treat with urgency. Whilst public sector finances are under immense pressure, the vast wealth held in private investment funds is seeking new opportunities following the poor returns that many traditional forms of investment have yielded over the last few years. There is a lot of work to do between the stakeholders in cities, government and finance before these investment sources can be exploited by Smart Cities – not least in agreeing reasonable expectations for how the risks and returns will be measured and shared. But I personally believe that until we do so, we will not be able to properly finance the development of our next generation of cities.

As Jane Jacobs wrote in her seminal 1961 work “The Death and Life of Great American Cities“:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close-grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

Overcoming these challenges won’t be easy, and doing so will require each of the various stakeholder organisations facing them to take bold steps this year.

Local Government

Whilst their finances throughout the developed world have been under severe pressure for a long time now, local government bodies are still responsible for procuring a significant volume of goods and services. Smart Cities will only become a reality when local authority visions for the future are reflected in procurement practises and scoring criteria for contracts issued today. It’s only very recently that procurements for contracts to build, update and manage physical infrastructures such as roads and pavements have been based on outcomes such as minimising congestion or increasing the overall quality of performance throughout the lifetime of the asset within the contract value, rather than on securing the maximum volume of concrete (or number of traffic wardens).

Outcomes-based procurements are challenging to be sure, both for the purchaser and the provider; especially so when they are for such new solutions. But service and infrastructure providers will only be motivated to propose and deliver innovative, smart solutions when they’re rewarded for doing so.

Local authorities can also exploit indirect mechanisms such as planning and development frameworks. I worked last year with one authority which asked how its planning framework should evolve in order to promote the development of a “Smart City”, and published a set of 23 “Design principles for a Smarter City” as a result. They require that investments in property also deliver technology infrastructures such as wi-fi, broadband, open-data, and multi-channel self-service access.

(An analysis based on GPS data from mobile phones of end-to-end journeys undertaken by users of Abidjan’s bus services. By comparing existing bus routes to end-to-end journey requirements, the analysis identified four new bus routes and led to changes in many others. As a result, 22 routes now show increased ridership, and city-wide journey times have decreased by 10%. The techniques and technologies behind the project build on those developed for projects in Dubuque, Istanbul and Dublin.)

Private Sector

The technology companies associated with Smart Cities have sometimes been criticised for focussing too much on the technology that can be applied to city infrastructures, and not enough on the improvements to people’s work and lives that technology can enable, or on the business cases for investing in it.

To make the business case clearer, my colleague the economist Mary Keeling has been working for IBM’s Institute for Business Value to more clearly analyse and express the benefits of Smart approaches – in water management and transportation, for example. And I’ll be contributing along with representatives from many of the other companies that provide technology and infrastructure for Smart Cities to the TSB’s Future Cities Catapult’s finance initiative.

But we also need to respect the principles of Living Labs and the experience of urban designers – not least the writing of Jane Jacobs – which reflect that our starting point for thinking about Smart Cities should be the everyday lives and experiences of individual citizens in their family lives; at work; and moving through cities. In one sense, this is business as usual in the technology industry – “user-centered design“, “use cases” and “user stories” have been at the heart of software development since the 1980s. So one of our challenges is simply to communicate that approach more clearly within our descriptions of Smart Cities. This is a topic I’ve written about in many articles on this blog that you can find described in “7 Steps to a Smarter City“; and that I tried to address in IBM’s new Smarter Cities video.

The other challenge is for technology companies to become more familiar and expert in the disciplines associated with good quality urban design – town planning, architecture, social science and the psychology of human behaviour, for example. This is one of the reasons why IBM started the “Smarter Cities Challenge” programme through which we have donated our technology expertise to 100 cities worldwide to help them address the opportunities and challenges they face; and in so doing become more familiar with their very varied cultures, economies, issues and capabilities. It’s also why I joined the Academy of Urbanism, along with representatives of several other technology companies.

We also need to embrace the “Smart Urbanism” thinking exemplified by Kelvin Campbell. Kelvin’s “Massive / Small” approach is intended to design large-scale urban infrastructures that encourage and support “massive” amounts of “small-scale” innovation. I think that’s an extremely powerful idea that we should embrace in Smarter Cities; and that translates directly to the practise of providing open-standard, public interfaces to city technology infrastructures – open data feeds and APIs (“Application Programming Interfaces”), for example – that not only reduce the risk that city systems become “locked-in” to any proprietary provider; but that also open up the power of large scale technology systems and “big data” sources so that local businesses, innovators and communities are able to adapt public infrastructures to their own needs. I think of these interfaces as creating an “innovation boundary” between a city’s infrastructure and its stakeholders.

(George Ferguson, Mayor of Bristol, one of the few cities in the UK with an elected Mayor with significant authority and responsibility. His salary is paid in the city’s local currency, the Bristol Pound, rather than in the national currency. His red trousers are famous. Photo by PaulNUK)

Central Government

In most countries in the developed world – i.e. those which are not being driven by rapid urbanisation today because they urbanised during the Industrial Revolution – the majority of Smart City initiatives that have momentum are driven by Mayors convening city stakeholders and institutions to co-create, finance and deliver those initiatives. Correspondingly, in countries without strong mayoral systems – such as the UK – progress can be slower. Worryingly, Centre for Cities’ recent Outlook 2014 report pointed out that only 17% of funding for UK cities comes from locally administered taxation, as opposed to the OECD average of 55%.

To risk stating the obvious, every city is different, and different in very many important ways, from its geographical situation to its linkage to national and international transport infrastructure; from its economic and business capabilities to the skills and wealth of its population; from its social challenges and degree of social mobility to its culture and heritage. Successful Smart City initiatives are specific, not generic; and the greater degree of autonomy that cities are allowed in setting strategy and securing financing, the greater their capability to pursue those initiatives. Programmes such as “City Deals” and the recent reforms resulting from Lord Heseltine’s “No Stone Unturned” report are examples of progress towards greater autonomy for the UK’s cities, but they are not enough.

Central government will always have a significant role in funding the infrastructures that cities rely on, of course; whether that’s national infrastructures that connect cities (such as the planned “HS2” high-speed train network in the UK, or Australia’s national deployment of broadband internet connectivity), or specific infrastructures within cities, such as Birmingham’s new city-centre tram. And so just as local governments should consider how they can use procurement practises and planning frameworks to encourage investments in property and infrastructure that deliver “Smart” solutions, so central government should consider how the funding programmes that it administers can contribute to cities’ “Smart” objectives.

Financial Services

If the challenge is to unlock investment in new assets and outcomes, then we should turn to banks, insurers and investors to help us shape the new financial vehicles that we will require to do so. In Canada, for example, a collaboration between Canadian insurers and cities has developed a set of tools to create a common understanding of the financial risk created by the effects of climate change on the resilience of city infrastructures. These tools are the first step towards creating investment and insurance models for city infrastructures that will be exposed to new levels of risk; that will need to exhibit new levels of resilience; and that in turn may require Smart solutions to achieve them.

(Luciana Berger, Shadow Minister for Energy and Climate Change pictured talking to Northfield, Birmingham resident Abraham Weekes and James McKay, Birmingham City Council’s Cabinet Member for a Green, Safe and Smart city. Abraham lives in the house pictured, which has been fitted with exterior house covering, solar panels and energy efficient windows through the Birmingham Energy Savers scheme. Photo by Birmingham City Council)

More internationally, the “Little Rock Accord” between the Madrid Club of former national Presidents and Prime Ministers and the P80 group of pension funds agreed to create a task force to increase the degree to which pension and sovereign wealth funds invest in the deployment of technology to address climate change issues, shortages in resources such as energy, water and food, and sustainable, resilient growth. And more locally, I’m proud to note that my home city of Birmingham is a pioneer in this area through the Birmingham Energy Savers project, financed through a mixture of prudential borrowing and private sector investment.

It has taken us too long to get to this point, but I’m encouraged that several initiatives are now convening discussions between the traditionally understood stakeholders in Smart Cities – local authorities, technology companies, universities and built-environment companies – and the financial sector. For example, in addition to the Future Cities Catapult’s financing programme, on March 13th, I’ll be speaking at an event organised by the Lord Mayor of the City of London to encourage the City’s financial institutions and UK city authorities to undertake a similar collaboration to develop new financing models for future city infrastructures.

Are Smarter Cities a “middle out” economic intervention?

In his 2011 Presidential Campaign speech Barack Obama promised an economic strategy based on “middle-out” economics – the philosophy that equitable, sustainable growth is driven by the spending power of middle class consumers, as an alternative to “trickle-down” economics – the philosophy that growth is best created when very rich “wealth-creators” are free to become as successful as possible.

As this analysis in “The Atlantic” shows, job creation does depend on the investments of the wealthiest; but also on the spending power of the masses; and on a lot of very hard work making sure that a reasonable portion of the profits created by both of those activities are used to invest in making skills, education and opportunity available to all. The Economist magazine made the same point in a recent article by reminding us of the enormous investments made into public institutions in the past in order to distribute the benefits of the Industrial Revolution to society at large rather than concentrate them on behalf of business owners and the professional classes; though with only partial success.

(The discussion group at the #SmartHack event in Birmingham)

(The discussion group at the #SmartHack event in Birmingham, described in “Tea, trust and hacking – how Birmingham is getting Smarter“, photographed by Sebastian Lenton)

 Those ideas are reflected in what it takes to craft an investment in a technology-enabled Smart City initiative that successfully creates social and economic improvements in a city.

Whilst a huge number of effective “Smart” ideas will be created “bottom-up” by innovators and social entrepreneurs intimately familiar with specific local communities and context, those ideas will not succeed as well or rapidly as we need them to without significant investment in new infrastructures – such as wi-fi, broadband and realtime open data – that are deployed everywhere, not just in the most economically active areas of cities that reward commercial investment most quickly. Accessibility to these infrastructures creates the “innovation boundary” between city institutions and infrastructures, and local innovators and communities.

This is not an abstract concept; it is an idea that some cities are making very real today. For example, the “Dublinked” information-sharing partnership between Dublin County Council, three surrounding County Councils and the National University of Ireland now makes available 3,000 city datasets as “open data” – including a realtime feed showing the location of buses in the city. That’s a resource that local innovators can use to create their own new applications and services. Similarly, in Birmingham the “West Midlands Open Data Forum” has emerged as a community in which city local businesses and innovators can negotiate access to data held by city institutions and service providers.

(David Willets, MP, Minister for Universities and Science, launches the UK Government’s Smart Cities Forum)

At launch of the UK Government’s “Smart Cities Forum” last year, I remarked that we were not inviting key stakeholders to the Smarter Cities debate – specifically, banks, investors, insurers and entrepreneurs. Some of the initiatives I’ve described in this article are starting to address that omission; and to recognise that the most significant challenges are to do with finance, politics, social issues and economics, not engineering and technology.

And those are challenges that all of us should focus on. No-one is going to pay for our cities to become Smarter, more successful, more sustainable and fairer: we will have to figure out how to pay for  those things ourselves.

Information and choice: nine reasons our future is in the balance

(The Bandra pedestrian skywalk in Mumbai, photo taken from the Collaborative Research Initiative Trust‘s study of Mumbai, “Being Nicely Messy“, produced for the 2012 Audi Urban Futures awards)

The 19th and 20th centuries saw the flowering and maturation of the Industrial Revolution and the creation of the modern world. Standards of living worldwide increased dramatically as a consequence – though so did inequality.

The 21st century is already proving to be different. We are reaching the limits of supply of the natural resources and cheap energy that supported the last two centuries of development; and are starting to widely exploit the most powerful man-made resource in history: digital information.

Our current situation isn’t simply an evolution of the trends of the previous two centuries; nine “tipping points” in economics, society, technology and the environment indicate that our future will be fundamentally different to the past, not just different by degree.

Three of those tipping points represent changes that are happening as the ultimate consequences of the Industrial Revolution and the economic globalisation and population growth it created; three of them are the reasons I think it’s accurate to characterise the changes we see today as an Information Revolution; and the remaining three represent challenges for us to face in the future.

The difficulty faced in addressing those challenges internationally through global governance institutions is illustrated by the current status of world trade deal and climate change negotiations; but our ability to respond to them is not limited to national and international governments. It is in the hands of businesses, communities and each of us as individuals as new business models emerge.

The structure of the economy is changing

In 2012, the Collaborative Research Initiatives Trust were commissioned by the Audi Urban Futures Awards to develop a vision for the future of work and life in Mumbai. In the introduction to their report, “Being Nicely Messy“, they cite a set of statistics describing Mumbai’s development that nicely illustrate the changing nature of the city:

“While the population in Mumbai grew by 25% between 1991 and 2010, the number of people travelling by trains during the same years increased by 66% and the number of vehicles grew by 181%. At the same time, the number of enterprises in the city increased by 56%.

All of this indicates a restructuring of the economy, where the nature of work and movement has changed.”

(From “Being Nicely Messy“, 2011, Collaborative Research Initiatives Trust)

Following CRIT’s inspiration, over the last year I’ve been struck by several similar but more widely applicable sets of data that, taken together, indicate that a similar restructuring is taking place across the world.

ScreenHunter_223 Nov. 28 00.06

(Professor Robert Gordon’s analysis of historic growth in productivity, as discussed by the famous investor Jeremy Grantham, showing that the unusual growth experienced through the Industrial Revolution may have come to an end. Source: Gordon, Robert J., “Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six Headwinds,” NBER Working Paper 18315, August 2012)

The twilight of the Industrial Revolution

Tipping point 1: the slowing of economic growth

According to the respected investor Jeremy Grantham, Economic growth has slowed systemically and permanently. He states that: “Resource costs have been rising, conservatively, at 7% a year since 2000 … in a world growing at under 4% and [in the] developed world at under 1.5%”

Grantham’s analysis is that the rapid economic growth of the last century was a historical anomaly driven by the productivity improvements made possible through the Industrial Revolution; and before that revolution reached such a scale as to create global competition for resources and energy. Property and technology bubbles extended that growth into the early 21st Century, but it has now reduced to much more modest levels where Grantham expects it to remain. The economist Tyler Cowan came to similar conclusions in his 2011 book, “The Great Stagnation“.

This analysis was supported by the property developers I met at a recent conference in Birmingham. They told me that indicators in their market today are the most positive they have been since the start of the 1980s property boom; but none of them expect that boom to be repeated. The market is far more cautious concerning medium and long-term prospects for growth.

We have passed permanently into an era of more modest economic growth than we have become accustomed to; or at very least into an era whereby we need to restructure the relationship between economic growth and the consumption of resources and energy in ways that we have not yet determined before higher growth does return. We have passed a tipping point; the world has changed.

(Growth in the world's urban population as reported by World Urbanization Prospects”, 2007 Revision, Department of Economic and Social Affairs, United Nations)

(Growth in the world’s urban population as reported by “World Urbanization Prospects”, 2007 Revision, Department of Economic and Social Affairs, United Nations)

Tipping point 2: urbanisation and the industrialisation of food supply 

As has been widely quoted in recent years, more than half the world’s population has lived in cities since 2010 according to the United Nations Department of Economic and Social Affairs. That percentage is expected to increase to 70% by 2050.

The implications of those facts concern not just where we live, but the nature of the economy. Cities became possible when we industrialised the production and distribution of food, rather than providing it for ourselves on a subsistence basis; or producing it in collaboration with our neighbours. For this reason, many developing nations still undergoing urbanisation and industrialisation – such as Tanzania, Turkmenistan and Tajikstan – still formally define cities by criteria including “the pre-dominance of non-agricultural workers and their families” (as referenced in the United Nations’ “World Urbanization Prospects” 2007 Revision).

So for the first time more than half the world’s population now lives in cities; and is provided with food by industrial supply chains rather than by families or neighbours. We have passed a tipping point; the world has changed.

(Estimated damage in $US billion caused by natural disasters between 1900 and 2012 as reported by EM-DAT)

(Estimated damage in $US billion caused by natural disasters between 1900 and 2012 as reported by EM-DAT)

Tipping point 3: the frequency and impact of extreme weather conditions

As our climate changes, we are experiencing more unusual and extreme weather. In addition to the devastating impact recently of Typhoon Haiyan in the Philippines,  cities everywhere are regularly experiencing the effects to a more modest degree.

One city in the UK told me recently that inside the last 12 months they have dealt with such an increase in incidents of flooding severe enough to require coordinated cross-city action that it has become an urgent priority for local Councillors. We are working with other cities in Europe to understand the effect of rising average levels of flooding – historic building construction codes mean that a rise in average levels of a meter or more could put significant numbers of buildings at risk of falling down. The current prediction from the United Nations International Panel on Climate Change is that levels will rise somewhere between 26cm and 82cm by the end of this century – close enough for concern.

The EM-DAT International Disasters Database has calculated the financial impact of natural disasters over the past century. They have shown that in recent years the increased occurrence of unusual and extreme weather combined with the increasing concentration of populations and economic activity in cities has caused this impact to rise at previously unprecedented rates.

The investment markets have identified and responded to this trend. In their recent report “Global Investor Survey on Climate Change”, the Global Investor Coalition on Climate Change reported this year that 53% of fund managers collectively responsible for $14 trillion of assets indicated that they had divested stocks, or chosen not to invest in stocks, due to concerns over the impact of climate change on the businesses concerned. We have passed a tipping point; the world has changed.

(The prediction of exponential growth in digital information from EMC's Digital Universe report)

(The prediction of exponential growth in digital information from EMC’s Digital Universe report)

The dawn of the Information Revolution

Tipping point 4: exponential growth in the world’s most powerful man-made resource, digital information

Information has always been crucial to our world. Our use of language to share it is arguably a defining characteristic of what it means to be human; it is the basis of monetary systems for mediating the exchange of goods and services; and it is a core component of quantum mechanics, one of the most fundamental physical theories that describes how our universe behaves.

But the emergence of broadband and mobile connectivity over the last decade have utterly transformed the quantity of recorded information in the world and our ability to exploit it.

EMC’s Digital Universe report shows that in between 2010 and 2012 more information was recorded than in all of previous human history. They predict that the quantity of information recorded will double every 2 years, meaning that at any point in the next two decades it will be true to make the same assertion that “more information was recorded in the last two years than in all of previous history”. In 2011 McKinsey described the “information economy” that has emerged to exploit this information as a fundamental shift in the basis of the economy as a whole.

Not only that, but information has literally been turned into money. The virtual currency Bitcoin is based not on the value of a raw material such as gold whose availability is physically limited; but on the outcomes of extremely complex cryptographic calculations whose performance is limited by the speed at which computers can process information. The value of Bitcoins is currently rising incredibly quickly – from $20 to $1000 since January; although it is also subject to significant fluctuations. 

Ultimately, Bitcoin itself may succeed or fail – and it is certainly used in some unethical and dangerous transactions as well as by ordinary people and businesses. But its model has demonstrated in principle that a decentralised, non-national, information-based currency can operate successfully, as my colleague Richard Brown recently explained.

Digital information is the most valuable man-made resource ever invented; it began a period of exponential growth just three years ago and has literally been turned into money. We have passed a tipping point; the world has changed.

Tipping point 5: the disappearing boundary between humans, information and the physical world

In the 1990s the internet began to change the world despite the fact that it could only be accessed by using an expensive, heavy personal computer; a slow and inconvenient telephone modem; and the QWERTY keyboard that was designed in the 19th Century to prevent typists from typing faster than the levers in mechanical typewriters could move.

Three years ago, my then 2-year-old son taught himself how to use a touchscreen tablet to watch cartoons from around the world before he could read or write. Two years ago, Scientists at the University of California at Berkeley used a Magnetic Resonance Imaging facility to capture images from the thoughts of a person watching a film. A less sensitive mind-reading technology is already available as a headset from Emotiv, which my colleagues in IBM’s Emerging Technologies team have used to help a paralysed person communicate by thinking directional instructions to a computer.

Earlier this year, a paralysed woman controlled a robotic arm by thought; and prosthetic limbs, a working gun and living biological structures such as muscle fibre and skin are just some of the things that can be 3D printed on demand from raw materials and digital designs.

Our thoughts can control information in computer systems; and information in those systems can quite literally shape the world around us. The boundaries between our minds, information and the physical world are disappearing. We have passed a tipping point; the world has changed.

(A personalised prosthetic limb constructed using 3D printing technology. Photo by kerolic)

Tipping point 6: the miniaturisation of industry

The emergence of the internet as a platform for enabling sales, marketing and logistics over the last decade has enabled small and micro-businesses to reach markets across the world that were previously accessible only to much larger organisations with international sales and distribution networks.

More recently, the emergence and maturation of technologies such as 3D printingopen-source manufacturing and small-scale energy generation are enabling small businesses and community initiatives to succeed in new sectors by reducing the scale at which it is economically viable to carry out what were previously industrial activities – a trend recently labelled by the Economist magazine as the “Third Industrial Revolution“. The continuing development of social media and pervasive technology enable them to rapidly form and adapt supply and exchange networks with other small-scale producers and consumers.

Estimates of the size of the resulting “sharing economy“, defined by Wikipedia as “economic and social systems that enable shared access to goods, services, data and talent“, vary widely, but are certainly significant. The UK Economist magazine reports one estimate that it is a $26 billion economy already, whilst 2 Degrees Network report that just one aspect of it – small-scale energy generation – could save UK businesses £33 billion annually by 2030Air B’n’B – a peer-to-peer accommodation service – reported recently that they had contributed $632 million in value to New York’s economy in 2012 by enabling nearly 5,000 residents to earn an average of $7,500 by renting their spare rooms to travellers; and as a consequence of those travellers additionally spending an average of $880 in the city during their stay. Overall, there has been a significant rise in self-employment and “micro-entrepreneurial” enterprises over the last few years, which now account for 14% of the US economy.

Organisations participating in the sharing economy exhibit a range of motivations and ethics – some are aggressively commercial, whilst others are “social enterprises” with a commitment to reinvest profits in social growth. The social enterprise sector, comprised of mutuals, co-operatives, employee-owned businesses and enterprises who submit to “triple bottom line” accounting of financial, social and environmental capital, is about 15% of the value of most economies, and has been growing and creating jobs faster than traditional business since the 2008 crash.

In the first decade of the 21st Century, mobile and internet technologies caused a convergence between the technology, communications and media sectors of the economy. In this decade, we will see far more widespread disruptions and convergences in the technology, manufacturing, creative arts, healthcare and utilities industries; and enormous growth in the number of small and social enterprises creating innovative business models that cut across them. We have passed a tipping point; the world has changed.

Rebalancing the world

Tipping point 7: how we respond to climate change and resource constraints

There is now agreement amongst scientists, expressed most conclusively by the United Nations International Panel on Climate Change this year, that the world is undergoing a period of overall warming resulting from the impact of human activity. But there is not yet a consensus on how we should respond.

Views vary from taking immediate, sweeping measures to drastically cut carbon and greenhouse gas emissions,  to the belief that we should accept climate change as inevitable and focus investment instead on adapting to it, as suggested by the “Skeptical Environmentalist” Bjørn Lomborg and the conservative think-tank the American Enterprise Institute. As a result of this divergence of opinion, and of the challenge of negotiating between the interests of countries, communities and businesses across the world, the agreement reached by last year’s climate change negotiations in Doha was generally regarded as relatively weak.

Professor Chris Rogers of the University of Birmingham and his colleagues in the Urban Futures initiative have assessed over 450 proposed future scenarios and identified four archetypes (described in his presentation to Base Cities Birmingham) against which they assess the cost and effectiveness of environmental and climate interventions. The “Fortress World” scenario is divided between an authoritarian elite who control the world’s resources from their protected enclaves and a wider population living in poverty. In “Market Forces”, free markets encourage materialist consumerism to wholly override social and environmental values; whilst in “Policy Reform” a combination of legislation and citizen behaviour change achieve a balanced outcome. And in the “New Sustainability Paradigm” the pursuit of wealth gives way to a widespread aspiration to achieve social equality and environmental sustainability. (Chris is optimistic enough that his team dismissed another scenario, “Breakdown”, as unrealistic).

Decisions that are taken today affect the degree to which our world will evolve to resemble those scenarios. As the impact of weather and competition for resources affect the stability of supply of energy and foodmany cities are responding to the relative lack of national and international action by taking steps themselves. Some businesses are also building strategies for long-term success and profit growth  around sustainability; in part because investing in a resilient world is a good basis for a resilient business, and in part because they believe that a genuine commitment to sustainability will appeal to consumers. Unilever demonstrated that they are following this strategy recently by committing to buy all of their palm oil – of which they consume one third of the world’s supply – from traceable sources by the end of 2014.

At some point, we will all – individuals, businesses, communities, governments – be forced to change our behaviour to account for climate change and the limits of resource availability: as the prices of raw materials, food and energy rise; and as we are more and more directly affected by the consequences of a changing environment.

The questions are: to what extent have these challenges become urgent to us already; and how and when will we respond?

(“Makers” at the Old Print Works in Balsall Heath, Birmingham, sharing the tools, skills and ideas that create successful small businesses)

Tipping point 8: the end of the average career

In “The End of Average“, the economist Tyler Cowen observed that about 60% of the jobs lost during the 2008 recession were in mid-wage occupations; and the UK Economist magazine reported that many jobs lost from professional industries had been replaced in artisan trades and small-scale industry such as food, furniture and design.

Echoing Jeremy Grantham, Cowen further observes that these changes take place within a much longer term 28% decline in middle-income wages in the US between 1969 and 2009 which has no identifiable single cause. Cowen worries that this is a sign that the economy is beginning to diverge into the authoritarian elite and the impoverished masses of Chris Rogers’ “Fortress World” scenario.

Other evidence points to a more complex picture. Jake Dunagan, Research Director of the Institute for the Future, believes that the widespread availability of digital technology and information is extending democracy and empowerment – just as the printing press and education did in the last millennium as they dramatically increased the extent to which people were informed and able to make themselves heard. Dunagan notes that through our reliance on technology and social media to find and share information, our thoughts and beliefs are already formed by, and having an effect on, society in a way that is fundamentally new.

The miniaturisation of industry (tipping point 6 above) and the disappearance of the boundary between our minds and bodies, information and the physical world (tipping point 5 above) are changing the ways in which resources and value are exchanged and processed out of all recognition. Just imagine how different the world would be if a 3D-printing service such as Shapeways transformed the manufacturing industry as dramatically as iTunes transformed the music industry 10 years ago. Google’s futurologist Thomas Frey recently described 55 “jobs of the future” that he thought might appear as a result.

(Activities comprising the “Informal Economy” and their linkages to the mainstream economy, by Claro Partners)

In both developed and emerging countries, informal, social and micro-businesses are significant elements of the economy, and are growing more quickly than traditional sectorsClaro partners estimate that the informal economy (in which they include alternative currencies, peer-to-peer businesses, temporary exchange networks and micro-businesses – see diagram, right) is worth $10 trillion worldwide, and that it employs up to 80% of the workforce in emerging markets. 

In developed countries, the Industrial Revolution drove a transformation of such activity into a more formal economy – a transformation which may now be in part reversing. In developing nations today, digital technology may make part of that transformation unnecessary. 

To be successful in this changing economy, we will need to change the way we learn, and the way we teach our children. Cowen wrote that “We will move from a society based on the pretense that everyone is given an okay standard of living to a society in which people are expected to fend for themselves much more than they do now”; and expressed a hope that online education offers the potential for cheaper and more widespread access to new skills to enable people to do so. This thinking echoes a finding of the Centre for Cities report “Cities Outlook 1901” that the major factor driving the relative success or failure of UK cities throughout the 20th Century was their ability to provide their populations with the right skills at the right time as technology and industry developed.

The marketeer and former Yahoo Executive Seth Godin’s polemic “Stop Stealing Dreams” attacked the education system for continuing to prepare learners for stable, traditional careers rather than the collaborative entrepreneurialism that he and other futurists expect to be required. Many educators would assert that their industry is already adapting and will continue to do so – great change is certainly expected as the ability to share information online disrupts an industry that developed historically to share it in classrooms and through books.

Many of the businesses, jobs and careers of 2020, 2050 and 2100 will be unrecognisable or even unimaginable to us today; as are the skills that will be needed to be successful in them. Conversely, many post-industrial cities today are still grappling with challenges created by the loss of jobs in manufacturing, coalmining and shipbuilding industries in the last century.

The question for our future is: will we adapt more comfortably to the sweeping changes that will surely come to the industries that employ us today?

("Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(“Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

Tipping point 9: inequality

The benefits of living in cities are distributed extremely unevenly.

The difference in life expectancy of children born into the poorest and wealthiest areas of UK cities today is often as much as 20 years – for boys in Glasgow the difference is 28 years. That’s a deep inequality in the opportunity to live.

There are many causes of that inequality, of course: health, diet, wealth, environmental quality, peace and public safety, for example. All of them are complex, and the issues that arise from them to create inequality – social deprivation and immobility, economic disengagement, social isolation, crime and lawlessness – are notoriously difficult to address.

But a fundamental element of addressing them is choosing to try to do so. That’s a trite observation, but it is nonetheless the case that in many of our activities we do not make that choice – or, more accurately, as individuals, communities and businesses we take choices primarily in our own interests rather than based on their wider impact.

Writing about cities in the 1960s, the urbanist Jane Jacobs observed that:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

In many respects, we have not shaped the financial machinery of the world to achieve equality. Nobel Laureate Joseph Stiglitz wrote recently that in fact the financial machinery of the United States and the UK in particular create considerable inequality in those countries; and the Economist magazine reminds us of the enormous investments made into public institutions in the past in order to distribute the benefits of the Industrial Revolution to society at large rather than concentrate them on behalf of business owners and the professional classes – with only partial success.

New legislation in banking has been widely debated and enacted since the 2008 financial crisis – enforcing the separation of commercial and investment banking, for example. But addressing inequality is a much broader challenge than the regulation of banking, and will not only be addressed by legislation. Business models such as social enterprise, cross-city collaborations and the sharing economy are emerging to develop sustainable businesses in industries such as food, energy, transportation and finance, in addition to the contribution made by traditional businesses building sustainability into their strategies.

Whenever we vote, buy something or make a choice in business, we contribute to our overall choice to develop a fairer, more sustainable world in which everyone has a chance to participate. The question is not just whether we will take those choices; but the degree to which their impact on the wider world will be apparent to us so that we can do so in an informed way.

That is a challenge that technology can help with.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times. The predictions gave commuters the opportunity to take a better-informed choice about their travel to work.)

Data and Choice

Like the printing press, the vote and education, access to data allows us to make more of a difference than we were able to without it.

Niall Firth’s November editorial for the New Scientist magazine describes how citizens of developing nations are using open data to hold their governments to account, from basic information about election candidates to the monitoring of government spending. In the UK, a crowd-sourced analysis of politicians’ expenses claims that had been leaked to the press resulted in resignations, the repayment of improperly claimed expenses, and in the most severe cases, imprisonment.

Unilever are committing to making their supply chain for palm oil traceable precisely because that data is what will enable them to next improve its sustainability; and in Almere, city data and analytics are being used to plan future development of the city in a way that doesn’t cause harmful impacts to existing citizens and residents. Neither initiative would have been possible or affordable without recent improvements in technology.

Data and technology, appropriately applied, give us an unprecedented ability to achieve our long-term objectives by taking better-informed, more forward-looking decisions every day, in the course of our normal work and lives. They tell us more than we could ever previously have known about the impact of those decisions.

That’s why the tipping points I’ve described in this article matter to me. They translate my general awareness that I should “do the right thing” into a specific knowledge that at this point in time, my choices in many aspects of daily work and life contribute to powerful forces that will shape the next century that we share on this planet; and that they could help to tip the balance in all of our favour.

The sharing economy and the future of movement in smart, human-scale cities

("Visionary City" by William Robinson Leigh)

(William Robinson Leigh’s 1908 painting “Visionary City” envisaged future cities constructed from mile-long buildings of hundreds of stories connected by gas-lit skyways for trams, pedestrians and horse-drawn carriages. A century later we’re starting to realise not only that developments in transport and power technology have eclipsed Leigh’s vision, but that we don’t want to live in cities constructed from buildings on this scale.)

One of the defining tensions throughout the development of cities has been between our desire for quality of life and our need to move ourselves and the things we depend on around.

The former requires space, peace, and safety in which to work, exercise, relax and socialise; the latter requires transport systems which, since the use of horsedrawn transport in medieval cities, have taken up space, created noise and pollution – and are often dangerous. Enrique Penalosa, whose mayorship of Bogota was defined by restricting the use of car transport, often refers to the tens of thousands of children killed by cars on the world’s roads every year and his astonishment that we accept this as the cost of convenient transport.

This tension will intensify rapidly in coming years. Not only are our cities growing larger and denser, but according to the analysis of city systems by Professors Geoffrey West and Louis Bettencourt of the Los Alamos National Laboratory and Professor Ian Robertson’s study of human behaviour, our interactions within them are speeding up and intensifying.

Arguably, over the last 50 years we have designed cities around large-scale buildings and transport structures that have supported – and encouraged – growth in transport and the size of urban economies and populations at the expense of some aspects of quality of life.

Whilst standards of living across the world have improved dramatically in recent decades, inequality has increased to an even greater extent; and many urbanists would agree that the character of some urban environments contributes significantly to that inequality. In response, the recent work of architects such as Jan Gehl and Kelvin Campbell, building on ideas first described by Jane Jacobs in the 1960s, has led to the development of the “human scale cities” movement with the mantra “first life, then space, then buildings”.

The challenge at the heart of this debate, though, is that the more successful we are in enabling human-scale value creation; the more demand we create for transport and movement. And unless we dramatically improve the impact of the systems that support that demand, the cities of the future could be worse, not better, places for us to live and work in.

Human scale technology creates complexity in transport

As digital technology pervades every aspect of our lives, whether in large-scale infrastructures such as road-use charging systems or through the widespread adoption of small-scale consumer technology such as smartphones and social media, we cannot afford to carry out the design of future cities without considering it; nor can we risk deploying it without concern for its affect on the quality of urban life.

Digital technologies do not just make it easier for us to communicate and share information wherever we are: those interactions create new opportunities to meet in person and to exchange goods and services; and so they create new requirements for transport. And as technologies such as 3D printing, open-source manufacturing and small-scale energy generation make it possible to carry out traditionally industrial activities at much smaller scales, some existing bulk movement patterns will be replaced by thousands of smaller, peer-to-peer interactions created by transactions in online marketplaces. We can already see the effects of this trend in the vast growth of traffic delivering goods that are purchased or exchanged online.

Estimates of the size of this “sharing economy“, defined by Wikipedia as “economic and social systems that enable shared access to goods, services, data and talent“, vary widely, but are certainly significant. The UK Economist magazine reports one estimate that it is a $26 billion economy already, whilst 2 Degrees Network report that just one aspect of it – small-scale energy generation – could save UK businesses £33 billion annually by 2030Air B’n’B – a peer-to-peer accommodation service – reported recently that they had contributed $632 million in value to New York’s economy in 2012 by enabling nearly 5,000 residents to earn an average of $7,500 by renting their spare rooms to travellers; and as a consequence of those travellers additionally spending an average of $880 in the city during their stay. The emergence in general of the internet as a platform for enabling sales, marketing and logistics for small and micro-businesses is partly responsible for a significant rise in self-employment and “micro-entrepreneurial” enterprises over the last few years, which now account for 14% of the US economy.

Digital technology will create not just great growth in our desire to travel and move things, but great complexity in the way we will do so. Today’s transport technologies are not only too inefficient to scale to our future needs; they’re not sophisticated and flexible enough to cope with the complexity and variety of demand.

Many of the future components of transport systems have already been envisaged, and deployed in early schemes: elevated cycleways; conveyor belts for freight; self-driving vehicles and convoys; and underground pneumatic networks for recycling. And to some extent, we have visualised the cities that they will create: Professor Miles Tight, for example, has considered the future living scenarios that might emerge from various evolutions of transport policy and human behavioural choices in the Visions 2030 project.

The task for the Smarter Cities movement should be to extend this thinking to envision the future of cities that are also shaped by emerging trends in digital technology and their effect on the wider economy and social systems. We won’t do that successfully by considering these subjects separately or in the abstract; we need to envision how they will collectively enable us to live and work from the smallest domestic scale to the largest city system.

(Packages from Amazon delivered to Google’s San Francisco office. Photo by moppet65535)

What we’ll do in the home of the future

Rather than purchasing and owning goods such as kitchen utensils, hobby and craft items, toys and simple house and garden equipment, we will create them on-demand using small-scale and open-source manufacturing technology and smart-materials. It will even be possible – though not all of us will choose to do so – to manufacture some food in this way.

Conversely, there will still be demand for handmade artisan products including clothing, gifts, jewellery, home decorations, furniture, and food. Many of us will earn a living producing these goods in the home while selling and marketing them locally or through online channels.

So we will leave our home of the future less often to visit shops; but will need not just better transport services to deliver the goods we purchase online to our doorsteps, but also a new utility to deliver the raw materials from which we will manufacture them ourselves; and new transport services to collect the products of our home industries and to deliver supplies to them.

We will produce an increasing amount of energy at home; whether from existing technologies such as solar panels or combined heat and power (CHP) systems; or through new techniques such as bio-energy. The relationships between households, businesses, utilities and transportation will change as we become producers of energy and consumers of waste material.

And whilst remote working means we will continue to be less likely to travel to and from the same office each day, the increasing pace of economic activity means that we will be more likely to need to travel to many new destinations as it becomes necessary to meet face to face with the great variety of customers, suppliers, co-workers and business partners with whom online technologies connect us.

What we’ll do in the neighbourhoods of the future

As we increasingly work remotely from within our homes or by travelling far away from them, less of us work in jobs and for businesses that are physically located within the communities in which we live; and some of the economic ties that have bound those communities in the past have weakened. But most of us still feel strong ties to the places we live in; whether they are historical, created by the character of our homes or their surrounding environment, or by the culture and people around us. These ties create a shared incentive to invest in our community.

Perhaps the greatest potential of social media that we’re only begin to exploit is its power to create more vibrant, sustainable and resilient local communities through the “sharing economy”.

The motivations and ethics of organisations participating in the sharing economy vary widely – some are aggressively commercial, whilst others are “social enterprises” with a commitment to reinvest profits in social growth. The social enterprise sector, comprised of mutuals, co-operatives, employee-owned businesses and enterprises who submit to “triple bottom line” accounting of financial, social and environmental capital, is about 15% of the value of most economies, and has been growing and creating jobs faster than traditional business since the 2008 crash. There is enormous potential for cities to achieve their “Smarter” objectives for sustainable, equitably distributed economic growth through contributions from social enterprises using technology to implement sharing economy business models within their region.

Sharing economy models which enable transactions between participants within a walkable or cyclable area can be a particularly efficient mechanism for collaboration, as the related transport can be carried out using human power. Joan Clos, Exective Director of UN-Habitat, has asserted that cities will only become sustainable when they are built at a sufficient population density that a majority of interactions within them can be carried out in this way (as reported informally by Tim Stonor from Dr. Clos’s remarks at the “Urban Planning for City Leaders” conference at the Crystal, London in 2012).

The Community Lovers’ Guide has published stories from across Europe of people who have collaborated to make the places that they share better, often using technology; and schemes such as Casserole Club and Land Share are linking the supply and demand of land, food, gardening and cooking skills within local communities, helping neighbours to help each other. At local, national and international levels, sharing economy ideas are creating previously unrealised social and economic value, including access to employment opportunities that replace some of those traditional professions that are shrinking as the technology used by industrial business changes.

Revenue-earning businesses are a necessary component of vibrant communities, at a local neighbourhood scale as well as city-wide. At the Academy of Urbanism Congress in Bradford this year, Michael Ward, Chair of the Centre for Local Economic Strategies, asserted that “the key task facing civic leaders in the 21st Century is this: how, in a period of profound and continuing economic changes, will our citizens earn a living and prosper?”

(“Makers” at the Old Print Works in Balsall Heath, Birmingham, sharing the tools, skills and ideas that create successful small businesses)

So whilst we work remotely from direct colleagues, we may chose to work in a collaborative workspace with near neighbours, with whom we can exchange ideas, make new contacts and start new enterprises and ventures. As the “maker” economy emerges from the development of sophisticated, small-scale manufacturing, and the resurgence in interest in artisan products, community projects such as the Old Print Works in Balsall Heath, Birmingham are emerging in low-cost ex-industrial space as people come together to share the tools and expertise required to make things and run businesses.

We will also manage and share our use of resources such as energy and water at neighbourhood scale. The scale and economics of movement of the raw materials for bio-energy generation, for example, currently dictate that neighbourhood-scale generation facilities – as opposed to city-wide, regional or domestic scale – are the most efficient. Aston University’s European Bio-Energy Research Institute is demonstrating these principles in the Aston district of Birmingham. And schemes from the sustainability pilot in Dubuque, Iowa to the Energy Sharing Co-operative in the West Midlands of the UK and the Chale community project on the Isle of Wight have shown that community-scale schemes can create shared incentives to use resources more efficiently.

One traditional centre of urban communities, the retail high street or main street, has fared badly in recent times. The shift to e-commerce, supermarkets and out-of-town shopping parks has led to many of them loosing footfall and trade, and seeing “payday lenders“, betting shops and charity shops take the place of traditional retailers.

High streets needs to be freed from the planning, policy and tax restrictions that are preventing their recovery. The retail-dominated highstreet of the 20th century emerged from a particular and temporary period in the evolution of the private car as the predominant form of transport supporting household-scale economic transactions. Developments in digital and transport technology as well as economy and society have made it non-viable in its current form; but legislation that prevents change in the use of highstreet property, and that keeps business taxes artificially high, is preventing highstreets from adapting in order to benefit from technology and the opportunities of the sharing economy.

Business Improvement Districts, already emerging in the UK and US to replace some local authority services, offer one way forward. They need to be given more freedom to allow the districts they manage to develop as best meets the economic and social needs of their area according to the future, not the past. And they need to become bolder: to invest in the same advanced technology to maximize footfall and spend from their customers as shopping malls do on behalf of their tenants, as recommended by a recent report to UK Government on the future of the high street.

The future high street will not be a street of clothes shops, bookshops and banks: some of those will still exist, but the high street will also be a place for collaborative workers; for makers; for sharing and exchanging; for local food produce and artisan goods; for socialising; and for starting new businesses. We will use social media to share our time and our resources in the sharing economy; and will meet on the high street when those transactions require the exchange of physical goods and services. We will walk and cycle to local shops and transport centres to collect and deliver packages for ourselves, or for our neighbours.

The future of work, life and transport at city-scale

Whilst there’s no universally agreed definition, an urban areas is generally agreed to be a continuously built-up area with a total population of between 2,000 and 40 million people; living at a density of around 1,000 per square kilometre; and employed primarily in non-agricultural activities (the appendices to the 2007 revision of the UN World Urbanisation Prospects summarise such criteria from around the world; 38.7 million is estimated to be the population of the world’s largest city, Tokyo, in 2025 by the UN World Urbanisation Prospects 2011).

(An analysis based on GPS data from mobile phones of end-to-end journeys undertaken by users of Abidjan’s bus services. By comparing existing bus routes to end-to-end journey requirements, the analysis identified four new bus routes and led to changes in many others. As a result, 22 routes now show increased ridership, and city-wide journey times have decreased by 10%.)

That is living at an industrial scale. The sharing economy may be a tremendously powerful force, but – at least for the foreseeable future – it will not scale to completely replace the supply chains that support the needs of such enormous and dense populations.

Take food, for example. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency; and Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America.

Until techniques such as vertical farming and laboratory-grown food become both technically and economically viable, and culturally acceptable – if they ever do – cities will not feed themselves. And these techniques hardly represent locally-grown food exchanged between peers – they are highly technical and likely to operate initially at industrial scale. Sharing economy businesses such as Casserole Club, Kitchen Surfing, and Big Barn will change the way we distribute, process and prepare food within cities, but many of the raw materials will continue to be grown and delivered to cities through the existing industrial-scale distribution networks that import them from agricultural regions.

We are drawn to cities for the opportunities they offer: for work, for entertainment, and to socialise. As rapidly as technology has improved our ability to carry out all of those activities online, the world’s population is still increasingly moving to cities. In many ways, technology augments the way we carry out those activities in the real world and in cities, rather than replacing them with online equivalents.

Technology has already made cultural events in the real world more frequent, accessible and varied. Before digital technology, the live music industry depended on mass-marketing and mass-appeal to create huge stadium-selling tours for a relatively small number of professional musicians; and local circuits were dominated by the less successful but similar-sounding acts for which sufficiently large audiences could be reached using the media of the time. I attempted as an amateur musician in the pre-internet 1990s to find a paying audience for the niche music I enjoyed making: I was not successful. Today, social media can be used to identify and aggregate demand to make possible a variety of events and artforms that would never previously have reached an audience. Culture in the real-world is everywhere, all the time, as a result, and life is the richer for it. We discover much of it online, but often experience it in the real world.

(Birmingham’s annual “Zombie Walk” which uses social media to engage volunteers raising money for charity. Photo by Clare Lovell).

Flashmobs” use smartphones and social media to spontaneously bring large numbers of people together in urban spaces to celebrate; socialise or protest; and while we will play and tell stories in immersive 3D worlds in the future – whether we call them movies, interactive fiction or “massive multi-player online role-playing games” – we’ll increasingly do so in the physical world too, in “mixed reality” games. Technologies such as Google Glasscognitive computing and Brain/Computer Interfaces will accelerate these trends as they remove the barrier between the physical world and information systems.

We will continue to come to city centres to experience those things that they uniquely combine: the joy and excitement of being amongst large numbers of people; the opportunity to share ideas; access to leading-edge technologies that are only economically feasible at city-scale; great architecture, culture and events; the opportunity to shop, eat, drink and be entertained with friends. All of these things are possible anywhere; but it is only in cities that they exist together, all the time.

The challenge for city-scale living will be to support the growing need to transport goods and people into, out of and around urban areas in a way that is efficient and productive, and that minimises impact on the liveability of the urban environment. In part this will involve reducing the impact of existing modes of transport by switching to electric or hydrogen power for vehicles; by predicting and optimising the behaviour of traffic systems to prevent congestion; by optimising public transport as IBM have helped AbidjanDublin, Dubuque and Istanbul to do; and by improving the spatial organisation of transport through initiatives such as Arup’s Regent Street delivery hub.

We will also need new, evolved or rejuvenated forms of transport. In his lecture for the Centenary of the International Federation for Housing and Planning, Sir Peter Hall spoke eloquently of the benefits of Bus Rapid Transit systems, urban railways and trams. All can combine the speed and efficiency of rail for bringing goods and people into cities quickly from outlying regions, with the ability to stop frequently at the many places in cities which are the starting and finishing points of end-to-end journeys.

Vehicle journeys on major roads will be undertaken in the near future by automated convoys travelling safely at a combined speed and density beyond the capability of human drivers. Eventually the majority of journeys on all roads will be carried out by such autonomous vehicles. Whilst it is important that these technologies are developed and introduced in a way that emphasises safety, the majority of us already trust our lives to automated control systems in our cars – every time we use an anti-lock braking system, for example. We will still drive cars for fun, pleasure and sport in the future – but we will probably pay dearly for the privilege; and our personal transport may more closely resemble the rapid transit pods that can already be seen at Heathrow Terminal 5.

Proposals intended to accelerate the adoption of autonomous vehicles include the “Qwik lane” elevated highway for convoy traffic; or the “bi-modal glideway” and “tracked electric vehicle” systems which could allow cars and lorries to travel at great speed safely along railway networks or dedicated “tracked” roads. Alternative possibilities which could achieve similar levels of efficiency and throughput are to extend the use of conveyor belt technology – already recognised as far more efficient than lorries for transporting resources and goods over distances of tens of miles in quarries and factories – to bring freight in and out of cities; or to use pneumatically powered underground tunnel networks, which are already being used in early schemes for transporting recyclable waste in densely populated areas. Elon Musk, the inventor of the Tesla electric supercar, has even suggested that a similar underground “vacuum loop” could be used to replace long-distance train and air travel for humans, at speeds over 1000 kilometres per hour.

The majority of these transport systems won’t offer us as individuals the same autonomy and directness in our travel as we believe the private car offers us today – even though that autonomy is often severely restricted by traffic congestion and delays. Why will we chose to relinquish that control?

(Optimod's vision for integrated, predictive mobile, multi-modal transport information)

(Optimod‘s vision for integrated, predictive mobile, multi-modal transport information)

Some of us will simply prefer to, finding different value in other ways to get around.

Walking and cycling are gaining in popularity over driving in many cities. I’ve personally found it a revelation in recent years to walk around cities rather than drive around them as I might previously have done. Cities are interesting and exciting places, and walking is often an enjoyable as well as efficient way of moving about them. (And for urbanists, of course, walking offers unparalleled opportunities to understand cities). Many of us are also increasingly conscious of the health benefits of walking and cycling, particularly as recent studies in the UK and US have shown that adults today will be the first generation in recorded history to die younger than their parents because of our poor diets and sedentary lifestyles.

Alternatively, we may choose to travel by public transport in the interests of productivity – reading or working while we travel, especially as network coverage for telephony and the internet improves. As the world’s population and economies grow, competition and the need to improve productivity will lead more and more of us to this take this choice.

It is increasingly easy to walk, cycle, or use public or shared transport to travel into and around cities thanks to the availability of bicycle hire schemes, car clubs and walking route information services such as walkit.com. The emergence of services that provide instant access to travel information across all forms of transport – such as the Moovel service in Germany or the Optimod service in Lyon, France – will enhance this usability, making it easier to combine different forms of transport into a single journey, and to react to delays and changes in plans whilst en route.

Legislation will also drive changes in behaviour, from national and international initiatives such as the European Union legislation limiting carbon emissions of cars to local planning and transport policies – such as Birmingham’s recent Mobility Action Plan which announced a consultation to consider closing the city’s famous system of road tunnels.

(Protesters at Occupy Wallstreet using digital technology to coordinate their demonstration. Photo by David Shankbone)

Are we ready for the triumph of the digital city?

Regardless of the amazing advances we’re making in online technology, life is physical. Across the world we are drawn to cities for opportunity; for life-support; to meet, work and live.  The ways in which we interact and transport ourselves and the goods we exchange have changed out of all recognition throughout history, and will continue to do so. The ever increasing level of urbanisation of the world’s population demonstrates that there’s no sign yet that those changes will make cities redundant: far from it, they are thriving.

It is not possible to understand the impact on our lives of new ideas in transport, technology or cities in isolation. Unless we consider them together and in the context of changing lifestyles, working patterns and economics, we won’t design and build cities of the future to be resilient, sustainable, and equitable.  The limitation of our success in doing that in the past is illustrated by the difference in life expectancy of 20 years between the richest and poorest areas of UK cities; the limitation of our success in doing so today is illustrated by the fact that a huge proportion of the world’s population does not have access to the digital technologies that are changing our world.

I recently read the masterplan for a European city district regarded as a good example of Smart City thinking. It contained many examples of the clever and careful design of physical space for living and for today’s forms of transport, but did not refer at all to the changes in patterns of work, life and movement being driven by digital technology. It was certainly a dramatic improvement over some plans of the past; but it was not everything that a plan for the future needs to be. 

Across domains such as digital technology, urban design, public policy, low carbon engineering, economic development and transport we have great ideas for addressing the challenges that urbanisation, population growth, resource constraints and climate change will bring; but a lot of work to do in bringing them together to create good designs for the liveable cities of the future.

A design pattern for a Smarter City: Online Peer-to-Peer and Regional Marketplaces

(Photo of Moseley Farmers’ Market in Birmingham by Bongo Vongo)

(In “Do we need a Pattern Language for Smarter Cities” I suggested that “design patterns“, a tool for capturing re-usable experience invented by the town-planner Christopher Alexander, might offer a useful way to organise our knowledge of successful approaches to “Smarter Cities”. I’m now writing a set of design patterns to describe ideas that I’ve seen work more than once. The collection is described and indexed in “Design Patterns for Smarter Cities” which can be found from the link in the navigation bar of this blog).  

Design Pattern: Online Peer-to-Peer and Regional Marketplaces

Summary of the pattern:

A society is defined by the transactions that take place within it, whether their characteristics are social or economic, and whether they consist of material goods or communication. Many of those transactions take place in some form of marketplace.

As traditional business has globalised and integrated over the last few decades, many of the systems that support us – food production and distribution, energy generation, manufacturing and resource extraction, for example – have optimised their operations globally and consolidated ownership to exploit economies of scale and maximise profits. Those operations have come to dominate the marketplaces for the goods and services they consume and process; they defend themselves from competition through the expense and complexity of the business processes and infrastructures that support their operations; through their brand awareness and sales channels to customers; and through their expert knowledge of the availability and price of the resources and components they need.

However, in recent years dramatic improvements in information and communication technology – especially social mediamobile devicese-commerce and analytics – have made it dramatically easier for people and organisations with the potential to transact with each other to make contact and interact. Information about supply and demand has become more freely available; and it is increasingly easy to reach consumers through online channels – this blog, for instance, costs me nothing to write other than my own time, and now has readers in over 140 countries.

In response, online peer-to-peer marketplaces have emerged to compete with traditional models of business in many industries – Apple’s iTunes famously changed the music industry in this way; YouTube has transformed the market for video content and Prosper and Zopa have created markets for peer-to-peer lending. And as technologies such as 3D printing and small-scale energy generation improve, these ideas will spread to other industries as it becomes possible to carry out activities that previously required expensive, large-scale infrastructure at a smaller scale, and so much more widely.

(A Pescheria in Bari, Puglia photographed by Vito Palmi)

Whilst many of those marketplaces are operated by commercial organisations which exist to generate profit, the relevance of online marketplaces for Smarter Cities arises from their ability to deliver non-financial outcomes: i.e. to contribute to the social, economic or environmental objectives of a city, region or community.

The e-Bay marketplace in second hand goods, for example, has extended the life of over $100 billion of goods since it began operating by offering a dramatically easier way for buyers and sellers to identify each other and conduct business than had ever existed before. This spreads the environmental cost of manufacture and disposal of goods over the creation of greater total value from them, contributing to the sustainability agenda in every country in which e-Bay operates.

Local food marketplaces such as Big Barn and Sustaination in the UK, m-farm in Kenya and the fish-market pricing information service operated by the University of Bari in Puglia, Italy, make it easier for consumers to buy locally produced food, and for producers to sell it; reducing the carbon footprint of the food that is consumed within a region, and assisting the success of local businesses.

The opportunity for cities and regions is to encourage the formation and success of online marketplaces in a way that contributes to local priorities and objectives. Such regional focus might be achieved by creating marketplaces with restricted access – for example, only allowing individuals and organisations from within a particular area to participate – or by practicality: free recycling networks tend to operate regionally simply because the expense of long journeys outweighs the benefit of acquiring a secondhand resource for free. The cost of transportation means that in general many markets which support the exchange of physical goods and services in small-scale, peer-to-peer transactions will be relatively localised.

City systems, communities and infrastructures affected:

(This description is based on the elements of Smarter City ecosystems presented in ”The new Architecture of Smart Cities“).

  • Goals: all
  • People: employees, business people, customers, citizens
  • Ecosystem: private sector, public sector, 3rd sector, community
  • Soft infrastructures: innovation forums; networks and community forums
  • Hard infrastructures: information and communication technology, transport and utilities network

Commercial operating model:

The basic commercial premise of an online marketplace is to invest in the provision of online marketplace infrastructure in order to create returns from revenue streams within it. Various revenue streams can be created: for example, e-Bay apply fees to transactions conducted through their marketplace, as does the crowdfunding scheme Spacehive; whereas Linked-In charges a premium subscription fee to businesses such as recruitment agencies in return for the right to make unsolicited approaches to members.

More complex revenue models are created by allowing value-add service providers to operate in the marketplace – such as the payment service PayPal, which operated in e-Bay long before it was acquired; or the start-up Addiply, who add hyperlocal advertising to online transactions. The marketplace operator can also provide fee-based “white-label” or anonymised access to marketplace services to allow third parties to operate their own niche marketplaces – Amazon WebStore, for example, allows traders to build their own, branded online retail presence using Amazon’s services.

(Photo by Mark Vauxhall of public Peugeot Ions on Rue des Ponchettes, Nice, France)

Online marketplaces are operated by a variety of entities: entrepreneurial technology companies such as Shutl, for example, who offer services for delivering goods bought online through a marketplace provding access to independent delivery agents and couriers; or traditional commercial businesses seeking to “servitise” their business models, create “disruptive business platforms” or create new revenue streams from data.

(Apple’s iTunes was a disruptive business platform in the music industry when it launched – it used a new technology-enabled marketplace to completely change flows of money within the industry; and streaming media services such as Spotify have servitised the music business by allowing us to pay for the right to listen to any music we like for a certain period of time, rather than paying for copies of specific musical works as “products” which we own outright. Car manufacturers such as Peugeot are collaborating with car clubs to offer similar “pay-as-you-go” models for car use, particularly as an alternative to ownership for electric cars. Some public sector organisations are also exploring these innovations, especially those that possess large volumes of data.)

Marketplaces can create social, economic and environmental outcomes where they are operated by commercial, profit-seeking organisations which seek to build brand value and customer loyalty through positive environmental and societal impact. Many private enterprises are increasingly conscious of the need to contribute to the communities in which they operate. Often this results from the desire of business leaders to promote responsible and sustainable approaches, combined with the consumer brand-value that is created by a sincere approach. UniLever are perhaps the most high profile commercial organisation pursuing this strategy at present; and Tesco have described similar initiatives recently, such as the newly-launched Tesco Buying Club which helps suppliers secure discounts through collective purchasing. There is a clearly an opportunity for local communities and local government organisations to engage with such initiatives from private enterprise to explore the potential for online marketplaces to create mutual benefit.

In other cases, marketplaces are operated by not-for-profit organisations or social enterprises for whom creating social or economic outcomes in a financially and environmentally sustainable way is the first priority. The social enterprise approach is important if cities everywhere are to benefit from information marketplaces: most commercially operated marketplaces with a geographic focus operate in large, capital cities: these provide the largest customer base and minimise the risk associated with the investment in creating the market. If towns, cities and regions elsewhere wish to benefit from online marketplaces, they may need to encourage alternative models such as social enterprise to deliver them.

Finally, Some schemes are operated entirely on free basis, for example the Freecycle recycling network; or as charitable or donor-sponsored initiatives, for example the Kiva crowdfunding platform for charitable initiatives.

Soft infrastructures, hard infrastructures and assets required:

(The SMS for Life project uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa. Photo by Novartis AG)

The technology infrastructures required to implement online marketplaces include those associated with e-commerce technology and social media: catalogues of goods and services; pricing mechansims; support for marketing campaigns; networks of individuals and organisations and the ability to make connections between them; payments services and multi-channel support.

Many e-commerce platforms offer support for online payments integrated with traditional banking systems; or mobile payments schemes such as the M-Pesa scheme in Kenya can be used. Alternatively, the widespread growth in local currencies and alternative trading systems might offer innovative solutions that are particularly relevant for marketplaces with a regional focus.

In order to be successful, marketplaces need to create an environment of trust in which transactions can be undertaken safely and reliably. As the internet has developed over the past two decades, technologies such as certificate-based identity assurance, consumer reviews and reputation schemes have emerged to create trust in online transactions and relationships. However, many online marketplaces provide robust real-world governance models in addition to tools to create online trust: the peer-to-peer lender Zopa created “Zopa Safeguard“, for example, an independent, not-for-profit entity with funds to re-imburse investors whose debtors are unable to repay them.

Marketplaces which involve the transaction of goods and services with some physical component – whether in the form of manufactured goods, resources such as water and energy or services such as in-home care – will also require transport services; and the cost and convenience of those services will need to be appropriate to the value of exchanges in the marketplace. Shutl’s transportation marketplace is in itself an innovation in delivering more convenient, lower cost delivery services to online retail marketplaces. By contrast, community energy schemes, which attempt to create local energy markets that reduce energy usage and maximise consumption of power generated by local, renewable resources, either need some form of smart grid infrastructure, or a commercial vehicle, such as a shared energy performance contract.

Driving forces:

  • The desire of regional authorities and business communities to form supply chains, market ecosystems and trading networks that maximise the creation and retention of economic value within a region; and that improve economic growth and social mobility.
  • The need to improve efficiency in the use of assets and resources; and to minimise externalities such as the excessive transport of goods and services.
  • The increasing availability and reducing cost of enabling technologies providing opportunities for new entrants in existing marketplaces and supply chains.

Benefits:

  • Maximisation of regional integration in supply networks.
  • Retention of value in the local economy.
  • Increased efficiency of resource usage by sharing and reusing goods and services.
  • Enablement of new models of collaborative asset ownership, management and use.
  • The creation of new business models to provide value-add products and services.

Implications and risks:

(West Midlands police patrolling Birmingham’s busy Frankfurt Market in Christmas, 2012. Photo by West Midlands Police)

Marketplaces must be carefully designed to attract a critical mass of participants with an interest in collaborating. It is unlikely, for example, that a group of large food retailers would collaborate in a single marketplace in which to sell their products to citizens of a particular region. The objective of such organisations is to maximise shareholder value by maximising their share of customers’ weekly household budgets. They would have no interest in sharing information about their products alongside their competitors and thus making it easier for customers to pick and choose suppliers for individual products.

Small, specialist food retailers have a stronger incentive to join such marketplaces: by adding to the diversity of produce available in a marketplace of specialist suppliers, they increase the likelihood of shoppers visiting the marketplace rather than a supermarket; and by sharing the cost of marketplace infrastructure – such as payments and delivery services – each benefits from access to a more sophisticated infrastructure than they could afford individually.

Those marketplaces that require transportation or other physical infrastructures will only be viable if they create transactions of high enough value to account for the cost of that infrastructure. Such a challenge can even apply to purely information-based marketplaces: producing high quality, reliable information requires a certain level of technology infrastructure, and marketplaces that are intended to create value through exchanging information must pay for the cost of that infrastructure. This is one of the challenges facing the open data movement.

If the marketplace does not provide sufficient security infrastructure and governance processes to create trust between participants – or if those participants do not believe that the infrastructure and governance are adequate – then transactions will not be carried out.

Some level of competition is inevitable between participants in a marketplace. If that competition is balanced by the benefits of better access to trading partners and supporting services, then the marketplace will succeed; but if competitive pressures outweigh the benefits, it will fail.

Alternatives and variations:

  • Local currencies and alternative trading systems are in many ways similar to online marketplace; and are often a supporting component
  • Some marketplaces are built on similar principles, and certainly achieve “Smart” outcomes, but do not use any technology. The Dhaka Waste Concern waste recycling scheme in Bangladesh, for example, turns waste into a market resource, creating jobs in the process.

Examples and stories:

Sources of information:

I’ve written about digital marketplaces several times on this blog, including the following articles:

Industry experts and consultancies have published work on this topic that is well worth considering:

Three mistakes we’re still making about Smart Cities

(David Willets, MP, Minister for Universities and Science, launches the UK Government’s Smart Cities Forum)

(I was asked this week to contribute my view of the present state of the Smart Cities movement to the UK Government’s launch of it’s Smart Cities forum, which will report to the Government’s Information Economy Council. This article is based on my remarks at the event).

One measure of how successfully we have built today’s cities using the technologies that shaped them over the last century – concrete, steel and the internal combustion engine – is the variation of life expectancy within them. In the UK, people born in the poorest areas of our large cities can expect to live lives that are two decades shorter than those born in the wealthiest areas.

We need to do much better than that as we apply the next generation of technology that will shape our lives – digital technology.

The market for Smart Cities, which many define as the application of digital technology to city systems, is growing. Entrepreneurial businesses such as Droplet and Shutl are delivering new city services, enabled by technology. City Councils, service providers and transport authorities are investing in Smart infrastructures, such as Bradford’s City Park, whose fountains and lights react to the movements of people through it. Our cities are becoming instrumented, interconnected and intelligent, creating new opportunities to improve the performance and efficiency of city systems.

But we are still making three mistakes that limit the scale at which truly innovative Smart City projects are being deployed.

1. We don’t use the right mix of skills to define Smart City initiatives

Over the last year, I’ve seen a much better understanding develop between some of the creative professions in the Smart Cities domain: technologists, design thinkers, social innovators, entrepreneurs and urban designers. Bristol’s “Hello Lamppost” is a good example of a project that uses technology to encourage playful interaction with an urban environment, thereby bringing the life to city streets that the urbanist Jane Jacobs‘ taught us is so fundamental to healthy city communities.

Internationally, cities have a great opportunity to learn from each others’ successes: smart, collective, sustainable urbanism in Scandinavia, as exemplified by Copenhagen’s Nordhavnen district; intelligent city planning and management in Asia and increasingly in the United States, where cities such as Chicago have also championed the open data movement; and the phenomenal level of small-scale, non-institutional innovation in communities in UK cities.

But this debate does not extend to some important institutions that are also beginning to explore how they can contribute towards the social and environmental wellbeing of cities and communities. Banks and investors, for example, who have the funds to support large-scale initiatives, or the skills to access them; or supermarkets and other retailers who operate across cities, nations and continents; but whose operational and economic footprint in cities is significant, and whose supply chains support or contribute to billions of lives.

It’s important to engage with these institutions in defining Smart City initiatives which not only cut across traditional silos of responsibility and budgets in cities, but also cut across the traditional asset classes and revenue streams that investors understand. A Smart City initiative that is crafted without their involvement will be difficult for them to understand, and they will be unlikely to support it. Instead, we need to craft Smart initiatives with them.

(The masterplan for Copenhagen’s regeneration of Nordhavnen, which was co-created with local residents and communities. Photo by Thomas Angermann)

2. We ask researchers to answer the wrong challenges

University research is a great source of new technologies for creating Smart solutions. But our challenge is rarely the availability of new technology – we have plenty of that already.

The real challenge is that we are not nearly exploiting the full potential of the technology already available to us; and that’s because in many cases we do not have a quantified evidence base for the financial, social, economic and environmental benefits of applying technology in city systems. Without that evidence, it’s hard to create a business case to justify investment.

This is the really valuable contribution that research could make to the Smart Cities market today: quantify the benefits of applying technology in city systems and communities; identify the factors that determine the degree to which those benefits can be realised in specific cities and communities; align the benefits to the financial and operating models of the public and private institutions that operate city services and assets; and provide the detailed data from which clear businesses cases with quantified risks and returns can be constructed.

3. We don’t listen to the quiet voices that matter

It’s my experience that the most powerful innovations that make a difference to real lives and communities occur when “little things” and “big things” work well together.

Challenges such as transport congestion, social mobility, responsible energy usage or small business growth are often extremely specific to local contexts. Successful change in those contexts is usually created when the people, community groups and businesses involved create, or co-create, initiatives to improve them.

But often, the resources available locally to those communities are very limited. How can the larger resources of institutional organisations be made available to them?

In “Resilience: why things bounce back“, Andrew Zolli describes many examples of initiatives that have successfully created meaningful change; and characterises the unusual qualities of the “translational leaders” that drive them – people who can engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.

It’s my hope that we can enable more widespread changes not by relying only on such rare individuals, but by changing the way that we think about the design of city infrastructures. Rather than designing the services that they deliver, we should design what Service Scientists call the “affordances” they offer. An affordance is a capability of an infrastructure that can be adapted to the needs of an individual.

An example might be a smart grid power infrastructure that provides an open API allowing access to data from the grid. Developers, working together with community groups, could create schemes specific to each community which use that information to encourage more responsible energy usage. My colleagues in IBM Research explored this approach in partnership with the Sustainable Dubuque partnership resulting in a scheme that improved water and energy conservation in the city.

We can also apply this approach to the way that food is supplied to cities. The growing and distribution of food will always be primarily a large-scale, industrial operation: with 7 billion people living on a planet with limited resources, and with more than half of them living in dense cities, there is no realistic alternative. An important challenge for the food production and distribution industry, and for the technology industry, is to find ways to make those systems more efficient and sustainable.

But we can also act locally to change the way that food is processed, prepared and consumed; and in doing so create social capital and economic opportunity in some of the places that need it most. A good example is “Casserole Club“, which uses social media as the basis of a peer-to-peer model which connects people who are unable to cook for themselves with people who are willing to cook for, and visit, others.

These two movements to improve our food systems in innovative ways currently act separately; what new value could we create by bringing them together?

We’re very poor at communicating effectively between such large-scale and small-scale activities. Their cultures are different; they use different languages, and those involved spend their working lives in systems focussed on very different objectives.

There’s a very simple solution. We need to listen more than we talk.

We all have strong opinions and great ideas. And we’re all very capable of quickly identifying the aspects of someone else’s idea that mean it won’t work. For all of those reasons, we tend to talk more than we listen. That’s a mistake; it prevents us from being open to new ideas, and focussing our attention on how we can help them to succeed.

New conversations

By coincidence, I was asked earlier this year to arrange the agenda for the annual meeting of IBM’s UK chapter of our global Academy of Technology. The Academy represents around 500 of IBM’s technology leaders worldwide; and the UK chapter brings 70 or so of our highest achieving technologists together every year to share insights and experience about the technology trends that are most important to our industry, and to our customers.

(Daden's visualisation of the new Library of Birmingham, created before construction started and used to familiarise staff with the new building they would be working in. Taken from Daden's brochure describing the work more fully).

(Daden’s visualisation of the new Library of Birmingham, created before construction started and used to familiarise staff with the new building they would be working in. Taken from Daden’s brochure describing the work more fully).

This year, I’m bringing them to Innovation Birmingham for two days next week to explore how technology is changing Britain’s second city. We’ll be hearing about Birmingham City Council’s Smart City Strategy and Digital Birmingham‘s plans for digital infrastructure; and from research initiatives such as the University of Birmingham’s Liveable Cities programme; Aston University’s European Bio-Energy Research Institute; and Birmingham City University’s European Platform for Intelligent Cities.

But we’ll also be hearing from local SMEs and entrepreneurs creating innovations in city systems using technology, such as Droplet‘s smartphone payment system; 3D visualisation and analytics experts Daden, who created a simulation of Birmingham’s new Library; and Maverick Television whose innovations in using technology to create social value include the programmes Embarrassing Bodies and How to Look Good Naked. And we’ll hear from a number of social innovators, such as Localise West Midlands, a not-for-profit think-tank which promotes localisation for social, environmental and economic benefit, and Hub Launchpad, a business-accelerator for social enterprise who are building their presence in the city. You can follow our discussions next week on twitter through the hashtag #IBM_TCG.

This is just one of the ways I’m trying to make new connections and start new conversations between stakeholders in cities and professionals with the expertise to help them achieve their goals. I’m also arranging to meet some of the banks, retailers and supply-chain operators who seem to be most focussed on social and environmental sustainability, in order to explore how those objectives might align with the interests of the cities in which they operate. The British Standards Institute is undertaking a similar project to explore the financing of Smart Cities as part of their Smart Cities programme. I’m also looking at the examples set by cities such as Almere whose collaborative approach to urban design, augmented by their use of analytics and technology, is inspirational.

This will not be a quick or easy process; but it will involve exciting conversations between people with passion and expertise. Providing we remember to listen as much as we talk, it’s the right place to start.

A design pattern for a Smarter City: Local Currencies and Alternative Trading Systems

(Photo of the Brixton Pound by Charlie Waterhouse)

(In “Do we need a Pattern Language for Smarter Cities” I suggested that “design patterns“, a tool for capturing re-usable experience invented by the town-planner Christopher Alexander, might offer a useful way to organise our knowledge of successful approaches to “Smarter Cities”. I’m now writing a set of design patterns to describe ideas that I’ve seen work more than once. The collection is described and indexed in “Design Patterns for Smarter Cities” which can be found from the link in the navigation bar of this blog).  

Design Pattern: Local Currencies and Alternative Trading Systems

Summary of the pattern:

There are many definitions of a “smart city”, but they all incorporate the concept of innovations, enabled by technology, that change the relationships between the creation of financial and social value and the consumption of resources.

Money is our universal system for quantifying the exchange of value; but most of the systems which measure value using money do not incorporate social or environmental factors – externalities as they are known by economists. Consequently a variety of alternative systems of trading and exchange have emerged amongst online communities and in local ecosystems that are exploring new ways to create sustainable regional economic and social improvement.

Some of these schemes use paper or electronic currencies that are issued and accepted within a particular place or region; and that have the effect of influencing people and businesses to spend the money that they earn locally, promoting regional economic synergies. Last year, Bristol became the 5th UK town or city to operate its own currency using this model, and “Droplet” operate a local smartphone payment scheme in Birmingham and London.

Other schemes are based on the bartering of goods, money, time and services, such as time banking. And some schemes combine both elements – In Switzerland, a complementary currency, the Wir , has contributed to economic stability over the last century by allowing some debt repayments to be bartered locally when they cannot be repaid in universal currency.

As these schemes develop – and in particular as they adopt technologies such as smartphones and offer open APIs to allow developers to incorporate their capabilities in new services – they are increasingly being used as an infrastructure for Smarter City projects in domains such as transport, food supply and energy.

(The SMS for Life project uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa. Photo by Novartis AG)

Such schemes exploit the potential for the combination of information technology and local currencies to calculate rates of exchange that compare the social, environmental and economic cost of goods and services to their immediate, contextual value to the participants in the transaction. The academic field of service science has evolved to study the ways in which such possibilities lead to business and service invocation.

This trend is particularly strong in some African nations where a lack of physical and transport infrastructure has led to a surge in business innovation supported by mobile payments schemes. For example, the Kilimo Salama scheme in Kenya provides affordable insurance to subsistence farmers by using remote weather monitoring to trigger payouts via mobile phones, rather than undertaking expensive site visits to assess claims.

City systems, communities and infrastructures affected:

(This description is based on the elements of Smarter City ecosystems presented in ”The new Architecture of Smart Cities“).

  • Goals: Wealth, health, opportunity, choice, sustainability
  • People: Any
  • Ecosystem: All
  • Soft infrastructures: Leadership and governance, networks and community organisations
  • City systems: Transport systems, health, culture, economy, retail, leisure; and potentially others
  • Hard infrastructures: Information and communication technology

Commercial operating models, alternatives and variations:

Four main types of commercial model exist, each constituting a variation of this pattern:

  • Local currencies operated as social enterprises within specific towns or cities, pursing local economic objectives, often issuing paper currencies. Examples include the Bristol, Brixton, Lewes, Stroud, and Totnes pounds. These schemes link to national and universal currency by offering defined processes and rates of exchange. Often the financial backing is provided by a credit union or other mutual financial organisation.
  • Smartphone payment schemes operated by private enterprises, usually entrepreneurial technology companies. These companies may not have local economic objectives as a primary focus, but will usually deploy their services and build businesses with a network of merchants in a specific city in order to create the critical mass necessary to persuade consumers to adopt the service. These schemes link to traditional payment systems either through direct integration to banking services, or though the billing systems offered by mobile network operators.
  • Recycling and bartering networks such as Freecycle which operate very informally and are locally focused as they involve people physically meeting to exchange goods or services. Such networks are often governed at least as much by codes of behaviour as they are by being legally constituted as formal bodies.
  • Local loyalty schemes operated by city councils or by businesses on behalf of local communities, and that encourage local businesses to collectively reward customers for using their products and services. Examples include the “Backing Birmingham” b-card; the not-for-profit “tag” scheme that operates in Durham, Manchester and Stockport; and Local Loyalty Powys.

In addition, it is likely that formal banking institutions and payments intermediaries will enter this market in some form. Many financial institutions started as or are now social enterprises, or express community objectives in their charters; credit unions, for example, or Hancock Bank, whose charter as a community bank led them to take powerful actions to assist the citizens of New Orleans to recover from hurricane Katrina in 2005 .

These institutions are increasingly exploring the role they can take in supporting Smarter Cities, both directly  or through supporting innovation facilities like the Future Cities programme at the Level39 incubator in London’s financial district.

Soft infrastructures, hard infrastructures and assets required:

Local currencies and trading schemes are formed where an entrepreneurial organisation – whether a private business or a social enterprise – works together with a community organisation – either an institution such as a city council, or a community such as a local business network. Trust and collaboration between the entrepreneur, institution and community are vital to success. In particular, city institutions can support the scheme by allowing employees to chose to be paid through it in whole or in part – Lambeth Council offers employees the choice to be paid in part in Brixton pounds; and Bristol’s mayor takes his entire salary in Bristol Pounds.

A Payments or billing service, or mechanisms to print local currency and govern its exchange for national currency are also required in order to integrate the local scheme with the traditional economy. The governance of these arrangements is crucial to convincing individuals and businesses to trust this new independent form of currency.

Schemes achieve the highest level of adoption where they are supported by strong local economic and business communities, such as Business Improvement Districts or campaigns such as Coffee Birmingham.

(The QR code that enabled Will Grant of Droplet to buy me a coffee at Birmingham Science Park Aston using Droplet’s local smartphone payment solution; and the receipt that documents the transaction)

Driving forces:

The factors that lead to the emergence of local currencies and alternative trading systems include:

  • The desire from local government, within local communities and amongst local businesses and entrepreneurs to support local economic and social growth.
  • Disillusion with traditional financial systems following the 2008 crash, recent banking scandals, and the reluctance of some banks to lend to small business; along with an awareness that alternative models are increasingly viable for some purposes.
  • The increasing availability of low-cost payment systems to support transactions in online marketplaces that exchange local resources, such as local food initiatives, community energy schemes, shared transport systems and timebanks.

Benefits:

Benefits of local currencies and alternative trading systems include:

  • The potential to link the formal economy with informal transactions, some of which are crucial to creating value in communities with the fewest resources.
  • The ability to include local externalities in the rate of exchange associated with transactions.
  • Reinforcement of local economic synergies.
  • The creation of brand value for towns and cities with flourishing local currencies.

Alternatives and variations:

Alternatives and variations of this pattern are described under “Commercial operating models, alternatives and variations” above.

Implications and risks:

Local currencies are not universally admired. Some merchants complain that it is inconvenient to accept payment in a currency with restrictions on spending, or that requires conversion to national currency; and some commentators have questioned whether they achieve anything that couldn’t be achieved through simpler means. Newspaper and BBC journalists have explored these issues in reports describing the Lewes Pound.

Local currency schemes must also offer some mechanism to protect the value of currency held by users of the scheme. This might be achieved if the currency is operated by a mutual financial organisation such as a credit union; or by depositing matching funds in national currency in a traditional bank account. Where printed notes are issued, steps must be taken to prevent them being easily reproduced fraudulently.

Finally, in order to succeed, local currencies need to achieve a critical mass of users and of accepting merchants. Lambeth Council accept payments of business rates in Brixton pounds, and allow employees to take part of their salaries in the currency. Both actions support growth in use of the currency. The presence of strong community groups amongst local businesses can also boost such schemes.

(George Ferguson, Bristol’s Mayor, whose salary is paid in Bristol Pounds . His red trousers are famous . Photo by PaulNUK)

Examples and stories:

The story of Hancock Bank’s actions to assist the citizens of New Orleans to recover from hurricane Katrina in 2005 is told in this video, and shares many of the values that local currencies are based on.

Hancock Bank’s actions were the result of senior management basing their decisions on the company’s purpose, expressed in its charter, to support the communities of the city. This is in contrast to the behaviour of Bob Diamond, who resigned as CEO of Barclays Bank following the Libor rate-manipulation scandal, who under questioning by parliamentary committee could not remember what the Bank’s founding principles, written by community-minded Quakers, stated.

Rose Goslinga tells the story of forming the Kilimo Salama micro-insurance scheme here.

Sources of information:

In addition to the sources already linked to in this pattern, Brett Scott’s “Heretic’s guide to global finance” explores a number of ways to adapt the traditional financial system to achieve social and environmental objectives.

Seven steps to a Smarter City; and the imperative for taking them (updated 8th September 2013)

(Interior of the new Library of Birmingham, opened in September 2013. Photo by Andy Mabbett)

(Interior of the new Library of Birmingham, opened in September 2013. Photo by Andy Mabbett licensed under Creative Commons via Wikimedia Commons)

(This article originally appeared in September 2012 as “Five steps to a Smarter City: and the philosophical imperative for taking them“. Because it contains an overall framework for approaching Smart City transformations, I keep it updated to reflect the latest content on this blog; and ongoing developments in the industry. It can also be accessed through the page link “Seven steps to a Smarter City” in the navigation bar above).

As I’ve worked with cities over the past two years developing their “Smarter City” strategies and programmes  to deliver them, I’ve frequently written articles on this blog exploring the main challenges they’ve faced: establishing a cross-city consensus to act; securing funding; and finding the common ground between the institutional and organic natures of city ecosystems.

We’ve moved beyond exploration now. There are enough examples of cities making progress on the “Smart” agenda for us to identify  the common traits that lead to success. I first wrote “Five steps to a Smarter City: and the philosophical imperative for taking them” in September 2012 to capture what at the time seemed to be emerging practises with promising potential, and have updated it twice since then. A year later, it’s time for a third and more confident revision.

In the past few months it’s also become clear that an additional step is required to recognise the need for new policy frameworks to enable the emergence of Smarter City characteristics, to complement the direct actions and initiatives that can be taken by city institutions, businesses and communities.

The revised seven steps involved in creating and achieving a Smarter City vision are:

  1. Define what a “Smarter City” means to you (Updated)
  2. Convene a stakeholder group to co-create a specific Smarter City vision; and establish governance and a credible decision-making process (Updated)
  3. Structure your approach to a Smart City by drawing on the available resources and expertise (Updated)
  4. Establish the policy framework (New)
  5. Populate a roadmap that can deliver the vision (Updated)
  6. Put the financing in place (Updated)
  7. Enable communities and engage with informality: how to make “Smarter” a self-sustaining process (Updated)

I’ll close the article with a commentary on a new form of leadership that can be observed at the heart of many of the individual initiatives and city-wide programmes that are making the most progress. Described by Andrew Zolli in “Resilience: why things bounce back” as “translational leadership“, it is characterised by an ability to build unusually broad collaborative networks across the institutions and communities – both formal and informal – of a city.

But I’ll begin with what used to be the ending to this article: why Smarter Cities matter. Unless we’re agreed on the need for them, it’s unlikely we’ll take the steps required to achieve them.

The Smarter City imperative

(Why Smarter Cities matter: "Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(Why Smarter Cities matter: “Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy across London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

I think it’s vitally important to take a pro-active approach to Smarter Cities.

According to the United Nations Department of Economic and Social Affairs’ 2011 revision to their “World Urbanisation Prospects” report, between now and 2050 the world’s population will rise by 2-3 billion. The greatest part of that rise will be accounted for by the growth of Asian, African and South American “megacities” with populations of between 1 and 35 million people.

As a crude generalisation, this unprecedented growth offers four challenges to cities in different circumstances:

  • For rapidly growing cities: we have never before engineered urban infrastructures to support such growth. Whenever we’ve tried to accommodate rapid urban growth before, we’ve failed to provide adequate infrastructure, resulting in slums. One theme within Smarter Cities is therefore the attempt to use technology to respond more successfully to this rapid urbanisation.
  • For cities in developed economies with slower growth: urbanisation in rapidly growing economies is creating an enormous rise in the size of the world’s middle-class, magnifying global growth in demand for resources such as energy, water, food and materials; and creating new competition for economic activity. So a second theme of Smarter Cities that applies in mature economies is to remain vibrant economically and socially in this context, and to improve the distribution of wealth and opportunity, against a background of modest economic growth, ageing populations with increasing service needs, legacy infrastructure and a complex model of governance and operation of city services.
  • For cities in countries that are still developing slowly: increasing levels of wealth and economic growth elsewhere  create an even tougher hurdle than before in creating opportunity and prosperity for the populations of those countries not yet on the path to growth. At the same time that economists and international development organisations attempt to ensure that these nations benefit from their natural resources as they are sought by growing economies elsewhere, a third strand of Smarter Cities is concerned with supporting wider growth in their economies despite a generally low level of infrastructure, including technology infrastructure.
(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

We have only been partly successful in meeting these challenges in the past. As public and private sector institutions in Europe and the United States evolved through the previous period of urbanisation driven by the Industrial Revolution they achieved mixed results: standards of living rose dramatically; but so unequally that life expectancy between the richest and poorest areas of a single UK city often varies by 10 to 20 years.

In the sense that city services and businesses will always seek to exploit the technologies available to them, our cities will become smarter eventually as an inevitable consequence of the evolution of technology and growing competition for resources and economic activity.

But if those forces are allowed to drive the evolution of our cities, rather than supporting a direction of evolution that is proactively chosen by city stakeholders, then we will not solve many of the challenges that we care about most: improving the distribution of wealth and opportunity, and creating a better, sustainable quality of life for everyone. As I argued in “Smarter City myths and misconceptions“, “business as usual” will not deliver what we want and need – we need new approaches.

I do not pretend that it will be straightforward to apply our newest tool – digital technology – to achieve those objectives. In “Death, Life and Place in Great Digital Cities“, I explored the potential for unintended consequences when applying technology in cities, and compared them to the ongoing challenge of balancing the impacts and benefits of the previous generations of technology that shaped the cities we live in today – elevators, concrete and the internal combustion engine. Those technologies enabled the last century of growth; but in some cases have created brutal and inhumane urban environments which limit the quality of life that is possible within them.

But there are nevertheless many ways for cities in every circumstance imaginable to benefit from Smarter City ideas, as I described in my presentation earlier this year to the United Nations Commission on Science and Technology for Development, “Science, technology and innovation for sustainable cities and peri-urban communities“.

The first step in doing so is for each city and community to decide what “Smarter Cities “means to them.

Singapore Traffic Prediction

(A prediction of traffic speed and volume 30 minutes into the future in Singapore. In a city with a growing economy and a shortage of space, the use of technology to enable an efficient transportation system has long been a priority)

1. Define what a “Smarter City” means to you

Many urbanists and cities have grappled with how to define what a “Smart City”, a “Smarter City” or a “Future City” might be. It’s important for cities to agree to use an appropriate definition because it sets the scope and focus for what will be a complex collective journey of transformation.

In his article “The Top 10 Smart Cities On The Planet“, Boyd Cohen of Fast Company defined a Smart City as follows:

“Smart cities use information and communication technologies (ICT) to be more intelligent and efficient in the use of resources, resulting in cost and energy savings, improved service delivery and quality of life, and reduced environmental footprint–all supporting innovation and the low-carbon economy.”

IBM describes a Smarter City in similar terms, more specifically stating that the role of technology is to create systems that are “instrumented, interconnected and intelligent.”

Those definitions are useful; but they don’t reflect the different situations of cities everywhere, which are only very crudely described by the four contexts I identified above. We should not be critical of any of the general definitions of Smarter Cities; they are useful in identifying the nature and scope of powerful ideas that could have widespread benefits. But a broad definition will never provide a credible direction for any individual city given the complexities of its challenges, opportunities, context and capabilities.

Additionally, definitions of “Smarter Cities” that are based on relatively advanced technology concepts don’t reflect the origins of the term “Smart” as recognised by the social scientists I met with in July at a workshop at the University of Durham.  The “Smart” idea is more than a decade old, and emerged from the innovative use of relatively basic digital technologies to stimulate economic growth, community vitality and urban renewal.

As I unifying approach, I’ve therefore come recently to conceive of a Smarter City as follows:

A Smarter City systematically creates and encourages innovations in city systems that are enabled by technology; that change the relationships between the creation of economic and social value and the consumption of resources; and that contribute in a coordinated way to achieving a vision and clear objectives that are supported by a consensus amongst city stakeholders.

In co-creating a consensual approach to “Smarter Cities” in any particular place, it’s important to embrace the richness and variety of the field. Many people are very sceptical of the idea of Smarter Cities; often I find that their scepticism arises from the perception that proponents of Smarter Cities are intent on applying the same ideas everywhere, regardless of their suitability, as I described in Smarter City myths and misconceptions” in July.

For example, highly intelligent, multi-modal transport infrastructures are vital in cities such as Singapore, where a rapidly growing economy has created an increased demand for transport; but where there is no space to build new road capacity. But they are much less relevant – at least in the short term – for cities such as Sunderland where the priority is to provide better access to digital technology to encourage the formation and growth of new businesses in high-value sectors of the economy. Every city, individual or organisation that I know of that is successfully pursuing a Smarter City initiative or strategy recognises and engages with that diversity,

Creating a specific Smarter City vision is therefore a task for each city to undertake for itself, taking into account its unique character, strengths and priorities. This process usually entails a collaborative act of creativity by city stakeholders – I’ll explore how that takes place in the next section.

To conclude, it’s likely that the following generic objectives should be considered and adapted in that process:

  • A Smarter City is in a position to make a success of the present: for example, it is economically active in high-value industry sectors and able to provide the workforce and infrastructure that companies in those sectors need.
  • A Smarter City is on course for a successful future: with an education system that provides the skills that will be needed by future industries as technology evolves.
  • A Smarter City creates sustainable, equitably distributed growth: where education and employment opportunities are widely available to all citizens and communities, and with a focus on delivering social and environmental outcomes as well as economic growth.
  • A Smarter City operates as efficiently & intelligently as possible: so that resources such as energy, transportation systems and water are used optimally, providing a low-cost, low-carbon basis for economic and social growth, and an attractive, healthy environment in which to live and work.
  • A Smarter City enables citizens, communities, entrepreneurs & businesses to do their best; because making infrastructures Smarter is an engineering challenge; but making cities Smarter is a societal challenge; and those best placed to understand how societies can change are those who can innovate within them.
  • A Smarter City harnesses technology effectively and makes it accessible; because technology continues to define the new infrastructures that are required to achieve efficiencies in operation; and to enable economic and social growth.

2. Convene a stakeholder group to co-create a specific Smarter City vision

For a city to agree a shared “Smarter City” vision involves bringing an unusual set of stakeholders together in a single forum: political leaders, community leaders, major employers, transport and utility providers, entrepreneurs and SMEs, universities and faith groups, for example. The task for these stakeholders is to agree a vision that is compelling, inclusive; and specific enough to drive the creation of a roadmap of individual projects and initiatives to move the city forward.

It’s crucial that this vision is co-created by a group of stakeholders; as a city leader commented to me last year: “One party can’t bring the vision to the table and expect everyone else to buy into it”.

This is a process that I’m proud to be taking part in in Birmingham through the City’s Smart City Commission, whose vision for the city was published in December. I discussed how such processes can work, and some of the challenges and activities involved, in July 2012 in an article entitled “How Smarter Cities Get Started“.

To be sufficiently creative, empowered and inclusive, the group of stakeholders needs to encompass not only the leaders of key city institutions and representatives of its breadth of communities; it needs to contain original thinkers; social entrepreneurs and agents of change. As someone commented to me recently following a successful meeting of such a group: “this isn’t a ‘usual’ group of people”. In a similar meeting this week, a colleague likened the process of assembling such a group to that of building the Board of a new company.

To attract the various forms of investment that are required to support a programme of “Smart” initiatives, these stakeholder groups need to be decision-making entities, such as Manchester’s “New Economy” Commission, not discussion forums.  They need to take investment decisions together in the interest of shared objectives; and they need a mature understanding and agreement of how risk is shared and managed across those investments.

Whatever specific form a local partnership takes, it needs to demonstrate transparency and consistency in its decision-making and risk management, in order that its initiatives and proposals are attractive to investors. These characteristics are straightforward in themselves; but take time to establish amongst a new group of stakeholders taking a new, collaborative approach to the management of a programme of transformation.

Finally, to create and execute a vision that can succeed, the group needs to tell stories. A Smarter City encompasses all of a city’s systems, communities and businesses; the leaders in that ecosystem can only act with the support of their shareholders, voters, citizens, employees and neighbours. We will only appeal to such a broad constituency by telling simple stories that everyone can understand. I discussed some of the reasons that lead to this in “Better stories for Smarter Cities: three trends in urbanism that will reshape our world” in January and “Little/big; producer/consumer; and the story of the Smarter City” in March. Both articles cover similar ground; and were written as I prepared for my TEDxWarwick presentation, “Better Stories for Smarter Cities”, also in March.

The article “Smart ideas for everyday cities” from December 2012 discusses all of these challenges, and examples of groups that have addressed them, in more detail.

3. Structure your approach to a Smart City by drawing on the available resources and expertise

Any holistic approach to a Smarter City needs to recognise the immensely complex context that a city represents: a rich “system of systems” comprising the physical environment, economy, transport and utility systems, communities, education and many other services, systems and human activities.

(The components of a Smart City architecture I described in “The new architecture of Smart Cities“)

In “The new architecture of Smart Cities” in September 2012 I laid out a framework  for thinking about that context; in particular highlighting the need to focus on the “soft infrastructure” of conversations, trust, relationships and engagement between people, communities, enterprises and institutions that is fundamental to establishing a consensual view of the future of a city.

In that article  I also asserted that whilst in Smarter Cities we are often concerned with the application of technology to city systems, the context in which we do so – i.e. our understanding of the city as a whole – is the same context as that in which other urban professionals operate: architects, town planners and policy-makers, for example. An implication is that when looking for expertise to inform an approach to “Smarter Cities”, we should look broadly across the field of urbanism, and not restrict ourselves to that material which pertains specifically to the application of technology to cities.

Formal sources include:

  • UN-HABITAT, the United Nations agency for human settlements, which recently published its “State of the World’s Cities 2012/2013” report. UNHABITAT promote socially and environmentally sustainable towns and cities, and their reports and statistics on urbanisation are frequently cited as authoritative. Their 2012/2013 report includes extensive consultation with cities around the world, and proposes a number of new mechanisms intended to assist decision-makers.
  • The Academy of Urbanism, a UK-based not-for-profit association of several hundred urbanists including policy-makers, architects, planners and academics, publishes the “Friebrug Charter for Sustainable Urbanism” in collaboration with the city of Frieburg, Germany. Frieburg won the Academy’s European City of the Year award in 2010 but its history of recognition as a sustainable city goes back further. The charter contains a number of useful principles and ideas for achieving consensual sustainability that can be applied to Smarter Cities.
  • The UK Technology Strategy Board’s “Future Cities” programme (link requires registration) and the ongoing EU investments in Smart Cities are both investing in initiatives that transfer Smarter City ideas and technology from research into practise, and disseminating the knowledge created in doing so.

(Photo by lecercle of a girl in Mumbai doing her homework on whatever flat surface she could find. Her use of a stationary tool usually employed for physical mobility to enhance her own social mobility is an example of the very basic capacity we all have to use the resources available to us in innovative ways)

It is also important to consider how change is achieved in systems as complex as cities. In “Do we need a Pattern Language for Smarter Cities” I noted some of the challenges involve in driving top-down programmes of change; and contrasted them to what can happen when an environment is created that encourages innovation and attempts to influence it to achieve desired outcomes, rather than to adopt particular approaches to doing so. And in “Zen and the art of messy urbanism” I explored the importance of unplanned, informal and highly creative “grass-roots” activity in creating growth in cities, particularly where resources and finances are constrained.

Some very interesting such approaches have emerged from thinking in policy, economics, planning and architecture: the Collective Research Initiatives Trust‘s study of Mumbai, “Being Nicely Messy“; Colin Rowe and Fred Koetter’s “Collage City“; Manu Fernandez’s “Human Scale Cities” project; and the “Massive / Small” concept and associated “Urban Operating System” from Kelvin Campbell and Urban Initiatives, for example have all suggested an approach that involves a “toolkit” of ideas for individuals and organisations to apply in their local context.

The “tools” in such toolkits are similar to the “design patterns“ invented by the town planner Christopher Alexander in the 1970s as a tool for capturing re-usable experience in town planning, and later adopted by the Software industry. I believe they offer a useful way to organise our knowledge of successful approaches to “Smarter Cities”, and am slowly creating a catalogue of them, including the “City information partnership” and “City-centre enterprise incubation“.

A good balance between the top-down and bottom-up approaches can be found in the large number of “Smart Cities” and “Future Cities” communities on the web, such as UBM’s “Future Cities” site; Next City; the Sustainable Cities Collective; the World Cities Network; and Linked-In discussion Groups including “Smart Cities and City 2.0“, “Smarter Cities” and “Smart Urbanism“.

Finally, I published an extensive article on this blog in December 2012 which provided a framework for identifying the technology components required to support Smart City initiatives of different kinds – “Pens, paper and conversations. And the other technologies that will make cities smarter“.

4. Establish the policy framework

The influential urbanist Jane Jacobs wrote in her seminal 1961 work ”The Death and Life of Great American Cities“:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

Jacobs’ was concerned with redressing the focus of urban design away from vehicle traffic and back to meeting the daily requirements of human lives; but today, it is similarly true that our planning and procurement practises do not recognise the value of the Smart City vision, and therefore are not shaping the financial instruments to deliver it. This is not because those practises are at fault; it is because technologists, urbanists, architects, procurement officers, policy-makers and planners need to work together to evolve those practises to take account of the new possibilities available to cities through technology.

It’s vitally important that we do this. As I described in November 2012 in “No-one is going to pay cities to become Smarter“, the sources of research and innovation funding that are supprting the first examples of Smarter City initiatives will not finance the widespread transformation of cities everywhere. But there’s no need for them to: the British Property Federation, for example, estimate that £14 billion is invested in the development of new space in the UK each year – that’s 500 times the annual value of the UK Government’s Urban Broadband Fund. If planning regulations and other policies can be adapted to promote investment in the technology infrastructures that support Smarter Cities, the effect could be enormous.

I ran a workshop titled “Can digital technology help us build better cities?” to explore these themes in May at the annual Congress of the Academy of Urbanism in Bradford; and have been exploring them with a number of city Councils and institutions such as the British Standards Institute throughout the year. In June I summarised the ideas that emerged from that work in the article “How to build a Smarter City: 23 design principles for digital urbanism“.

Two of the key issues to address are open data and digital privacy.

As I explored in “Open urbanism:  why the information economy will lead to sustainable cities” in December 2012, open data is a vital resource for creating successful, sustainable, equitable cities. But there are thousands of datasets relevant to any individual city; owned by a variety of public and private sector institutions; and held in an enormous number of fragmented IT systems of varying ages and designs. Creating high quality, consistent, reliable data in this context is a “Brownfield regeneration challenge for the information age”, as I described in October 2012. Planning and procurement regulations that require city information to be made openly available will be an important tool in creating the investment required to overcome that challenge.

(The image on the right was re-created from an MRI scan of the brain activity of a subject watching the film shown in the image on the left. By Shinji Nishimoto, Alex G. Huth, An Vu and Jack L. Gallant, UC Berkley, 2011)

(The image on the right was re-created from an MRI scan of the brain activity of a subject watching the film shown in the image on the left. By Shinji Nishimoto, Alex G. Huth, An Vu and Jack L. Gallant, UC Berkley, 2011)

Digital privacy matters to Smarter Cities in part because technology is becoming ever more fundamental to our lives as more and more of our business is transacted online through e-commerce and online banking. Additionally, the boundary between technology, information and the physical world is increasingly disappearing – as shown recently by the scientists who demonstrated that one person’s thoughts could control another’s actions, using technology, not magic or extrasensory phenomena. That means that our physical safety and digital privacy are increasingly linked – the emergence this year of working guns 3D-printed from digital designs is one of the most striking examples. 

Jane Jacobs defined cities by their ability to provide privacy and safety amongst their citizens; and her thinking is still regarded by many urbanists as the basis of our understanding of cities. As digital technology becomes more pervasive in city systems, it is vital that we evolve the policies that govern digital privacy to ensure that those systems continue to support our lives, communities and businesses successfully.

5. Populate a roadmap that can deliver the vision

In order to fulfill a vision for a Smarter City, a roadmap of specific projects and initiatives is needed, including both early “quick wins” and longer term strategic programmes.

Those projects and initiatives take many forms; and it can be worthwhile to concentrate initial effort on those that are simplest to execute because they are within the remit of a single organisation; or because they build on cross-organisational initiatives within cities that are already underway.

In my August 2012 article “Five roads to a Smarter City” I gave some ideas of what those initiatives might be, and the factors affecting their viability and timing, including:

  1. Top-down, strategic transformations across city systems;
  2. Optimisation of individual infrastructures such as energy, water and transportation;
  3. Applying “Smarter” approaches to “micro-city” environments such as industrial parks, transport hubs, university campuses or leisure complexes;
  4. Exploiting the technology platforms emerging from the cost-driven transformation to shared services in public sector;
  5. Supporting the “Open Data” movement.

In “Pens, paper and conversations. And the other technologies that will make cities smarter” in December 2012, I described a framework for identifying the technology components required to support Smart City initiatives of different kinds, such as:

  1. Re-engineering the physical components of city systems (to improve their efficiency)
  2. Using information  to optimise the operation of city systems
  3. Co-ordinating the behaviour of multiple systems to contribute to city-wide outcomes
  4. Creating new marketplaces to encourage sustainable choices, and attract investment

The Smarter City design patterns I described in the previous section also provide potential ideas, including City information partnerships and City-centre enterprise incubation; I’m hoping shortly to add new patterns such as Community Energy Initiatives, Social Enterprises, Local Currencies and Information-Enabled Resource Marketplaces.

It is also worthwhile to engage with service and technology providers in the Smart City space; they have knowledge of projects and initiatives with which they have been involved elsewhere. Many are also seeking suitable locations in which to invest in pilot schemes to develop or prove new offerings which, if successful, can generate follow-on sales elsewhere. The “First of a Kind” programme in IBM’s Research division is one example or a formal programme that is operated for this purpose.

A roadmap consisting of several such individual activities within the context of a set of cross-city goals, and co-ordinated by a forum of cross-city stakeholders, can form a powerful programme for making cities Smarter.

(Photo of the Brixton Pound by Charlie Waterhouse)

6. Put the financing in place

A crucial factor in assessing the viability of those activities, and then executing them, is putting in place the required financing. In many cases, that will involve cities approaching investors or funding agencies. In “Smart ideas for everyday cities” in December 2012 I described some of the organisations from whom funds could be secured; and some of the characteristics they are looking for when considering which cities and initiatives to invest in.

But for cities to seek direct funding for Smarter Cities is only one approach; I compared it to four other approaches in “Gain and responsibility: five business models for sustainable cities” in August:

  1. Cross-city Collaborations
  2. Scaling-up Social Enterprise
  3. Creativity in finance
  4. Making traditional business sustainable
  5. Encouraging entrepreneurs everywhere

The role of traditional business is of particular importance. Billions of us depend for our basic needs – not to mention our entertainment and leisure – on global supply chains operated on astounding scales by private sector businesses. Staples such as food, cosmetics and cleaning products consume a vast proportion of the world’s fresh water and agricultural capacity; and a surprisingly small number of organisations are responsible for a surprisingly large proportion of that consumption as they produce the products and services that many of us use. We will only achieve smarter, sustainable cities, and a smarter, sustainable world, in collaboration with them. The CEOs of  Unilever and Tesco have made statements of intent along these lines recently, and IBM and Hilton Hotels are two businesses that have described the progress they have already made.

There are very many individual ways in which funds can be secured for Smart City initiatives, of course; I described some more in “No-one is going to pay cities to become Smarter” in November 2012, and several others in two articles in September 2012:

In “Ten ways to pay for a Smarter City (part one)“:

And in “Ten ways to pay for a Smarter City (part two):

I’m a technologist, not a financier or economist; so those articles are not intended to be exhaustive or definitive. But they do suggest a number of practical options that can be explored.

(The discussion group at #SmartHack in Birmingham, described in “Tea, trust and hacking – how Birmingham is getting Smarter“, photographed by Sebastian Lenton)

 

7. Think beyond the future and engage with informality: how to make “Smarter” a self-sustaining process

Once a city has become “Smart”, is that the end of the story?

I don’t think so. The really Smart city is one that has put in place soft and hard infrastructures that can be used in a continuous process of reinvention and creativity.

In the same way that a well designed urban highway should connect rather than divide the city communities it passes through, the new technology platforms put in place to support Smarter City initiatives should be made open to communities and entrepreneurs to constantly innovate in their own local context. As I explored in “Smarter city myths and misconceptions” this idea should really be at the heart of our understanding of Smarter Cities.

I’ve explored those themes frequently in articles on this blog; including the two articles that led to my TEDxWarwick presentation, “Better stories for Smarter Cities: three trends in urbanism that will reshape our world” and “Little/big; producer/consumer; and the story of the Smarter City“. Both of them explored the importance of large city institutions engaging with and empowering the small-scale hyperlocal innovation that occurs in cities and communities everywhere; and that is often the most efficient way of creating social and economic value.

I described that process along with some examples of it in “The amazing heart of a Smarter City: the innovation boundary” in August 2012. In October 2012, I described some of the ways in which Birmingham’s communities are exploring that boundary in “Tea, trust and hacking: how Birmingham is getting smarter“; and in November I emphasised in “Zen and the art of messy urbanism” the importance of recognising the organic, informal nature of some of the innovation and activity within cities that creates value.

The Physicist Geoffrey West is one of many scientists who has explored the roles of technology and population growth in speeding up city systems; as our world changes more and more quickly, our cities will need to become more agile and adaptable – technologists, town planners and economists all seem to agree on this point. In “Refactoring, nucleation and incubation: three tools for digital urban adaptability” I explored how ideas from all of those professions can help them to do so.

Smarter, agile cities will enable the ongoing creation of new products, services or even marketplaces that enable city residents and visitors to make choices every day that reinforce local values and synergies. I described some of the ways in which technology could enable those markets to be designed to encourage transactions that support local outcomes in “Open urbanism: why the information economy will lead to sustainable cities” in October 2012 and “From Christmas lights to bio-energy: how technology will change our sense of place” in August 2012. The money-flows within those markets can be used as the basis of financing their infrastructure, as I discussed in “Digital Platforms for Smarter City Market-Making” in June 2012 and in several other articles described in “5. Put the financing in place” above.

Commentary: a new form of leadership

Andrew Zolli’s book “Resilience: why things bounce back” contains many examples of “smart” initiatives that have transformed systems such as emergency response, agriculture, fishing, finance and gang culture, most, but not all, of which are enabled by technology.

A common theme from all of them is productive co-operation and co-creation between large formal organisations (such as businesses and public sector institutions) and informal community groups or individuals (examples in Resilience include subsistence farmers, civic activitists and pacific island fishermen). Jared Diamond made similar observations about successful examples of socially and environmentally sustainable resource extraction businesses, such as Chevron’s sustainable operations in the Kutubu oilfield in Papua New Guinea, in his book “Collapse“.

Zolli identified a particular style of individual behaviour that was crucial in bringing about these collaborations that he called “translational leadership“: the ability to build new bridges; to bring together the resources of local communities and national and international institutions; to harness technology at appropriate cost for collective benefit; to step in and out of institutional and community behaviour and adapt to different cultures, conversations and approaches to business; and to create business models that balance financial health and sustainability with social and environmental outcomes.

That’s precisely the behaviour and leadership that I see in successful Smarter Cities initiatives. It’s sometimes shown by the leaders of public authorities, Universities or private businesses; but it’s equally often shown by community activists or entrepreneurs.

For me, this is one of the most exciting and optimistic insights about Smarter Cities: the leaders who catalyse their emergence can come from anywhere. And any one of us can choose to take a first step in the city where we live.

%d bloggers like this: