Little/big; producer/consumer; and the story of the Smarter City

(Photo of me wearing the Emotiv headset)

(Photo of me wearing the Emotiv headset)

I have a four year old son. By the time I die he’ll be about my age if I’m lucky.

If I could see him now as he will be then; I would struggle to recognise his interactions with the world as human behaviour in the terms I am used to understanding it.

When he was two years old, I showed him a cartoon on the touchscreen tablet I’d just bought. When it finished, he pressed the thumbnail of the cartoon he wanted to watch next.

The implications of that instinctive and correct action are profound, and mark the start of the disappearance of the boundary between information and the physical world.

Just as the way that we communicate with each other has changed increasingly rapidly from the telephone to e-mail to social media; so the way that we interact with information systems will transform out of all recognition as technology evolves beyond the keyboard, mouse and touchscreen.

The Emotiv headset I’m wearing in the photo above can interpret patterns in the magnetic waves created by my thoughts as simple commands that can be understood by computers. My thoughts can influence the world of information; and they can even be captured as images, as shown in this recent work using Magnetic Resonance Imaging (MRI).

And information can influence the physical world. From control technology implanted in the muscles of insects; to prosthetic limbs and living tissues that are created from digital designs by general-purpose 3D printers. As the way we interact with information systems and use them to affect the world around us becomes so natural that we’re barely conscious of it, the Information Revolution will change our world in ways that we are only beginning to imagine.

These technologies offer striking possibilities; and we face striking challenges. The two will come together where the activity of the world is most concentrated: in cities.

In the last revolution, the Industrial Revolution, we built the centres of cities upwards around lifts powered by the steam engine invented by James Watt and commercialised by Matthew Boulton in Birmingham. In the last century we expanded them outwards around the car as we became used to driving to work, shops, parks and schools.

(Photo of 3D printer by Media Lab Prado)

We believe we can afford a lifestyle based on driving cars because its long-term social and environmental costs are not included in its financial price. But as the world’s population grows towards 9 billion by 2050, mostly in cities that are becoming more affluent in what it’s increasingly inaccurate to call “emerging economies”; that illusion will be shattered.

We’re already paying more for our food and energy as a proportion of income. That’s not because we’re experiencing a “double-dip recession”; it’s because the structure of the economy is changing. There is more competition for grain to feed the world’s fuel and food needs; and droughts caused by climate change are increasing uncertainty in it’s supply.

We have choices to make. Do we consume less? Can we use technology to address the inefficiencies of supply chains which waste almost half the food they produce whilst transporting it thousands of miles around the world, without disrupting them and endangering the billions of lives they support? Or do we disintermediate the natural stages of food supply by growing artificial meat in laboratories?

These choices go to the heart of our relationship with the natural world; what it means to be human; and to live in an ethical society. I think of a Smarter City as one which is taking those choices successfully; and using technology to address its challenges in a way that is both sustainable, and sympathetic to us as human beings and as communities.

Three trends are appearing across technology, urbanism, and the research of resilient systems to show us how to do that. The first is for little things and big things to work constructively together.

The attraction of opposites part 1: little and big

(Photo of Masshouse Circus, Birmingham, before its redevelopment, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, before its redevelopment, by Birmingham City Council)

Some physical interventions in cities have been “blunt”. Birmingham’s post-war economy needed traffic to be able to circulate around the city centre; but the resulting ringroad strangled it, until it was knocked down a decade ago. It didn’t meet the needs of individuals and communities within the city to live and interact.

By contrast, Exhibition road in London – a free-for-all where anyone can walk, drive, sit, park or catch a bus, anywhere they like – knits the city together. Elevated pedestrian roundabouts and city parks similarly provide infrastructures that support fluid movement by people cycling and walking; modes of transport in which it is easy to stop and interact with the city.

These big infrastructures are compatible with the life of the little people who inhabit the city around them; and who are the reason for its existence.

The same concepts apply to technology infrastructures.

Technology offers great promise in cities. We can collect data from people and infrastructures – the movement of cars, or the concentration of carbon dioxide. We can aggregate that data to provide information about city systems – how fast traffic is moving, or the level of carbon emissions of buildings. And we can draw insight from that information into the performance of cities – the impacts of congestion on GDP, and of environmental quality on life expectancy.

Cities are deploying mobile and broadband infrastructures to enable the flow of this data; and “open data” platforms to make it available to developers and entrepreneurs for them to explore new business opportunities and develop novel urban services.

But how does deploying broadband infrastructure in a poor neighbourhood create growth if the people who live there can’t afford subscriptions to it? Or if businesses there don’t have access to computer programming skills?

Connectivity and open data are the “big infrastructures” of the information age; how do we ensure that they are properly adapted to the “little” needs of individual citizens, businesses and communities?

We will do that by concerning ourselves with people and places, rather than information and infrastructures.

(Delay times at traffic junctions visualised by the Dublinked city information partnership.)

(Delay times at traffic junctions visualised by the Dublinked city information partnership)

Where civic information infrastructures are successful in creating economic and social growth, they are not deployed; they are co-created in a process of listening and learning between city institutions; businesses; communities; and individuals.

This process requires us to visit new places, such as the “Container City” incubation facility for social enterprise in Sunderland; to learn new languages; and understand different systems of value, such as the “triple bottom line” of social, environmental and financial capital.

If we design infrastructures by listening to and then enabling ideas, then we put the resources of big institutions and companies into the hands of people and businesses in a way that makes it less difficult to create many, more effective “little” innovations in hyper-local contexts – the “Massive Small” change first described by Kelvin Campbell.

By following this process, Dublin’s “Dublinked” partnership between the City and surrounding County Councils; the National University of Ireland, businesses and entrepreneurs is now sharing 3,000 city datasets; using increasingly sophisticated tools to draw value from them; identifying new ways for the city’s transport, energy and water systems to work; and starting new, viable, information-based businesses.

As a sustained process, these conversations and the trust they create form a “soft infrastructure” for a city, connecting it’s little and big inhabitants.

This soft infrastructure is what turns civic information into services that can become part of the fabric of life of cities and communities; and that can enable sustainable growth by weaving information into that fabric that describes the impact of choices that are about to be made.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times – and suggestions for alternative routes.)

For example, a project in San Francisco used algorithms that are capable of predicting traffic speeds and volume in the city one hour into the future with 85% accuracy. These algorithms were developed in a project in Singapore, where the resulting predictions were made available to traffic managers, so that they could set lane priorities and traffic light sequences to attempt to prevent any predicted congestion.

But in California, the predictions were made available instead to individual commuters who where told in advance the likely duration of their journey each day, including the impact of any congestion that would develop whilst the journey was underway. This gave them a new opportunity to take an informed choice: to travel at a different time; by a different route or mode; or not to travel at all.

The California project shows that it’s far more powerful to use the information resulting from city data and predictive algorithms not to influence a handful of traffic managers who respond to congestion; but to influence the hundreds or thousands of individual travellers who create it; and who have the power to choose not to create it.

And in designing information systems such as this, we can appeal not just to selfish interests, but to our sense of community and place.

A project in Dubuque, Iowa uses Smart water meters to tell householders whether they are using domestic appliances efficiently; and can detect weak underlying signals that indicate leaks. People who are given this information can choose to act on it; and to a certain extent, they do.

But something remarkable happened in a control group who were also given a “green points” score comparing their water efficiency to that of their neighbours. They were literally twice as likely to improve their water efficiency as people who were only told about their own water use.

Maslow’s hierarchy of needs tells us that once the immediate physical needs of our families are secured, our motivations are next driven by our relationships with the people around us. Technology gives us the ability to design new information-based services that appeal directly to those values, rather than to more distant general environmental concerns.

The attraction of opposites part 2: producer and consumer

(Photo of 3D-printed objects by Shapeways)

This information is at our fingertips; we are its producers and consumers. For the last decade, we have used and created it when we share photos in social media or buy and sell in online marketplaces.

But the disappearance of the boundaries between information systems, the physical world and our own biology means that it is not just information that we will be producing and consuming in the next decade, but physical goods and services too.

As a result, new peer-to-peer markets can already be seen in food production; parking spaces; car journeys; the manufacture of custom objects; and the production of energy from sources such as bio-matter and domestic solar panels.

Of course, we have all been producers and consumers since humans first began to farm and create societies with diversified economies. What’s new is the ability of technology to dramatically improve the flexibility, timeliness and efficiency of interactions between producers and consumers; creating interactions that are more sustainable than those enabled by conventional supply chains.

Even more tantalising is the possibility of using new rates of exchange in those transactions.

In Switzerland, a complementary currency, the Wir, has contributed to economic stability over the last century by allowing some debt repayments to be bartered locally when they cannot be repaid in universal currency. And last year, Bristol became the 5th UK town or city to operate its own currency.

These currencies are increasingly using advanced technologies, such as the “Droplet” smartphone payment scheme now operating in Birmingham and London. This combination of information technology and local currencies could be used to calculate rates of exchange that compare the complete social, environmental and economic cost of goods and services to their immediate, contextual value to the participants in the transaction.

That really could create a market infrastructure to support Smarter, sustainable, and more equitable city systems; and it sounds like a great idea to me.

But if it’s such a good idea, why aren’t markets based on it ubiquitous already?

Collaborative governance; and better stories for Smarter Cities

(Stories of Mumbai: an exploration of Mumbai’s history of urban development, and its prospects for the future, using storytelling and puppetshows, by the BMW Guggenheim Lab)

If we are going to use the technologies and ideas I’ve described to transform cities, then technologists like me need to learn from the best of urbanism.

Jan Gehl taught us to design liveable cities not by considering the buildings in them; but how people use the spaces between buildings.

In Smarter Cities our analogous challenge is to concentrate not only on information infrastructures and the financial efficiencies that they provide; not least because “Smart” ideas cut across city systems, and so gains in efficiency don’t always reward those who invest in infrastructure.

Our objective instead is to create the harder to quantify personal, social and environmental value that results when those infrastructures enable people to afford to eat better food or to heat their homes properly in winter; to access affordable transport to places of employment; and to live longer, independent lives as productive contributors to their communities.

These are the stories we need to tell about Smarter Cities.

These stories are of vital importance because the third trend we observe is that cities only really get smarter when their leaders and communities coordinate the use of public and private assets to achieve a collective vision of the future, and to secure external investment in it.

Doing so needs the commitment not just of the owners and managers of those assets, but of the shareholders, voters, employees and other stakeholders that they are accountable to.

To win the commitment of such a broad array of people we need to appeal to common instincts: our understanding of narrative, and our ability to empathise. Ultimately we will need the formal languages of finance and technology, but they are not where we should start.

DDespommier

(Dickson Despommier, inventor of the vertical farm, speaking at TEDxWarwick 2013)

It’s imperative that we tell these stories to inspire the evolution of our cities. The changes in coming decades will be so fast and so profound that cities that do not embrace them successfully will suffer severe decline.

Luckily, our ability to respond successfully to those changes depends on a technology that is freely available: language, used face to face in conversations. I can’t think of a more essential challenge than to use it to tell stories about how our world can be come smarter, fairer, and more sustainable.

And there’s no limit to what any one of us can achieve by doing this. Because it is collaborative governance rather than institutional authority that enables Smarter Cities, then there are no rules defining where the leadership to establish that governance will come from.

Whether you are a politician, academic, technologist, business person, community activist or simply a passionate individual; and whether your aim is to create a new partnership across a city, or simply to start an independent social enterprise within it; that leadership could come from you.

(This article is based on the script I wrote in preparation for my TEDxWarwick presentation on 13th March 2013).

Do we need a Pattern Language for Smarter Cities?

(Photo of the Athens Olympic Sports Complex from Space by the NASA Goddard Space Flight Center)

The UK Department of Business, Innovation and Skills held a workshop recently to determine how to create guidance for cities considering their approach to Smarter Cities.

A robust part of the debate centred on the challenge of providing “delivery guidance” for cities embarking on Smarter Cities initiatives: whilst there are many visions for smart and future cities; and many examples of projects that have been carried out; there is little prescriptive guidance to assist cities in defining and delivering their own strategy (although I’ve provided my own humble contribution in “Six steps to a smarter city” on this blog; an article which organises a broad set of resources into an admittedly very high level framework).

In setting out a transformative smarter city vision and then taking the steps to achieve it, a great deal of change is involved. Large, formal organisations tend to approach change with prescriptive , process-driven techniques – for all that the objective of change might be defined disruptively by individual insight and leadership or through the application of techniques such as “design thinking“; the execution of the changes required to achieve that objective is usually driven by a controlled process with well defined roles, scope, milestones, risks and performance indicators.

My own employer, IBM, is a vast organisation with over 400,000 employees; a similar number of people to the population of a city of modest size. It was the subject of one of the most famous transformations in corporate history when Lou Gerstner saved it from near-failure in the 1990s. The transformation was achieved by brilliant personal leadership; trial and error; and a variety of techniques and ideas from different sources – there was no “off-the-shelf” process to follow at this scale of organisational change.

But transforming a city is not the same thing as changing an organisation, however big. A city is a complex system of systems, and we have comparatively little knowledge about how to drive change in such an environment. Arguably,we should not even think about “driving change” in city ecosystems, but rather consider how to influence the speed and direction of the changes that will emerge from them anyway.

Some very different approaches to process-driven change have emerged from thinking in policy, economics, planning and architecture: the Collective Research Initiatives Trust‘s study of Mumbai, “Being Nicely Messy“; Colin Rowe and Fred Koetter’s “Collage City“; Manu Fernandez’s “Human Scale Cities” project; the “Massive / Small” concept and associated “Urban Operating System” from Kelvin Campbell and Urban Initiatives; and CHORA’s Taiwan Strait Atlas, for example have all suggested an approach that involves a “toolkit” of ideas for individuals and organisations to apply in their local context.

(In this light, it’s interesting to observe that in order to steer the ongoing growth of IBM following the transformation led by Lou Gerstner, his successor as CEO, Sam Palmisano, took the organic approach of seeking to inspire a consistent evolution of business behaviour across all 400,000 individual IBMers by co-creating and adopting a common and explicit set of “values”).

(Stories of Mumbai: an exploration of Mumbai’s history of urban development, and its prospects for the future, using storytelling and puppetshows, by the BMW Guggenheim Lab)

In “Resilience: Why Things Bounce Back“, Andrew Zolli and Ann Marie Healy, give a fascinating description of the incredible impact such approaches can achieve through the example of the response to the earthquake near Port-au-Prince in Haiti on January 10, 2010 that was led by Patrick Meier, the Ushahidi information crowd-sourcing platform and the Tufts Fletcher School of Law and Diplomacy in Massachusetts. Meier catalysed an incredible multi-national response to the earthquake that included the resources of organisations such as Thomson Reuters, Digicel (the largest mobile phone company in Haiti), and MedicMobile; and just as importantly hundreds of individuals literally spread across the world, with nothing more in common than a desire to do what they could to contribute:

“I told people, ‘We’re going to let this be emergent,’” Meier explained. “There are so many things that need to happen every single hour and so many things that need to keep evolving in such a short amount of time. I have to just let it flourish and deal with what happens when it starts getting inefficient.” The open nature of the platform – both the code that powers Ushahidi and the collaborative nature of the mapping – meant that people could easily be recruited to perform discrete, useful tasks with a minimum of formal authority.”

(Patrick Meier, quoted in “Resilience: Why Things Bounce Back“, p179, by Andrew Zolli and Ann Marie Healy)

In my own work, I’ve tried to follow a similar course, inspired first by the Knight Foundation’s report on the Information Needs of Communities. The Knight Foundation counsel a process of engagement and understanding between institutions and communities, in order to identify the specific information and resources that can be most usefully made available by city institutions to individual citizens, businesses and social organisations. As I described in “The Amazing Heart of a Smarter City: the Innovation Boundary“, the resulting portfolio provides a toolkit customised to the needs of a city, and that can be used to shape a collective case for investment in the development of that city.

The idea of a toolkit recognises both that no one approach, philosophy or framework is applicable to every city, or to every context within a single city; and that an idea that works in one place might work in many others.

For example, in the UK, the regions around the cities of Birmingham and Manchester are of similar size in terms of population and economic activity; but they are very different in the structure of their political administrations and economies. The approach that one of these cities adopts as its Smarter City strategy will not necessarily transfer to the other.

In contrast, however, specific ideas concerning economic development and the attraction of talented young people that I’ve found useful in Sunderland in the UK have been inspired by past experience in Wuxi, China and New York State; and in turn have informed initiatives in Spain, Singapore and Nairobi; in other words they have transcended contexts of vastly different size, culture and economics.

A tool that emerged from town planning in the 1970s and that was then adopted across the information technology industry in the 1980s and 1990s might just provide the approach we need to harness this information. And it’s perhaps not surprising that a tool with such provenance should become relevant at at time when the architects of information technology systems, buildings and cities are finding that they are working within a common context.

That tool is the “Design Pattern”.

A Pattern Language for Smarter Cities

(A pattern language for social software features, image by Amber Case)

The town planner Christopher Alexander invented “design patterns” in the 1970s. He addressed the challenge that many problems in planning were (and are) too large and complex for one person to consider them in their entirety at one time; and that it is hence necessary to break them down into sub-problems.

The difficulty is that it is not at all straightforward to break a problem into sub-problems that can be solved effectively in isolation from each other.

Consider city transport systems: in many cases, road management, bus operations and the rail network are the responsibility of different organisations. It “makes sense” to break up transport systems in this way because each is different; and so different organisations are better at running them effectively.

But from the perspective of the users of transport systems, it doesn’t make sense to do this. Bus and rail timetables don’t work together; cars, buses, freight vehicles, bicycles and pedestrians have conflicting requirements of road space; and the overall system does not behave as though it is designed to serve travellers consistently.

In “Notes on the Synthesis of Form” in 1969, Alexander described a mathematical technique that could be used to manage the complexity of large problems and to break them down into sub-problems in a way that accommodated interdependencies between them. As a result, those sub-problems could be solved separately from each other, then integrated to form an overall solution.

This process of decomposition, solution and integration is fundamental to process-driven approaches to the design and delivery of complex solutions. It is not possible, for example, to assign responsibilities to individuals and teams without going through it. Many projects that fail do so because the  problem that they are addressing is not decomposed effectively so that individual teams find that they have overlapping areas of responsibility and therefore experience duplication and conflict.

However, in developing his technique for decomposing problems, Alexander concluded that it was overly complex, rigid and impractical; and he recommended that it should never be used. Instead, he suggested that it was more useful to focus not on how we deal with problems; but on how we re-use successful solutions.

By identifying and characterising the components of solutions that have been proven to work, we enable them to be reused elsewhere. Christopher Alexander’s particular insight was to recognise that to do so successfully, it is vitally important to precisely describe the context in which a solution is applicable. He called the resulting description of reusable solutions a “design pattern”; and a collection of such descriptions, a “pattern language“.

Design patterns and pattern languages offer a useful combination of formal and informal approaches. They are formal in that each pattern is described in a consistent way, using a structured framework of characteristics. And they are informal in that the description isn’t constrained to that framework of characteristics; and because design patterns do not assert that they should be used: they are simply there to be used by anyone who chooses to do so.

Christopher Alexander’s patterns for town planning and architecture can be found in his books, or online at the “Pattern Language” community; in information technology, Martin Fowler’s “Enterprise Application Architecture Patterns” provide a similar example.

To my knowledge, no-one is yet curating a similar set of Smarter Cities patterns; I believe that there would be great value in doing so; and that in order to do so skills and expertise across domains such as planning, architecture, technology, social science and many others would be required.

In the final part of this article, I’d like to suggest some examples of Smarter City initiatives and ideas that I think can be usefully described as patterns; and to give one example of such a description. Please do share your views on whether this approach is useful by commenting on this blog, or through one of the Linked-In discussion groups where I’ve posted links to this article.

Design Patterns for Smarter Cities

Here are just a few of the ideas I’ve seen applied successfully in more than one place, either as part of a Smarter City strategy, or simply as valuable initiatives in their own right. It is certainly not an exhaustive list – a quick survey of Linked-In discussion Groups such as “Smart Cities and City 2.0“, “Smarter Cities” and “Smart Urbanism” will reveal many other examples that could be described in this way.

  • Information Partnerships – collaborations between city institutions, communities, service providers and research institutions to share and exploit city data in a socially and financially sustainable system. (I’ve provided a more detailed description of this example below).
  • Incubation Clouds – the use of Cloud Computing platforms and hybrid public/private commercial models to enable co-operative investment in technology capabilities that can lower the barriers to successful innovations in city services. Examples: Sunderland’s “City Cloud” and the Wuxi iPark.
  • Community Energy Initiatives – the formation of local energy companies to exploit “smart grid” technology, local energy generation (such as solar panels, wind power, wave power, geo-thermal power and bio-energy) and collaborative energy consumption to reduce carbon emissions and reliance on external energy sources. Examples: Eco-island and Birmingham Energy Savers.
  • Social Enterprises – a collective term for models of business that audit themselves against social and environmental outcomes, as well as financial sustainability and returns. Examples: co-operatives, credit unions and organisations using “triple-bottom-line” accounting.

(The components of a Smart City architecture I described in “The new architecture of Smart Cities“)

In order to describe these concepts more completely as re-usable patterns; and in a way that allows them to be compared, selected in comparison to each other, or used together; it is important that they are described consistently, and in a way that accurately identifies the context in which they are applicable.

To do so requires that we describe the same aspects of each pattern; and that we describe each aspect using a common language. For example:

  • The city systems, communities and infrastructures affected; using a framework such as the “The new architecture of Smart Cities” that I described last year, shown in the diagram above.
  • The commercial operating model that makes the pattern financially sustainable.
  • The driving forces that make the pattern applicable, such as traffic congestion; persistent localised economic inactivity; the availability of local energy sources; or the need to reduce public sector spending.
  • The benefits of using the pattern; including financial, social, environmental and long-term economic benefits.
  • The implications and risks of implementing the pattern – such as the risk that consumers will not chose to change their behaviour to adopt more sustainable modes of transport; or the increasing long-term costs of healthcare implied by initiatives that raise life-expectancy by creating a healthier environment.
  • The alternatives and variations that describe how the pattern can be adapted to particular local contexts.
  • Examples of where the pattern has been applied; what was involved in making it work; and the outcomes that were achieved as a result.
  • Sources of information that provide further explanation, examples of use and guidance for implementation.

I’ll finish this article by given an example of a Smarter City pattern described in that way – the “City Information Partnership”.

(Coders at work exploiting city information at the Birmingham “Smart Hack”, photographed by Sebastian Lenton)

An Example Pattern: City Information Partnership

(Note: the following description is not intended to be written in the fluent style that I usually hope to achieve in my blog articles; instead, it is meant to illustrate the value in bringing together a set of concisely expressed ideas in a structured format).

Summary of the pattern: a collaboration between city institutions, communities, service providers and research institutions to share and exploit city data in a socially and financially sustainable system.

City systems, communities and infrastructures affected:

(This description is based on the elements of Smarter City ecosystems presented in “The new Architecture of Smart Cities“).

  • Goals: Any.
  • People: Citizens; innovators.
  • Ecosystem: All.
  • Soft infrastructures: Innovation forums; networks and community organisations.
  • City systems: Any.
  • Hard infrastructures: Information and communications technology.

Commercial operating model:

City information partnerships are often incorporated as “Special Purpose Vehicles” (SPVs) jointly owned by city institutions such as local authorities; universities; other public sector organisations such as schools, healthcare providers and emergency services; services providers such as transportation authorities and utilities; asset owners and operators such as property developers and facility managers; local employers; and private sector providers such as technology companies.

A shared initial investment in technology infrastructure is often required; and in order to address legal issues such as intellectual property rights and liability agreements.

Long-term financial sustainability is dependent on the generation of commercial revenues by licensing the use of data by commercial operations. In cases where such initiatives have been supported only by public sector or research funding, that funding has eventually been reduced or terminated leading to the stagnation or cessation of the initiative.

Soft infrastructures, hard infrastructures and assets required:

Information partnerships only succeed where they are a component of a co-creative dialogue between individuals and organisations in city institutions such as entrepreneurs, community associations, local authorities and social enterprises.

Institutional support is required to provide the models of legal liability and intellectual property ownership that create a trusted and transparent context for collaborative innovation.

Technologies such as Cloud Computing platforms; information management; security; analytics, reporting; visualisation; and data catalogues are required to manage city information and make it available and useful to end users.

Information partnerships require the participation of organisations which between them own and are prepared to make available a sufficiently broad and rich collection of datasets.

Driving forces:

Information is transforming the world’s economy; it provides new insight to support business model creation and operation; makes new products and services possible; and creates new markets.

At the same time global and local demographic trends mean that the cost-base and resource usage of city systems must change.

Information partnerships expose city information to public, private, social and academic research and innovation to discover, create and operate new models for city services; with the potential for resale elsewhere; leading in turn to economic and social growth.

(A visualisation created by Daniel X O Neil of data from Chicago’s open data portal showing the activities of paid political lobbyists and their customers in the city)

Benefits:

Community hacktivism can usually be engaged by information partnerships to create useful community “apps” such as local transport information and accessibility advice.

The creation of new information-based businesses creates local employment opportunities, and economic export potential.

Information partnerships can provide information resources for technology education in schools, colleges and universities.

New city services developed as a result of the information partnership may provide lower-carbon alternatives to existing city systems such as transportation.

Implications and risks:

If participating organisations such as local authorities include the requirement to contribute data to the information partnership in procurement criteria, then tendering organisations will include any associated costs in their proposals.

For information partnerships to be sustainable, the operating entity needs to be able to accrue and reinvest profits from licenses to exploit data commercially.

The financial returns and economic growth created by information partnerships can take time to develop.

Genuinely constructive partnerships rely on effective engagement between city institutions, businesses and communities.

Existing contracts between local authorities and service providers are unlikely to require that data is contributed to the partnership; and the costs associated with making the data associated with those services available will need to be negotiated.

Alternatives and variations:

Some organisations have provided single-party open data platforms. These can be effective – for example, the APIs offered by e-Bay and Amazon; but individual organisations within cities will rarely have a critical mass of valuable data; or the resources required to operate effective and sustained programmes of engagement with the local community.

Many advocates of open data argue that such data should be freely available. However, the majority of platforms that have made data available freely have struggled to make data available in a form that is usable; to expand the data available; to offer data at a reliable level of service; or to sustain their operations over time. Making good quality data available reliably requires effort, and that effort needs to be paid for.

Examples:

Sources of information:

The UK Open Data Institute is championing open data in the UK – http://www.theodi.org/

O’Reilly Media have published many informative articles on their “Radar” website – http://search.oreilly.com/?q=open+data&x=0&y=0&tmpl=radar

The report “Information Marketplaces: The new economics of cities” published by Arup, The Climate Group, Accenture and Horizon, University of Nottingham – http://www.arup.com/Publications/Information_Marketplaces_the_new_economics_of_cities.aspx

Finally, I have written a series of articles on this blog that explore the benefits and challenges associated with the collaborative exploitation of city information:

What next?

It has been an interesting exercise for me to write this article. Many of the ideas and examples that I have included will not be new to regular readers of this blog. But in describing the idea of an “Information Partnership” as a formal design pattern I have brought them together in a particularly focussed and organised manner. There are many, many more ideas and examples of initiatives within the Smarter Cities domain that could be described in this way; and I personally believe that it would be valuable to do so.

But my opinion on that subject is less valuable than yours. I would really appreciate your thoughts on whether the “Smarter City Design Patterns” I’ve suggested and explored in this article would be a valuable contribution to our collective knowledge.

I look forward to hearing from you.

Better stories for Smarter Cities: three trends in urbanism that will reshape our world

(Stories of Mumbai: an exploration of Mumbai’s history of urban development, and its prospects for the future, using storytelling and puppetshows, by the BMW Guggenheim Lab)

Towards the end of last year, it became clearer how cities could take practical steps to position themselves to transform to meet the increasing economic, environmental and social challenges facing them; and to seek investment to support those transformations, as I described in “Smart Ideas for Everyday Cities“.

Equally important as those practical approaches to organisation, though, are the conceptual tools that will shape those transformations. Across fields as diverse as psychology, town planning, mathematics, construction, service-design and technology, some striking common themes have emerged that are shaping those tools.

Those themes imply that we will need to take radically different approaches to city systems driven by the astonishing, exciting and sometimes disturbing changes that we’re likely to see taking place increasingly rapidly in our world over the next decade.

To adopt the terminology of Irene Ng, a Researcher in new economic models and service science at the University of Warwick, these changes will create both “needs-led” and “capability-led” drivers to do things differently.

“Needs-led” changes will be driven by the massive growth taking place in the global middle class as economies across the world modernise. The impacts will be varied and widespread, including increasing business competition in a single, integrated economy; increasing competition for resources such as food, water and energy; and increasing fragility in the systems that supply those resources to a population that is ever more concentrated in cities. We are already seeing these effects in our everyday lives: many of us are paying more for our food as a proportion of our income than a few years ago.

At a recent lecture on behalf of the International Federation for Housing and Planning and the Association of European Schools of Planning, Sir Peter Hall, Professor of Planning and Regeneration at the Bartlett School of Planning, spoke of the importance of making the growth of cities sustainable through the careful design of the transport systems that support them. In the industrial revolution, as Edward Glaeser described in Triumph of the City, cities grew up around lifts powered by steam engines; Sir Peter described how more recently they have grown outwards into suburbs populated with middle-class car-owners who habitually drive to work, schools, shops, gyms and parks.

This lifestyle simply cannot be sustained – in the developed world or in emerging economies – across such an explosively growing number of people who have the immediate wealth to afford it, but who are not paying the full price of the resources it consumes. According to the exhibition in Siemens’ “Crystal” building, where Sir Peter’s lecture was held, today’s middle class is consuming resources at one-and-a-half times the rate the world creates them; unless something changes, the rate of growth of that lifestyle will hurl us towards a global catastrophe.

So, as the Collective Research Initiatives Trust (CRIT) observed in their study of the ongoing evolution of Mumbai, “Being Nicely Messy“, the structure of movement and the economy will have to change.

(Siemens’ Crystal building in London, a show case for sustainable technology in cities, photographed by Martin Deutsch)

Meanwhile, the evolution of technology is creating incredible new opportunities for “capability-led” change.

In the last two decades, we have seen the world revolutionised by information and communication technologies such as the internet and SmartPhones; but this is only the very start of a transformation that is still gathering pace. Whilst so far these technologies have created an explosion in the availability of information, recent advances in touch-screen technology and speech recognition are just starting to demonstrate that the boundary between the information world and physical, biological and neural systems is starting to disappear.

For example, a paralysed woman recently controlled a robotic arm by thought; and prosthetic limbs, a working gun and living biological structures such as muscle fibre and skin are just some of the things that can be 3D printed on demand from raw materials and digital designs.

What changes to our urban systems will these developments – and the ones that follow them – lead to?

Following the decline of industries such as manufacturing, resource-mining and ship-building,  many post-industrial cities in the developed world are rebuilding their economies around sectors with growth potential, such as environmental technology and creative media. They are also working with the education system to provide their citizens with access to the skills those sectors require.

Supplying the skills that today’s economy needs can be a challenge. Google’s Chairman Eric Schmidt lambasted the British Education system last year for producing insufficient computer programming skills; and a cross-industry report, “Engineering the Future“, laid out the need for increased focus on environmental, manufacturing, technology and engineering skills to support future economic growth in the UK. As the rate of change in science and technology increases, the skills required in a consequently changing economy will also change more rapidly; providing those skills will be an even bigger challenge.

Or will it? How much of a leap forward is required from the technologies I’ve just described, to imagining that by 2030, people will respond to the need for changing skills in the market by downloading expertise Matrix-style to exploit new employment opportunities?

Most predictions of the future turn out to be wrong, and I’m sure that this one will be, in part or in whole. But as an indication of the magnitude of changes we can expect across technology, business, society and our own physical and mental behaviour I expect it will be representative.

Our challenge is to understand how these needs-led and capability-led transformations can collectively create a world that is sustainable; and that is sympathetic to us as human beings and communities. That challenge will be most acute where both needs and capabilities are most concentrated – in cities. And across economics, architecture, technology and human behaviour, three trends in urban thinking have emerged – or, at least, become more prominent – in recent years that provide guiding principles for how we might meet that challenge.

The attraction of opposites, part 1: producer and consumer

20120605-005134.jpg

(Photograph of 3D printers by Rob Boudon)

In the Web 2.0 era (roughly 2003-2009), the middle classes of the developed world became connected by “always-on” broadband connections, turning these hundreds of millions of information-consumers into information-producers. That is why in 2007 (and every year since) more new information was created than in all of the previous 5 millenia. Industries such as publishing, music and telecommunications have been utterly transformed as a result.

The disappearance of the boundary between  information, physical and biological systems, and the explosive growth in the population with access to the technologies responsible for that disappearance, will transform every economic and social structure we can imagine through the same producer / consumer revolution.

We can already produce as well as consume transport resources by participating in car-sharing schemes; and energy by exploiting domestic solar power and bio-energy. The falling cost and increasing sophistication of 3D printers are just starting to make it feasible to manufacture some products in the home, particularly in specialist areas such as railway modelling; and platforms such as the Amazon Turk and Slivers of Time can quickly connect producers and consumers in the service industries.

Business-to-business and business-to-consumer marketplaces such as Big Barn and Sustaination provide the same service in local food systems. And the transport industry is evolving to serve these new markets: for instance, Shutl provide a marketplace for home delivery services through a community of independent couriers; and a handful of cities are deploying or planning recycling systems in which individual items of waste are distributed to processing centres through pneumatically powered underground transport networks.

Of course, from the earliest development of farming in human culture, we have all been both producers and consumers in a diversified economy. What’s new is the opportunity for technology to dramatically improve the flexibility, timeliness and efficiency of the value-chains that connect those two roles. Car-sharing not only reduces the amount of fuel used by our journeys; it could reduce the resources consumed by manufacturing vehicles that spend the majority of their lives stationary on drives or in car parks. Markets that more efficiently connect food production, processing and consumption could reduce the thousands of miles that food currently travels between farm and fork, often crossing its own path several times; they could create employment opportunities in small-scale food processing; not to mention reducing the vast quantity of food that is produced but not eaten, and goes to waste.

Irene Ng explores these themes wonderfully in her new book, “Value and Worth: Creating New Markets in the Digital Economy“; they offer us exciting opportunities for economic and social growth, and an evolution towards a more sustainable urban future – if we can harness them in that way.

The attraction of opposites, part 2: little and big

Some infrastructures can be “blunt” instruments: from roads and railway lines which connect their destinations but which cut apart the communities they pass through; to open data platforms which provide vast quantities of data “as-is” but little in the way of information and services customised to the needs of local individuals and communities.

Architects such as Jan Gehl have argued that the design process for cities should concentrate on the life between buildings, rather than on the structure of buildings; and that cities should be constructed at a “human-scale” – medium-sized buildings, not tower-blocks and sky-scrapers; and streets that are walkable and cycle-able, not dominated by cars. In transport, elevated cycleways and pedestrian roundabouts have appeared in Europe and Asia. These structures prevent road traffic infrastructures form impeding the fluid movement of cycling and walking – transport modes which allow people to stop and interact in a city more easily and often than driving.

At a meeting held in London last year to establish the UK’s chapter to the City Protocol Society, Keith Coleman of Capgemini offered a different view by comparing the growth in size of cities to the structure of the world’s largest biological organisms. In particular, Keith contrasted the need to provide infrastructure – such as the Pando forest in Utah, a single, long-lived and vastly extensive root system supporting millions of individual trees that live, grow and die independently – with the need to provide capabilities – such as those encoded in the genes of the Neptune sea grass, which is not a single organism, but rather a genetically identical colony which collectively covers 5% of the Mediterranean sea floor.

The Collective Research Initiatives Trust‘s study of Mumbai, “Being Nicely Messy“, Colin Rowe and Fred Koetter’s “Collage City“, Manu Fernandez’s “Human Scale Cities” project and CHORA’s Taiwan Strait Atlas project have all suggested an approach to urban systems that is more like the Neptune sea grass than the Pando forest: the provision of a “toolkit” for individuals and organisations to apply in their local context

My own work, initially in Sunderland, was similarly informed by the Knight Foundation’s report on the Information Needs of Communities, to which I was introduced by Conn Crawford of Sunderland City Council. It counsels for a process of engagement and understanding between city institutions and communities, in order that the resources of large organisations can be focused on providing the information and services that can be most effectively used by individual citizens, businesses and social organisations.

(The Bristol Pound, a local currency intended to encourage and reinforce local trading synergies.)

Kelvin Campbell of Urban Initiatives has perhaps taken this thinking furthest in the urban context in his concept of “Massive Small” and the “urban operating system”. Similar thinking appears throughout research on resilience in systems such as cities, coral reefs, terrorist networks and financial systems, as described by Andrew Zolli and Ann Marie Healy in “Resilience: Why Things Bounce Back“. And it is reflected in the work that many researchers and professionals across fields as diverse as city planning, economics and technology are doing to understand how institutional city systems can engage effectively with “informal” activity in the economy.

In IBM we have adapted our approach too. To take one example, a few years ago we launched our “Global Entrepreneur” programme, through which we engage directly with small, startup businesses using technology to develop what we call “Smarter Planet” and “Smarter Cities” solutions. These businesses are innovating in specific markets that they understand much better than we do; using operating models that IBM does not have. In turn, IBM’s resources can help them build more resilient solutions more quickly and cost-effectively, and reach a wider set of potential customers across the world.

A civic infrastructure that combines economics and technology and that, whilst it has a long history,  is starting to evolve rapidly, is the local currency. Last year Bristol became the fifth place in the UK to launch its own currency; whilst in Switzerland an alternative currency, the Wir, is thought to have contributed to the stability of the Swiss economy for the last century by providing an alternative, more flexible basis for debt, by allowing repayments to made in kind through bartering, as well as in currency.

Such systems can promote local economic synergy, and enable the benefits of capital fluidity to be adapted to the needs of local contexts. And from innovations in mobile banking in Africa to Birmingham’s DropletPay SmartPhone payment system, they are rapidly exploiting new technologies. They are a clear example of a service that city and economic institutions can support; and that can be harnessed and used by individuals and organisations anywhere in a city ecosystem for the purposes that are most important and valuable to them.

IMG-20121104-00606

(The Co-operative Society building at Avoncroft Museum of Historic Buildings)

Co-operative Governance

It’s increasingly obvious that on their own, traditional businesses and public and civic institutions won’t deliver the transformations that our cities, and our planet, need. The restructuring of our economy, cities and society to address the environmental and demographic challenges we face requires that social, environmental and long term economic goals drive our decisions, rather than short term financial returns alone.

Alternatives have been called for and proposed. In her speech ahead of the Rio +20 Summit, Christine Lagarde, Managing Director of the International Monetary Fund, said that one of the challenges for achieving a sustainable, equitably distributed return to growth following the recent economic challenges was that “externalities” such as social and environmental impacts are not currently included in the prices of goods and services.

I participated last year in a panel discussion at the World Bank’s “Rethinking Cities” conference which asked whether including those costs would incent consumers to chose to purchase sustainably provided goods and services. We examined several ways to create positive and negative incentives through pricing; but also examples of simply “removing the barriers” to making such choices. Our conclusion was that a combination of approaches was needed, including new ideas from game theory and technology, such as “open data”; and that evidence exists from a variety of examples to prove that consumer behaviour can and does adapt in response to well designed systems.

In “Co-op Capitalism“, Noreena Hertz proposed an alternative approach to enterprise based on social principles, where the objectives of collective endeavours are to return broad value to all of their stakeholders rather than to pay dividends to financial investors. This approach has a vital role in enabling communities across the entirety of city ecosystems to harness and benefit from technology in a sustainable way, and is exemplified by innovations such as MyDex in personal information management, Carbon Voyage in transport, and Eco-Island in energy.

New forms of cooperation have also emerged from resilience research, such as “constellations” and “articulations”. All of these approaches have important roles to play in specific city systems, community initiatives and new businesses, where they successfully create synergies between the financial, social and economic capabilities and needs of the participants involved.

But none of them directly address the need for cities to create a sustainable, cohesive drive towards a sustainable, equitable, successful future.

(Photo by Greg Marshall of the rocks known as “The Needles” just off the coast of the Isle of Wight; illustrating the potential for the island to exploit wave and tidal energy sources through the Eco-Island initiative)

In “Smart Ideas for Everyday Cities“, I described an approach that seems to be emerging from the cities that have made the most progress so far. It involves bringing together stakeholders across city systems – representatives of communities; city institutions; owners and operators of city systems and assets such as buildings, transportation and utilities; Universities and schools; and so on – into a group that can not only agree a vision and priorities for the city’s future; but that is empowered to take collective decisions accordingly.

The initiatives agreed by such a group will require individual “special purpose vehicles” (SPVs) to be created according to the specific set of stakeholder interests involved in each case – such as public/private partnerships to build infrastructure or Community Interest Companies and Energy Service Companies to operate local energy schemes. (There are some negative connotations associated with SPVs, which have been used in some cases by private organisations seeking to hide their debt or ownership; but in the Smarter Cities context they are frequently associated with more positive purposes).

Most importantly, though: where a series of such schemes and commercial ventures are initiated by a stable collaboration within a city, investors will see a reliable decision-making process and a mature understanding of shared risk and its management; making each individual initiative more likely to attract investment.

In his analysis of societal responses to critical environmental threats, Jared Diamond noted in his 2005 book “Collapse” that successful responses often emerge when choices are taken by leaders with long-term vested interests, working closely with their communities. In a modern economy, the interests of stakeholders are driven by many timescales – electoral cycles, business cycles, the presence of commuters, travellers and the transient and long-term residents of the city, for example. Bringing those stakeholders together can create a forum that transcends individual timescales, creating stability and the opportunity for a long-term outlook.

A challenge for 2013: better stories for Smarter Cities

Some cities are seizing the agenda for change that I have described in this article; and the very many of us across countries, professions and disciplines who are exploring that agenda are passionate about helping them to do so successfully.

In their report “Cities Outlook 1901“, Centre for Cities explored the previous century of urban development in the UK, examining why at various times some cities thrived and some did not. They concluded that actions taken by cities in areas such as planning, policy, skills development and economic strategy could have significant effects on their economic and social prosperity relative to others.

The need for cities to respond to the challenges and opportunities of the future using the old, new and evolving tools at their disposal is urgent. In the 20th Century, some cities suffered a gradual decline as they failed to respond successfully to the changes of their age. In the 21st Century those changes will be so striking, and take place so quickly, that failing to meet them could result in a decline that is catastrophic.

But there is a real impediment to our ability to apply these ideas in cities today: a lack of common understanding.

(Matthew Boulton, James Watt and William Murdoch, Birmingham’s three fathers of the Industrial Revolution, photographed by Neil Howard)

As the industrial and information revolutions have led our world to develop at a faster and faster pace, human knowledge has not just grown dramatically; it has fragmented to an extraordinary extent.

Consequently, across disciplines such as architecture, economics, social science, psychology, technology and all the many other fields important to the behaviour of cities, a vast and confusing array of language and terminology is used – a Tower of Babel, no less. The leaders of many city institutions and businesses are understandably not familiar with what they can easily perceive as jargon; and new ideas that appear to be presented in jargon are unlikely to be trusted.

To address the challenge, those of us who believe in these new approaches to city systems need to tell better stories about them; stories about individuals and their lives in the places where they live and work; how they will be more healthy, better equiped to support themselves, and able to move around freely in a pleasant urban environment.

Professor Miles Tight at the University of Birmingham and his colleagues in the “Visions 2030” project have applied this idea to the description of future scenarios for transportation in cities. They have created a series of visually appealing animated depictions of everyday scenes in city streets and places that could be the result of the various forces affecting the development of transport over the next 20 years. Malcolm Allan, a colleague in the Academy of Urbanism, helps cities to tell “stories about place” as a tool for envisaging their future development in a way that people can understand and identify with. And my colleagues in IBM Research have been exploring more generally how storytelling can enable the exchange of knowledge in situations where collaborative creativity is required across multiple domains of specialisation.

If we can bring our knowledge of emerging technologies and new approaches to urbanism into conversations about specific places in the form of stories, we will build trust and understanding in those places, as well as envisioning their possible futures. And that will give us a real chance of achieving the visions we create. This is what I’ll be concentrating on doing in 2013; and it looks like being an exciting year.

(It’s been much longer than usual since I last wrote an article for this blog; following an extended break over Christmas and the New Year, I’ve had a very busy start to 2013. I hope to resume my usual frequency of writing for the rest of the year.

And finally, an apology: in my remarks on the panel discussion following Sir Peter Hall’s lecture at the Crystal, I gave a very brief summary of some of the ideas described in this article. In particular, I used the term “Massive / Small” without attributing it to Kelvin Campbell and Urban Initiatives. My apologies to Kelvin, whose work and influence on my thinking I hope I have now acknowledged properly).

Smart ideas for everyday cities

(Artist’s impression of the new Birmingham City University campus, currently under construction alongside Millennium Point and the new Eastside City Park. Image by Birmingham City University.)

The outcomes that matter to cities and to the people who live and work in them, such as wellbeing, job creation, economic growth, and social mobility, are complex, compound results of the behaviour of a combination of city systems such as education, public safety, transport and the economy.

Because those systems are operated by separate organisations – if they are even “operated” as systems at all – many “Smarter City” discussions are concerned with “breaking down silos” in order to integrate them.

As Fast Company’s 2010 survey of the “Top 20 Smartest Cities on the Planet“, illustrates, many of the earliest and highest profile examples of cities pursuing “Smart” agendas were governed by hierarchical, integrated systems of authority which helped them to address this challenge – often because they were new or expanding cities in rapidly growing economies.

Elsewhere, governance is more complex. Particularly in the UK, services such as utilities and transport are operated by private sector providers contracted to deliver performance and financial measures that cannot easily be changed. It is hard enough to agree common objectives across a city; it can be even harder to agree how to make investments to achieve them by transforming city systems that are subcontracted in this way.

But that is what cities must somehow do. And in recent weeks I have valued some open and frank discussions between city leaders, financiers and developers, policy makers, academics, architects, planners – and even some technologists – that have revealed some simple ideas that are common to those cities that have demonstrated how it can be done.

Start new partnerships

Most initiatives that contribute to city-wide outcomes require either co-ordinated action across city systems; or an investment in one system to achieve an outcome that is not a simple financial return within that system. For example, the ultimate objective of many changes to transportation systems is to improve economic growth and productivity, or to reduce environmental impact.

(The members of Birmingham’s Smart City Commission)

A programme of initiatives with these characteristics therefore involves the resources and interests of great many organisations within a city; and may lead to the creation of entirely new organisations. Special purpose vehicles such as  the “Eco-Island” Community Interest Company on the Isle of Wight and the Birmingham District Energy Company are two such examples.

New partnerships between these organisations are needed to agree city-wide objectives, and to co-ordinate their activities and investments to achieve them. Depending on local challenges,  opportunities, and relationships those partnerships might include:

  • Local Authorities and other public sector agencies co-operating to operate shared services;
  • Central government bodies involved in negotiations of policy, responsibility and financing such as “City Deals“;
  • Leaders from cities’ business, entrepreneurial and SME communities;
  • Local Universities who may have domain expertise in city systems; and who provide skills into the local economy;
  • Neighbourhood, faith and community associations;
  • Representatives of the third sector – charities, voluntary associations, social enterprises and co-operatives;
  • Industry sector and cultural organisations;
  • Service and technology providers who form partnerships with cities; for example, Amey have a 25-year PFI partnership with Birmingham; IBM operate joint research programmes with cities such as Dublin and Moscow; and Cisco have partnerships with cities such as Songdo in South Korea;
  • Financiers, for example local venture capitalists such as MidVen in the West Midlands, or banks and financial services companies with a strong local presence;
  • … and there are many other possibilities.

To attract the various forms of investment that are required to support a programme of “Smart” initiatives, these partnerships need to be decision-making entities, such as Manchester’s “New Economy” Commission, not discussion groups. They need to take investment decisions together in the interest of their shared objectives; and they need a mature understanding and agreement of how risk is shared and managed across those investments.

Such partnerships do not start by adopting the approach of any single member; they start with a genuine discussion to build understanding and consensus.

For example, public and private sector organisations both tend to assume that the other is better placed to accept risk. Private sector organisations make profits and invest them in new products and markets, so surely they can take on risk? Public sector organisations are funded to predictable levels through taxation, so surely they can take on risk?

In reality, the private sector has lost jobs, faced falling profits, and seen many businesses fail in recent years. Meanwhile, public sector is burdened with unprecedented budget cuts and in many cases significant deficits that are threatening their ability to deliver frontline services. Both are therefore risk averse.

A working partnership will only form if such issues are discussed openly so that an equitable consensus is achieved.

(A video describing the partnership between IBM and Dubuque, Iowa, which aims to develop a model for sustainable communities of less than 200,000 people)

Size matters; but not absolutely

Manchester’s New Economy Commission have taken a particular approach that is commensurate to the size of the Greater Manchester area and economy, coordinated by the Association of Greater Manchester Authorities (AGMA). But their approach is not the only one.

Elsewhere, Southampton City Council are creating a “Virtual Local Authority”, together with other authorities around the country, as a vehicle to approach the bond market for a £100 million investment. They believe such a vehicle can create an investment opportunity of similar size to Birmingham’s “Energy Savers” scheme.

“Size” in these terms can mean geographic area; population; economic value or market potential. It is interpreted differently by international investment funds; or by local interests such as property and business owners. And it is balanced against complexity: one reason that some more modestly sized cities such as Sunderland and Peterborough have made so much early progress is their relative political and economic simplicity.

Vision, Transparency and Consistency

Whatever specific form a local partnership takes, it needs to demonstrate certain behaviours and characteristics in order that its initiatives and proposals are attractive to investors. They are straightforward in themselves;  but take time to establish amongst a new group of stakeholders:

  • A clear, agreed and consistent set of goals;
  • A mutual understanding of risk; how it is shared; and how it is managed;
  • An ability to express investment opportunities, including the risks associated with them, to potential investors;
  • A track record of taking transparent, consistent decisions to coordinate projects and investments against their objectives.

This is the model that in many cases will deliver Smarter City projects and programmes in everyday cities: a model of several organisations coordinating multiple investments, rather than individual organisations managing their own budgets.

(Philippe Petit’s remarkable tightrope walk between the towers of the World Trade Centre in 1974 at a height of 417 metres. Image from Carolina Pastrana)

Match risks to the right investors

There are many sources of funding for Smart City initiatives; each has different requirements and capabilities, and is attracted by specific risks and rewards. And with traditional markets such as property stagnant in developed economies, new opportunities for investment are being sought.

However, with a high degree of uncertainty in the prospects for future economic growth, it is harder than ever to assess the likely returns from investment opportunities. And when those opportunities are presented as new forms of partnership, special purpose vehicles or social enterprises, or by public sector authorities adopting revenue-generating models to compensate for dramatic cuts in their traditional funding, that assessment becomes even harder.

There is no simple answer to this challenge; but once again progress to resolving it will begin with conversations that build understanding. Ultimately, investors will be attracted to proposals with well defined and managed risks from organisations exhibiting good governance; and that can demonstrate a track record of making clear decisions to achieve their goals.

Of course, some Smart City projects are highly innovative, and may be too risky for investors accustomed to supporting infrastructure projects such as transportation and property development.  This is particularly the case for schemes that require a change in consumer behaviour – for example, switching from private car ownership to the use of “car clubs” or car-sharing schemes.

These sorts of project may be more suited to technology or service providers who might invest in pilot schemes in order to develop or prove new offerings which, if successful, can generate follow-on sales elsewhere. The “First of a Kind” programme in IBM’s Research division is one example or a formal programme that is operated for this purpose.

Similarly, Venture Capital will make investments in new businesses with higher risk profiles – demanding, of course, a commensurately higher level of return. And government backed innovation funds such as the European Union FP7 programme or the UK’s Technology Strategy Board are also available.

All of these organisations, of course, are looking to invest in projects which are initially small scale; but that will eventual develop into a widespread market opportunity. They will therefore be drawn to projects that take place in a stable, supported context from which that opportunity can be developed – in other words, the same level of partnership working, governance, transparency and consistency.

(A successful urban intervention: the “Container City” incubation hub for social enterprises operated by Sustainable Enterprise Strategies (SES) in Sunderland. SES support hundreds of new businesses and social enterprises in Sunderland every year, with a combined turnover of around £25m, and employing thousands of people from the city’s most challenged communities. 82% of the people they help to start a business or a social enterprise were previously unemployed, and after 2 years nearly three quarters are still in business.)

Exploit success to build momentum

Most cities need to stimulate economic growth, and to revitalise economically and socially deprived neighbourhoods.

It may be more effective to achieve those goals through a series of related steps, than through a single initiative, however:

1. Invest to reinforce growth that is already taking place – it may be more straightforward in the first place to use mechanisms such as tax increment financing or private investment to accelerate growth that is already taking place; such as last week’s announcement by David Cameron of additional government and corporate investment in London’s “Tech City” cluster.

2. Retain the financial benefits resulting from growth – Manchester’s New Economy Commission is able to retain the benefits of the growth the stimulate in the form of increased tax returns, in order to reinvest in subsequent initiatives. Their early successes built confidence amongst investors in the viability of their ongoing programme.

3. Recycle funds to stimulate new growth – having built an initial level of confidence, returns from early projects can be reinvested in areas with more significant challenges; where new infrastructures such as broadband connectivity or support services are required to attract new business activity.

Everywhere is different

Whilst the ideas I’ve described in this article do seem to be emerging as common characteristics of successful Smarter City programmes; we are still at a relatively early stage.

In particular, not enough examples exist for us to reliably separate generally viable elements of these approaches from those aspects that are strongly tied to specific local contexts.

Every city of course is different; and in this context has different access to transport systems, and to national and international supply chains and markets; has different demographics and social character; and different economic capacity. Even within a country, the governance of cities and regions varies – in the UK, for example, the relationships between Central, County, District, City and Borough Councils are subtly different everywhere. So each city still needs to find its own path.

But the first step is simple. There is nothing stopping cities from having the conversations that will get them started. And those that have done so are proving that it works.

I’d like to thank the delegates and attendees at many workshops and meetings I’ve attended in recent weeks; the discussions I’ve been lucky enough to participate in as a result have contributed significantly to the views expressed in this article. They include:

No-one is going to pay cities to become Smarter

(The Bristol Pound, a local currency intended to encourage and reinforce local trading synergies.)

It’s been a busy week for cities in the UK; and we should draw important insights from its events.

On Monday, the Technology Strategy Board (TSB); Department of Business, Innovation and Skills; and the British Standards Institution were the sponsors of a meeting in London to establish a UK “Future Cities Network”. One of their objectives was to build a consensus from the UK to contribute to the City Protocol initiative launched at the Smart City Expo in Barcelona this month.

Wednesday and Thursday saw the society of IT managers in local government (SOCITM) hold its annual conference in Birmingham. This community includes the technology leaders of the UK’s city authorities; many of them are driving the transformation to shared public services in their regions; and exploring the opportunities this transformation provides to improve service quality and outcomes, as well as reducing costs.

Finally, it’s been a week of mixed news for Future Cities: the Technology Strategy Board shortlisted 4 UK cities as the finalists in their competition to host a £25 million “Future Cities Demonstrator” project.

This is clearly fantastic news for the cities concerned – London, Glasgow, Peterborough and Bristol – and they should be congratulated for their achievement. But it also means that 22 other cities who submitted proposals to the TSB have learned over the past two days that they will not benefit from this investment.

Whilst the TSB’s competition – and their progress in setting up the related “Future Cities Catapult Centre” – have been great catalysts to encourage cities in the UK to shape their thinking about the future, the decisions this week throw the real challenge they face into sharp focus:

No-one is going to pay cities to become Smarter.

The TSB investment of £25 million is astonishingly generous; but it will nevertheless be only a small contribution to the city that receives it; and the role of innovation stimulus organisations such as the TSB and the European Union’s FP7 programme is only to fund the first, exploratory initiatives; not to support their widespread adoption by cities everywhere.

The UK government’s “City Deals” are a great innovation that will give cities more autonomy over taxation and spending. But in reality they will not provide significant sums of new money; especially when compared to the scale of the financial challenge city authorities face. As the Local Government Association commented in their report “Funding outlook for councils from 2010/11 to 2019/20“:

“… councils will not be able to deliver the existing service offer by the end of this decade. Fundamental change is needed to one or both of … the way local services are funded and organised [or the] statutory and citizen expectations of what councils will provide.”

(A station on London’s Underground railway under construction in 1861, from the Science and Society Picture Library)

Some of these changes will be achieved through public sector transformation. The London Borough of Newham, for example, were recognised at the SOCITM Awards Dinner this week for their achievements in reducing costs and improving service quality through implementation of a successful transformation to online channels for many services.

This is a remarkable achievement for an authority serving one of London’s least affluent boroughs, demanding careful and innovative thinking about the provision of digital services to communities and citizens who may not have access to broadband connectivity or traditional computers. Newham have concentrated on the delivery of services through mobile telephones – which are much more widely owned than PCs and laptops – and  in contexts where a friend or family member assists the ultimate service user.

But local authority transformations of this sort won’t create intelligent transport solutions; or trigger a transformation to renewable energy sources; or improve the resilience of food supply to city populations.

In the UK, many of those services are supported by physical infrastructures that were first constructed in the Victorian era, more than a century ago. Through pride and vision – and the determination to out-do each other – the industrialists, engineers and philanthropists who created those infrastructures dramatically over-engineered them. We are now using them to support many times the population that existed when they were designed and built.

As competition for resources such as food, energy and water intensifies, driven by both a growing global population and by rapid improvements in living standards in emerging economies, these infrastructures will increasingly struggle to support us at the cost, and with the level of resilience, that we have become accustomed to. And whilst they are now often owned and operated by private sector organisations, or by public-private partnerships, the private sector is in no better position to address the challenges faced by cities than the public sector.

In the recent recession and the current slow recovery from it, many companies have failed, lost business, and reduced their workforce. And as the Guardian reported this week, whilst many business leaders take sustainability seriously and attempt to build it into their business models, the financial markets do not recognise those objectives in share prices; and do not offer investment vehicles that support them.

So if government and the financial markets can’t or won’t pay cities to become smarter, how are we going to re-engineer city infrastructures to be more intelligent and sustainable?

In my view, the key is to look at four ways in which money is already spent; and to harness that spending power to achieve the outcomes that cities need.

1. Encourage Venture Capital Investment

(Photo of the “Container City” incubation hub for social enterprises operated by Sustainable Enterprise Strategies in Sunderland)

The current economic climate has not stopped investors and venture capitalists from investing in exciting new businesses. Some of the businesses they are investing in are using technology to offer innovative services in cities. For example, Shutl and Carbon Voyage both use recently emerged technologies to match capacity and demand across networks of transport suppliers.

The systems that these businesses operate have the potential to catalyse local economic trading opportunities – and in so doing, safeguard or create jobs; to lower the carbon footprint of travel and distribution within cities; and to offer new and valuable services to city residents, workers and visitors.

Several cities, including Dublin and Sunderland, are engaged in an ongoing conversation with their local community of technology, business and social entrepreneurs to encourage and support them in developing new, sustainable business models of this sort that promote the social, environmental and economic objectives of the city.

These investments are not on the scale of the tens or hundreds of millions of pounds that would be required to completely overhaul city infrastructures; but they are complemented by the revenues the businesses earn. In this way, consumer, retail and business spending can be harnessed to contribute to the evolution of Smarter Cities.

2. Build Markets, not Infrastructure

Transport is an example of a city system that is not usually considered a marketplace; that’s one of the reasons why the entrepreneurial businesses that I mentioned in the previous section, which effectively create new markets for transport capacity, are so innovative.

But some city systems  already operate as marketplaces; such as energy in the UK, where consumers are free to switch between providers relatively easily. The fact that city infrastructures are already market-like to a degree is combining with trends in engineering to create exciting new developments.

As both international and national policies to encourage sustainable energy generation and use take effect; and as some fossil fuels become scarcer or more expensive, new power generation capacity is increasingly based on renewable energy sources such as wind, hydro-electric, tidal, geo-thermal and biological sources.

A challenge associated with some of those energy sources is that their generating capacity is small compared to their cost and physical impact. Wind farms, for example, take up vastly more space than gas- and coal-powered energy generation facilities, and produce only a fraction of their output.

(Photo by Greg Marshall of the rocks known as “The Needles” just off the coast of the Isle of Wight; illustrating the potential for the island to exploit wave and tidal energy sources)

However, for other power sources, a reduction in scale could be an advantage. The European Bioenergy Research Institute (EBRI) at Aston University in Birmingham, for example, exploit technologies that can recover energy from sewage and food waste. Those technologies can already be implemented on a small-enough scale that the city of Birmingham is setting up a local power distribution company to exploit a bio-energy power generation plant that EBRI will operate at Aston University. And the New Optimists, a community of scientists and industry leaders in Birmingham are considering on Birmingham’s behalf the possibility that such generation technology could eventually operate in city neighbourhoods and communities, or even within individual residences.

For all of these reasons, there is considerable interest at present in the formation of new, localised marketplaces in power generation and consumption. Ecoisland, a community initiative on the Isle of Wight, is perhaps at the forefront of this movement. Their objective is to make the Isle of Wight self-sufficient in energy; because their approach to meeting that objective is to form a new market, they are winning considerable investment from the financial markets due to the profit-making potential of that market.

3. Procure Infrastructure Smartly

City Authorities and property developers spend substantial sums of money on city infrastructures and related services. But the requirements and scoring systems of those procurements are often very traditional, and create no incentive for the providers of infrastructure services to offer innovative solutions.

Some flagship projects – such as Stockholm’s congestion-charging scheme and the smart metering programme in Dubuque, for example – have shown the tremendous potential of “Smarter” solutions. But their effectiveness is to some degree specific to their local context; relatively high levels of taxation are acceptable in Scandinavian society, for example, in return for high quality public service outcomes. Such levels of taxation are not so acceptable elsewhere.

There is tremendous scope for more creative and innovative approaches to procurement of city services to encourage service providers to offer “Smarter” solutions; Birmingham Science City’s Jackie Homan describred some of those possibilities very eloquently recently. The more urgently city authorities adopt those approaches, the sooner they are likely to benefit from the innovation that their infrastructure partners have the potential to provide.

(The Olympic flame at Vancouver’s Winter Olympics photographed by Evan Leeson)

4. Work With Ethical Investors

Finally, notwithstanding the challenges described in the Guardian article that I linked to above, some financial institutions do offer support for “Smart” and sustainable initiatives.

Vancouver’s “Change Everything” online community, for example, was an early pioneer in exploiting the power of social media to support social and environmental initiatives; it was created by Vancouver’s Credit Union, Vancity, a financial institution with social objectives.

Similarly, Sustainable Enterprise Strategies, who provide crucial support and incubation services to businesses and social enterprises in the most challenged communities in Sunderland, are supported by the UK’s Co-Operative Bank; and IBM and Citi-Group have collaborated to create a financing solution for city’s to invest in Streetline’s “Smart Parking” solution, which has reduced both traffic congestion and environmental pollution in cities such as San Francisco.

These are just some of the ways in which financial institutions have already been engaged to support Smarter Cities initiatives. They can surely be persuaded to do so more extensively by proposals that may have social or environmental objectives, but that are also well-formed from a financial perspective.

“The future is already here – it’s just not evenly distributed”

All of the initiatives that I’ve described in this article are are already under way. As the science fiction author William Gibson memorably said – in what is now the last century – “the future is already here; it’s just not evenly distributed”.

We should not wait for new, large-scale sources of Smarter City funding to appear before we start to transform our cities – we cannot afford to; and it’s simply not going to happen. What we must do is look at the progress that is already being made by cities, entrepreneurs and communities across the world, and follow their example.

Inspirational Simpli-City

(Recycling bins in Curitiba, Brazil photographed by Ana Elisa Ribeiro)

In the past few years, terms such as “Smart Cities” and “Future Cities” have emerged to capture the widespread sense that the current decade is one in which trends in technology, the economy, demographics and the environment are coinciding in an exciting and meaningful way.

Common patterns have emerged in the technology platforms that enable us to address these economic, social and environmental challenges. For example, the “Digital Cities Exchange” research programme at Imperial College, London; the “FI-WARE” project researching the core platform for the “future internet”; the “European Platform for Intelligent Cities (EPIC)“; and IBM’s own “Intelligent Operations Centre” all share a similar architecture.

I think of these platforms as 21st Century “civic infrastructures”. They will provide services that can be composed into new city systems and local marketplaces. Those services will include the management of personal data and identity; authentication; local currencies; micro-payments; and the ability to access data about city systems, amongst others.

But whilst some trends in technology are technically cohesive and can be defined by a particular architecture – as was the case for client/server computing, distributed computing, the initial emergence of the mobile internet, or Service-Oriented Architecture (SOA) – other trends are more nebulous.

Five years ago, my role for IBM was to develop and evangelise the opportunities that social computing  and “Web 2.0” represented for our customers. Whilst various patterns emerged to express the ways in which technology at that time could provide new value to businesses, communities and individuals, no single technology or platform accompanied the trend. Rather, “Web 2.0” was the label for a period in time in which the internet and related technologies once again became a valuable source of innovation following the “dot.com crash”. Tim O’Reilly, widely credited with coining the term “Web 2.0”, acknowledged this interpretation in his “How to succeed in 2007” interview with CNN.

Cities are such complex systems of systems, and face such a multitude of challenges in a rich variety of contexts, that no single technology solution could possibly address them all. In fact an incredibly rich variety of technologies has already been used to create “Smart” systems in cities. But whilst I’m preparing an article that I hope to publish on this blog next week that lays out a framework for considering those technologies systematically, there’s a more fundamental observation that’s worth making:

Some of the technologies at the heart of urban innovations are incredibly simple.

15 years ago, I lived through the transformation of a city neighbourhood that illustrates this point. It involved community activism and crowdsourced information, enabled by an accessible technology – analogue photography.

As a University student in Birmingham, I lived in rented accommodation in the city’s Balsall Heath area. Balsall Heath has one of Birmingham’s largest Muslim communities, in addition to its substantial student population.

And, for the best part of half a century from the 1950s to the 1990s, it was Birmingham’s “red light” district, the centre of prostitution in the city.

At the time, Balsall Heath’s prostitution trade was so open that Cheddar Road – just across the street from the house that I lived in – was the only road in the UK with houses with “red light” front rooms.

Balsall Heath was clearly a district with substantial differences in culture – which were accommodated very peacefully, I should say. But in 1994, members of the Muslim community decided to change their neighbourhood. They put out old sofas and chairs on street corners, and sat on them each night, photographing anyone walking or driving around the area seeking prostitutes. Those simple steps tapped into the social motivations of those people and had a powerfully discouraging effect on them. Over the course of a year, prostitution was driven out of Balsall Heath for the first time in 50 years. It has never returned, and the district and its communities were strengthened as a result. The UK Prime Minister David Cameron has referred to the achievements of Balsall Heath’s community as an inspiration for his “Big Society” initiative.

I have just given a very simplified description of a complex set of events and issues; and in particular, I did not include the perspective of the working women who were perhaps the most vulnerable people involved. But this example of a simple technology (analogue photography) applied by a community to improve their district, with an understanding of the personal and social motivations that affect individual behaviour and choice, is an example that I have been regularly reminded of throughout my work in social media and Smarter Cities.

(Photo from Digital Balsall Heath of residents warning kerb-crawlers on Cheddar Road in the 1990s that they would be watched and recorded)

The city systems facing economic, demographic and environmental challenges today are immensely complex. They provide life-support for city populations – feeding, transporting, and educating them; providing healthcare; and supporting individuals, communities and businesses. As we continue to optimise their operation to support larger, more dense urban populations, maintaining their resilience is a significant challenge.

At the same time, though, the simplicity of Balsall Heath’s community action in the 1990s is inspirational; and there are many other examples.

Jaime Lerner started one of the earliest and most effective city recycling programmes in the world by harnessing the enthusiasm of children to influence the behaviour of their parents. In Mexico City a new “bartering market” allows residents to exchange recyclable waste material for food. In Kenya, SMS messages are used to optimise the distribution of malaria medication between local pharmacists; and in Australia, OzHarvest redistribute excess food from restaurants and hotels to charities supporting the vulnerable.

These innovations will not always be simply transferable from one city to another; but they could form the basis of a catalogue or toolkit of re-usable ideas, as was suggested by the Collective Research Initiatives Trust (CRIT) in their research on urban innovation in Mumbai, “Being Nicely Messy“, echoing Colin Rowe and Fred Koetter’s “Collage City“.

As I wrote recently in the article “Zen and the art of messy urbanism“, many of the Smart systems of tomorrow will be surprising innovations that cut across and disrupt the industry sectors and classifications of city systems that we understand today; and in order to provide food, energy, water, transport and other services to city populations, they will need to be robustly engineered. But drawing inspiration from good, simple ideas with their roots in human behaviour rather than new technology is surely a good starting point from which to begin our journey towards discovering them.

Soft Infrastructures For Smart Cities

Birmingham’s new Library, intended to foster conversations and the exchange of knowledge and ideas..

(I’ve recently begun guest blogging at UBM’s new Future Cities site; this was the first article I posted there. It builds on themes I first explored here in the article “The new architecture of Smart Cities“).

At Birmingham’s Smart City Commission, we have been trying to answer an interesting question: What makes the difference between a “smart city” and a city where smart projects take place?

“Smart” projects will occur everywhere in time. Human history is in part the story of our continual adoption of new technologies, and technologies like sensors, actuators, smartphones, analytics, and “big-data” will eventually be adopted across city systems such as transportation, energy, planning, and social services.

But if a city seeks to exploit new technologies across its systems in a coordinated way to address overall goals for regeneration, sustainability, and social and economic growth, how can that be achieved?

Some obvious characteristics can be observed in cities that have successfully pursued this agenda: They have a clear vision, championed by city leaders, and they have invested in technology initiatives such as broadband connectivity and open data.

That’s not enough, though. The behaviour of a city is the aggregate of the activity of the hundreds of thousands or millions of people who live, work, and relax there. A city will not achieve its goals through a smart strategy unless that strategy results in changes to systems that make a difference to all of those individuals.

The challenge for architects and designers is to create infrastructures and services that can become part of the fabric of city life. This will not be achieved simply by applying concepts such as citizen-centric principles to the design of smart city services. That is necessary, but not sufficient. The more important question is: Who has the ability to apply such approaches on behalf of all of the people within a city?

(The remainder of this article can be found on UBM’s Future Cities site, as “Why Cities need Communities“).

Why Open City Data is the Brownfield Regeneration Challenge of the Information Age

(Graphic of New York’s ethnic diversity from Eric Fischer)

I often use this blog to explore ways in which technology can add value to city systems. In this article, I’m going to dig more deeply into my own professional expertise: the engineering of the platforms that make technology reliably available.

Many cities are considering how they can create a city-wide information platform. The potential benefits are considerable: Dublin’s “Dublinked” platform, for example, has stimulated the creation of new high-technology businesses, and is used by scientific researchers to examine ways in which the city’s systems can operate more efficiently and sustainably. And the announcements today by San Francisco that they are legislating to promote open data and have appointed a “Chief Data Officer” for the city are sure to add to the momentum.

But if cities such as Dublin, San Francisco and Chicago have found such platforms so useful, why aren’t there more of them already?

To answer that question, I’d like to start by setting an expectation:

City information platforms are not “new” systems; they are a brownfield regeneration challenge for technology.

Just as urban regenerations need to take account of the existing physical infrastructures such as buildings, transport and utility networks; when thinking about new city technology solutions we need to consider the information infrastructure that is already in place.

A typical city authority has many hundreds of IT systems and applications that store and manage data about their city and region. Private sector organisations who operate services such as buses, trains and power, or who simply own and operate buildings, have similarly large and complex portfolios of applications and data.

So in every city there are thousands – probably tens of thousands – of applications and data sources containing relevant information. (The Dublinked platform was launched in October 2011 with over 3,000 data sets covering the environment, planning, water and transport, for example). Only a very small fraction of those systems will have been designed with the purpose of making information available to and usable by city stakeholders; and they certainly will not have been designed to do so in a joined-up, consistent way.

(A map of the IT systems of a typical organisation, and the interconnections between then)

The picture to the left is a reproduction of a map of the IT systems of a real organisation, and the connections between them. Each block in the diagram represents a major business application that manages data; each line represents a connection between two or more such systems. Some of these individual systems will have involved hundreds of person-years of development over decades of time. Engineering the connections between them will also have involved significant effort and expense.

Whilst most organisations improve the management of their systems over time and sometimes achieve significant simplifications, by and large this picture is typical of the vast majority of organisations today, including those that support the operation of cities.

In the rest of this article, I’ll explore some of the specific challenges for city data and open data that result from this complexity.

My intention is not to argue against bringing city information together and making it available to communities, businesses and researchers. As I’ve frequently argued on this blog, I believe that doing so is a fundamental enabler to transforming the way that cities work to meet the very real social, economic and environmental challenges facing us. But unless we take a realistic, informed approach and undertake the required engineering diligence, we will not be successful in that endeavour.

1. Which data is useful?

Amongst those thousands of data sets that contain information about cities, on which should we concentrate the effort required to make them widely available and usable?

That’s a very hard question to answer. We are seeking innovative change in city systems, which by definition is unpredictable.

One answer is to look at what’s worked elsewhere. For example, wherever information about transport has been made open, applications have sprung up to make that information available to travellers and other transport users in useful ways. In fact most information that describes the urban environment is likely to quickly prove useful; including maps, land use characterisation, planning applications, and the locations of shops, parks, public toilets and other facilities .

The other datasets that will prove useful are less predictable; but there’s a very simple way to discover them: ask. Ask local entrepreneurs what information they need to start new businesses. Ask existing businesses what information about the city would help them be more successful. Ask citizens and communities.

This is the approach we have followed in Sunderland, and more recently in Birmingham through the Smart City Commission and the recent “Smart Hack” weekend. The Dublinked information partnership in Dublin also engages in consultation with city communities and stakeholders to prioritise the datasets that are made available through the platform. The Knight Foundation’s “Information Needs of Communities” report is an excellent explanation of the importance of taking this approach.

2. What data is available?

How do we know what information is contained in those hundreds or thousands of data sets? Many individual organisations find it difficult to “know what they know”; across an entire city the challenge is much harder.

Arguably, that challenge is greatest for local authorities: whilst every organisation is different, as a rule of thumb private sector companies tend to need tens to low hundreds of business systems to manage their customers, suppliers, products, services and operations. Local authorities, obliged by law to deliver hundreds or even thousands of individual services, usually operate systems numbering in the high hundreds or low thousands. The process of discovering, cataloguing and characterising information systems is time-consuming and hence potentially expensive.

The key to resolving the dilemma is an open catalogue which allows this information to be crowdsourced. Anyone who knows of or discovers a data source that is available, or that could be made available, and whose existence and contents are not sensitive, can document it. Correspondingly, anyone who has a need for data that they cannot find or use can document that too. Over time, a picture of the information that describes a city, including what data is available and what is not, will build up. It will not be a complete picture – certainly not initially; but this is a practically achievable way to create useful information.

3. What is the data about?

The content of most data stores is organised by a “key” – a code that indicates the subject of each element of data. That “key” might be a person, a location or an organisation. Unfortunately, all of those things are very difficult to identify correctly and in a way that will be universally understood.

For example, do the following pieces of information refer to the same people, places and organisations?

“Mr. John Jones, Davis and Smith Delicatessen, Harbourne, Birmingham”
“J A Jones, Davies and Smythe, Harborne, B17”
“The Manager, David and Smith Caterers, Birmingham B17”
“Mr. John A and Mrs Jane Elizabeth Jones, 14 Woodhill Crescent, Northfield, Birmingham”

This information is typical of what might be stored in a set of IT systems managing such city information as business rates, citizen information, and supplier details. As human beings we can guess that a Mr. John A Jones lives in Northfield with his wife Mrs. Jane Elizabeth Jones; and that he is the manager of a delicatessen called “Davis and Smith” in Harborne which offers catering services. But to derive that information we have had to interpret several different ways of writing the names of people and businesses; tolerate mistakes in spelling; and tolerate different semantic interpretations of the same entity (is “Davis and Smith” a “Delicatessen” or a “Caterer”? The answer depends on who is asking the question).

(Two views of Exhibition Road in London, which can be freely used by pedestrians, for driving and for parking; the top photograph is by Dave Patten. How should this area be classified? As a road, a car park, a bus-stop, a pavement, a park – or something else? My colleague Gary looks confused by the question in the bottom photograph!)

All of these challenges occur throughout the information stored in IT systems. Some technologies – such as “single view” – exist that are very good at matching the different formats of names, locations and other common pieces of information. In other cases, information that is stored in “codes” – such as “LHR” for “London Heathrow” and “BHX” for “Birmingham International Airport” can be decoded using a glossary or reference data.

Translating semantic meanings is more difficult. For example, is the A45 from Birmingham to Coventry a road that is useful for travelling between the two cities? Or a barrier that makes it difficult to walk from homes on one side of the road to shops on the other? In time semantic models of cities will develop to systematically reconcile such questions, but until they do, human intelligence and interpretation will be required.

4. Sometimes you don’t want to know what the data is about

Sometimes, as soon as you know what something is about, you need to forget that you know. I led a project last year that applied analytic technology to derive new insights from healthcare data. Such data is most useful when information from a variety of sources that relate to the same patient is aggregated together; to do that, the sort of matching I’ve just described is needed. But patient data is sensitive, of course; and in such scenarios patients’ identities should not be apparent to those using the data.

Techniques such as anonymisation and aggregation can be applied to address this requirement; but they need to be applied carefully in order to retain the value of data whilst ensuring that identities and other sensitive information are not inadvertently exposed.

For example, the following information contains an anonymised name and very little address information; but should still be enough for you to determine the identity of the subject:

Subject: 00764
Name: XY67 HHJK6UB
Address: SW1A
Profession: Leader of a political party

(Please submit your answers to me at @dr_rick on Twitter!)

This is a contrived example, but the risk is very real. I live on a road with about 100 houses. I know of one profession to which only two people who live on the road belong. One is a man and one is a woman. It would be very easy for me to identify them based on data which is “anonymised” naively. These issues become very, very serious when you consider that within the datasets we are considering there will be information that can reveal the home address of people who are now living separately from previously abusive partners, for example.

5. Data can be difficult to use

(How the OECD identified the “Top 250 ICT companies” in 2006)

There are many, many reasons why data can be difficult to use. Data contained within a table within a formatted report document is not much use to a programmer. A description of the location of a disabled toilet in a shop can only be used by someone who understands the language it is written in. Even clearly presented numerical values may be associated with complex caveats and conditions or expressed in quantities specific to particular domains of expertise.

For example, the following quote from a 2006 report on the global technology industry is only partly explained by the text box shown in the image on the left:

“In 2005, the top 250 ICT firms had total revenues of USD 3 000 billion”.

(Source: “Information Technology Outlook 2006“, OECD)

Technology can address some of these issues: it can extract information from written reports; transform information between formats; create structured information from written text; and even, to a degree, perform automatic translation between languages. But doing all of that requires effort; and in some cases human expertise will always be required.

In order for city information platforms to be truly useful to city communities, then some thought also needs to be given for how those communities will be offered support to understand and use that information.

6. Can I trust the data?

Several British banks have recently been fined hundreds of millions of dollars for falsely reporting the interest rates at which they are able to borrow money. This information, the “London InterBank Offered Rate” (LIBOR) is an example of open data. The Banks who have been fined were found to have under-reported the interest rate at which they were able to borrow – this made them appear more creditworthy than they actually were.

Such deliberate manipulation is just one of the many reasons we may have to doubt information. Who creates information? How qualified are they to provide accurate information? Who assesses that qualification and tests the accuracy of the information?

For example, every sensor which measures physical information incorporates some element of uncertainty and error. Location information derived from Smartphones is usually accurate to within a few meters when derived from GPS data; but only a few hundred meters when derived by triangulation between mobile transmission masts. That level of inaccuracy is tolerable if you want to know which city you are in; but not if you need to know where the nearest cashpoint is. (Taken to its extreme, this argument has its roots in “Noise Theory“, the behaviour of stochastic processes and ultimately Heisenberg’s Uncertainty Principle in Quantum Mechanics. Sometimes it’s useful to be a Physicist!).

Information also goes out of date very quickly. If roadworks are started at a busy intersection, how does that affect the route-calculation services that many of us depend on to identify the quickest way to get from one place to another? When such roadworks make bus stops inaccessible so that temporary stops are erected in their place, how is that information captured? In fact, this information is often not captured; and as a result, many city transport authorities do not know where all of their bus stops are currently located.

I have barely touched in this section on an enormously rich and complex subject. Suffice to say that determining the “trustability” of information in the broadest sense is an immense challenge.

7. Data is easy to lose

(A computer information failure in Las Vegas photographed by Dave Herholz)

Whenever you find that an office, hotel room, hospital appointment or seat on a train that you’ve reserved is double-booked you’ve experienced lost data. Someone made a reservation for you in a computer system; that data was lost; and so the same reservation was made available to someone else.

Some of the world’s most sophisticated and well-managed information systems lose data on occasion. That’s why we’re all familiar with it happening to us.

If cities are to offer information platforms that local people, communities and businesses come to depend on, then we need to accept that providing reliable information comes at a cost. This is one of the many reasons that I have argued in the past that “open data” is not the same thing as “free data”. If we want to build a profitable business model that relies on the availability of data, then we should expect to pay for the reliable supply of that data.

A Brownfield Regeneration for the Information Age

So if this is all so hard, should we simply give up?

Of course not; I don’t think so, anyway. In this article, I have described some very significant challenges that affect our ability to make city information openly available to those who may be able to use it. But we do not need to overcome all of those challenges at once.

Just as the physical regeneration of a city can be carried out as an evolution in dialogue and partnership with communities, as happened in Vancouver as part of the “Carbon Talks” programme, so can “information regeneration”. Engaging in such a dialogue yields insight into the innovations that are possible now; who will create them; what information and data they need to do so; and what social, environmental and financial value will be created as a result.

That last part is crucial. The financial value that results from such “Smarter City” innovations might not be our primary objective in this context – we are more likely to be concerned with economic, social and environmental outcomes; but it is precisely what is needed to support the financial investment required to overcome the challenges I have discussed in this article.

On a final note, it is obviously the case that I am employed by a company, IBM, which provides products and services that address those challenges. I hope that you have noticed that I have not mentioned a single one of those products or services by name in this article, nor provided any links to them. And whilst IBM are involved in some of the cities that I have mentioned, we are not involved in all of them.

I have written this article as a stakeholder in our cities – I live in one – and as an engineer; not as a salesman. I am absolutely convinced that making city information more widely available and usable is crucial to addressing what Professor Geoffrey West described as “the greatest challenges that the planet has faced since humans became social“. As a professional engineer of information systems I believe that we must be fully cognisant of the work involved in doing so properly; and as a practical optimist, I believe that it is possible to do so in affordable, manageable steps that create real value and the opportunity to change our cities for the better. I hope that I have managed to persuade you to agree.

Tea, trust, and hacking – how Birmingham is getting Smarter

(The Custard Factory in Birmingham, at the heart of the city’s creative media sector)

As I described in my last article on this blog, the second meeting of Birmingham’s Smart City Commission last week addressed the question: “what will make Birmingham a Smart City, not just a place where a few “smart things” happen?

A large part of our discussion was concerned with the way a city-level Smart initiative can engage in and enable the communities and individuals who are already creating innovations in the city.

Nick Booth of Podnosh told the Commission about his work running social media surgeries in Birmingham. Nick helps these conversations to take place across the city’s communities; their purpose is to share an understanding of the power that social media can offer to communities to share resources more effectively and create social value. Nick and the volunteers he works with were recently honoured by the UK Prime Minister, David Cameron, with a “Big Society Award” in recognition of their work.

Social media is not the answer to all the challenges of Smarter Cities; but it still has tremendous unrealised potential to contribute to them. I’ve written many times on this blog about the fundamental changes that internet and social media technologies have caused in industries such as publishing, music and video over the last decade; but there are still many communities who are not yet making full use of them.

The physicist and biologist Geoffrey West’s work has shown that the nature of human social behaviour creates a feedback loop that will lead to ongoing growth in the size and density of city populations; and this in turn will create ongoing increases in the consumption of resources. As I remarked recently, there’s a growing consensus that we cannot continue to consume resources at the rate that this growth suggests. The solution, according to Professor West, is to create changes in the way that social and urban systems work. He is not prescriptive about what those changes should be; but in my view we have already seen enough examples of the use of social media to create sustainable systems to suggest that it could be at least part of the solution. Examples include Carbon Voyage‘s system for sharing taxis;  the business-to-consumer and business-to-business markets in sustainable food production operated by Big Barn and Sustaination; and the Freecycle recycling network.

(Photo of a Social Media Surgery held in Birmingham by Nick Booth. The surgeries have now spread across the UK and to five other countries).

The social media surgeries that Nick runs in Birmingham are helping communities to create similar innovations for themselves. What makes them work is the personal philosophy that’s applied by those who engage in them: a willingness to “turn up and have something to offer” in an informal conversation.

In answer to the question “what could make Birmingham a Smart City?”, Nick went so far as to reply “having more conversations over cups of tea”.

Nick’s comment reminded me of one of the quotations from Hagakure: The Book of the Samurai that appears in Jim Jarmusch’s film “Ghost Dog“:

Among the maxims on Lord Naoshige’s wall there was this one: Matters of great concern should be treated lightly. Master Ittei wrote: Matters of small concern should be treated seriously.

The point is that behaving “lightly” and taking the trouble to go to meet people in the environments where they are comfortable are profoundly important components of the approach that makes social media surgeries work. They create trust, and invite contribution and co-creation. And they encourage those who receive help at one surgery in turn to offer help at another.

Several of us came together in Birmingham last weekend for another conversation to create value in the city: the “Smart Hack” organised by Gavin Broughton at Birmingham Science Park Aston – an example of the increasingly common “hackathons” in which developers contribute their time and expertise to create new “apps” for the cities where they live. I was really pleased that IBM helped to fund the facilities and catering for the event.

(As a brief aside: the word “hacking” can mean many things; but when it is used by computer programmers in this context, it means using technology in a clever and innovative way to solve a problem. It is a very positive activity. Some programmers would even describe the astonishing technology innovations that made it possible to land on the moon in 1969 as “hacks”, and would consider doing so to be a demonstration of their deep respect and admiration for the scientists and engineers involved).

Following a series of introductory provocations about Open Data and Smarter Cities technologies, about thirty of us discussed the challenges and opportunities facing Birmingham that such approaches could apply to. Within a short time, an idea had been proposed which seemed viable – could an “app” be created to connect charities that distribute food to catering services who might have leftover food to spare?

(The discussion group at #SmartHack in Birmingham photographed by Sebastian Lenton)

The importance of addressing wastage and efficiency in urban food systems is something that I’ve written about before on this blog. The idea the Smart Hack team created was carefully formulated as a way to reduce food wastage that would be compliant with food safety and hygiene legislation. A smaller team of 10 or so coders subsequently spent Saturday and Sunday building an app based on the idea, fuelled by beer and pizza – and by their own willingness to contribute to their city.

In Birmingham’s Smart City Commission we discussed how conversations such as social media surgeries and the “Smart Hack” lead to innovation; and asked whether they represent a “soft infrastructure” for Smarter Cities in which it is just as worthwhile to invest as the “hard infrastructure” with which we are perhaps more familiar – open data portals, network infrastructure and so on. I certainly think they do. I’ve spent today at the “Smart Infrastructure” summit organised by IBM and the Start Initiative having a similar discussion focussed on challenges, opportunities and communities in Glasgow, and the same thinking seemed to apply there.

(Coders at work at the Birmingham “Smart Hack”, photographed by Sebastian Lenton)

This approach of engagement through conversation also offers cities a chance to deliver new “hard” infrastructures for Smarter Cities that are better suited to the needs of communities, innovators, citizens and businesses: by becoming a “listening” city, and by understanding and then removing some of the barriers that make it hard for small organisations to create successful innovations. That might mean investing in broadband or wireless internet coverage in areas that don’t have it; making public sector procurement processes more open to small businesses; or simply helping communities to win funding to build better places in which to come together to communicate and create ideas, such as the new “Container City” incubation facility for social enterprises in Sunderland.

The European Union recognised the importance of supporting social innovation this way in a recent report, “Empowering people, driving change – social innovation in the European Union“, and the European Commission’s president José Manuel Barroso will launch a social innovation competition on 1 October, the “Europe Social Innovation Prize“. The Guardian newspaper in the UK wrote an interesting article about these annoucements, and offering several other examples of the power of community-based social innovation.

If we are really going to make our cities “Smarter” and more successful, then we must allow all of the individuals and communities in cities to participate in that process. The way to start doing that is through conversations that build trust and create the environment for inclusive innovation. Tea, trust and hacking. It’s what will make Birmingham – and every other city – Smarter.

(This article and the events it describes are the result of the activities of many people, several of whom appear in the photographs I’ve used by Sebastian LentonNick Booth of Podnosh; Gavin Broughton; David Roberts of DropletPay; James Cattell who following his great work on Open Data for Digital Birmingham has recently joined the Government Digital Service; Andy Mabbett; Oojal Jhutti of iWazat – who first suggested the idea for the food “app” at the “Smart Hack” event; and Andy Cowin of Sanfire who has forgotten more about creating innovation through conversations than I’ll ever know. I also owe a deep debt of thanks to Tom Baker and his colleagues at Sunderland City Council for introducing me to some of the amazing social innovators in Sunderland at the start of our work on Sunderland’s “City Cloud” – they have been an inspiration to me ever since).

The new architecture of Smart Cities

(Photo of the National Centre for the Performing Arts in Beijing by Trey Ratcliff)

I’ve been preparing this week for the next stage of work on Birmingham’s Smart City Commission; our task on the Commission is to develop a strategic vision for Birmingham as a Smart City and a roadmap for achieving it.

In doing so I’ve been considering an interesting and important question:

What makes a city a “Smart City” as opposed to a city where some “smart things” happen?

Three obvious criteria for answering that question stand out:

1. Smart Cities are led from the top – they have a strong and visionary leader championing the Smart agenda across the city. The Mayors of Rio and Barcelona are famously showing such leadership; and in the UK, so too are, amongst others, Dave Smith, CEO of Sunderland City Council, and Sir Albert Bore, Birmingham’s elected Council Leader, and a founder of the Eurocities movement.

2. Smart Cities have a stakeholder forum – they have drawn together a community of city stakeholders across the city. Those stakeholders have not only created a compelling vision for a Smart City; they have committed to taking an ongoing role coordinating a programme to deliver it. This is the challenge we have been given in Birmingham’s Smart City Commission; and I’ve previously written about how such a responsibility could be carried out.

3. Smart Cities invest in technology infrastructure – they are deploying the required information and communication technology (ICT) platforms across the city; and doing so in such a way as to support the integration of information and activity across city systems. (There are, of course, many other infrastructures that are important to the future of cities; but in “Smart Cities” we are particularly concerned with the role of technology, as I argued in a recent article on this blog).

It’s also important, though, to consider what is different about the structure and organisation of city systems in a Smart City. How does a city such as Birmingham decide which technology infrastructures are required? Which organisations will make use of them, and how? How can they be designed and delivered so that they effectively serve individuals, communities and businesses in the city? What other structures and processes are required to achieve this progress in a Smart City?

Designing Smart Cities

In order to design the infrastructures and systems of Smart Cities well, we need to design them in context – that is, with an understanding of the environment in which they will exist, and the other elements of that environment with which they will interact.

The figure below – “Components of a Smart City Architecture” – is one way of describing the context for Smart City systems and infrastructures. It contains six layers which I’ll discuss further below: “Goals”; “People”; “Ecosystem”; “Soft Infrastructures”; “City Systems” and “Hard Infrastructures”.

(I’m very aware that this diagram is not a particularly good visual representation of a Smart City, by the way. It doesn’t emphasise the centricity of people, for example, and it is not aesthetically pleasing. I’m simply using it as a conceptual map at this stage. I welcome any suggestions for re-casting and improving it!)

(Components of a Smart City architecture)

Goals, People and Ecosystem

Every Smart City initiative is based on a set of goals; often they focus on sustainability, inclusivity and the creation of social and economic growth. Boyd Cohen, who writes frequently on the subject of Smart Cities for Fast Company, published an excellent article surveying and analysing the goals that cities have expressed in their Smart initiatives and providing a model for considering them.

Ultimately, such goals will only be achieved through a Smart City strategy if that strategy results in changes to city systems and infrastructures that make a difference to individuals within the city – whether they are residents, workers or visitors. The art of user-centric, or citizen-centric, service design is a rich subject in its own right, and I don’t intend to address it directly here. However, I am very much concerned with the wider context within which that design takes place, and in particular the role that communities play.

I do not believe that a Smart City strategy that concerns itself only with citizens, city systems and hard infrastructures will result in citizen-centric design; it is only be co-creating soft infrastructures with city communities that such an approach can be systematically encouraged across a city.

In “How Smarter Cities Get Started” I wrote some time ago about the importance of engaging city communities in identifying the goals of Smart City initiatives and setting out the strategy to achieve them. I’ve also written previously about the importance of designing Smart City infrastructures so that they enable innovation within city communities.

Communities are living, breathing manifestations of city life, of course, not structures to be engineered. They are vital elements of the city’s ecosystem: they provide support; they are expressions of social life; they represent shared interests and capabilities; and they can play a role communicating between city institutions and individual citizens. They include families and social networks; neighbourhood, cultural and faith groups; charities and the voluntary sector; public sector organisations such as Schools and Universities, in addition to local government; and private sector organisations such as service providers, retailers and employers.

The challenge for the architects and designers of Smart Cities is to create infrastructures and services that can become part of the fabric and life of this ecosystem of communities and people. To do so effectively is to engage in a process of co-creative dialogue with them.

Soft Infrastructures

In the process of understanding how communities and individuals might interact with and experience a Smart City, elements of “soft infrastructure” are created – in the first place, conversations and trust. If the process of conversations is continued and takes place broadly, then that process and the city’s communities can become part of a Smart City’s soft infrastructure.

A variety of soft infrastructures play a vital role in the Smart City agenda, from the stakeholder forum that creates and carries out a Smart City strategy; to the “hackdays” and competitions that make Open Data initiatives successful; to neighbourhood planning dialogues such as that conducted in Vancouver as part of the “Carbon Talks” programme. They also include the organisations and interest groups who support city communities – such as Sustainable Enterprise Strategies in Sunderland who provide support to small businesses and social enterprises in the city’s most deprived communities or the Social Media Cafe in Birmingham which brings together citizens from all walks of life who are interested in creating community value online.

Some soft infrastructural elements are more formal. For example, governance processes for measuring both overall progress and the performance of individual city systems against Smart City objectives; frameworks for procurement criteria that encourage and enable individual buying decisions across the city to contribute towards Smart City goals; and standards and principles for integration and interoperability across city systems. All of these are elements of a Smart City architecture that any Smart City strategy should seek to put in place.

(Photo of the Athens Olympic Sports Complex from Space by the NASA Goddard Space Flight Center)

City systems

Whilst individual city systems are not my focus in this article, they are clearly significant elements of the Smart City context. In a previous article I discussed how the optimisation of such systems as energy, water and transportation can contribute significantly to Smarter City objectives.

More importantly, these systems literally provide life support for cities – they feed, transport, educate and provide healthcare for citizens as well as supporting communities and businesses. So we must treat them with real respect.

A key element of any design process is taking into account those factors that act as constraints on the designer. Existing city systems are a rich source of constraints for Smart City design: their physical infrastructures may be decades old and expensive or impossible to extend; and their operation is often contracted to service providers and subject to strict performance criteria. These constraints – unless they can be changed – play a major role in shaping a Smart City strategy.

Hard Infrastructures

The field of Smart Cities originated in the possibilities that new technology platforms offer to transform city systems. Those platforms include networks such as 4G and broadband; communication tools such as telephony, social media and video conferencing; computational resources such as Cloud Computing; information repositories to support Open Data or Urban Observatories; and analytic and modelling tools that can provide deep insight into the behaviour of city systems.

These technology platforms are not exempt from the principles I’ve described in this article: to be effective, they need to be designed in context. By engaging with city ecosystems and the organizations, communities and individuals in them to properly understand their needs, challenges and opportunities, technology platforms can be designed to support them.

I’ve made an analogy before between technology platforms and urban highways. It’s much harder to design an urban highway in a way that supports and enables the communities it passes through, than it is to simply design one that allows traffic to get from one place to another – and that in overlooking those communities, runs the risk of physically cutting them apart.

Technology platforms rarely have such directly adverse effects – though when badly mis-applied, they can do. However, it is certainly possible to design them poorly, so that they do not deliver value, or are simply left unused. These outcomes are most likely when the design process is insular; by contrast, the process of co-creating the design of a Smart City technology infrastructure with the communities of a city can even result in the creation of a portfolio of technology-enabled city services with the potential to generate revenue. Those future revenues in return support the case for making an investment in the platform in the first place.

And some common patterns are emerging in the technology capabilities that can provide value in city communities. I’ve referred to these before as the “innovation boundary” of a city. They include the basic connectivity that provides access to information systems; digital marketplace platforms that can support new business models; and local currencies that reinforce regional economic synergies.

These technology capabilities operate within the physical context of a city: its buildings, spaces, and the networks that support transport and utilities. The Demos report on the “Tech City” cluster of technology start-up businesses in London offers an interesting commentary on the needs of a community of entrepreneurs – needs that span those domains. They include: access to technology, the ability to attract venture capital investment, office space from which to run their businesses; and proximity to the food, retail, accommodation and entertainment facilities that make the area attractive to the talented professionals they need to hire.

In a recent conversation, Tim Stonor, Managing Director of Space Syntax, offered this commentary on a presentation given by UN Habitat Director General Joan Clos at the “Urban Planning for City Leaders” conference last week:

“The place to start is with the street network. Without this you can’t lay pipes, or run trams. It’s the foundations of urbanism and, without foundations, you’re building on sand. Yes, we can have subways that cut across/beneath the street network, and data packets that travel through the airwaves over the tops of buildings, but if these aren’t serving human interactions in effectively laid out street networks, then they are to little avail.”

Tim’s point on human interactions, I think, brings us nicely back full circle to thinking again about people and the relationships between them. Tim’s further comments on the presentation can be found on Storify.

A New Architecture?

At some point in the process of writing this article, I realised I had strayed onto provocative ground – this, perhaps, is why it’s taken me longer than usual to write.

As you can see, my job title contains the word “architect”. Strictly, I’m an Information Technology Architect, or “IT Architect” – I’ve spent my career “architecting” IT solutions such as e-commerce sites, mobile web apps, analytics systems and so on. Most recently I’ve been working in that capacity with Sunderland on their City Cloud.

I’m very aware that a strong view exists amongst Architects who create buildings and plan cities that IT professionals shouldn’t be describing ourselves in this way. Indeed, some (although I’d say a minority) of my colleagues agree, and call themselves designers or engineers instead.

Personally, I feel comfortable referring to my work as “architecture”. Many “IT solutions” – or more broadly, “IT-enabled business solutions” – are complex socio-technical systems. They are complex in an engineering sense, often extremely so; but they incorporate financial, social, operational, psychological and artistic components too; and they are designed in the context of the human, social, business, political and physical environments in which they will be used.

(Entrance to the Apple Store on Fifth Avenue, New York, photographed by Lambert Wolterbeek Muller)

So when we are designing a technology solution in a Smart City context – or indeed in any physical context – we are concerned with physical space; with transport networks; with city systems; and with human interactions. All of these are related to the more obvious concerns of information technology such as user interfaces, software applications, data stores, network infrastructure, data centres, laptops and workstations, wi-fi routers and mobile connectivity.

It seems to me that whilst the responsibilities and skills of “IT Architects” and Architects are not the same, they are applied within the same context, and cannot be separated from each other in that context. So in Smart Cities we should not treat “architecture” and “IT architecture” as separable activities.

In “Notes on the Synthesis of Form”, a work which laid the groundwork for his invention of the “design patterns” now widely adopted by IT professionals, the town planner Christopher Alexander remarked of architecture:

At the same time that problems increase in quantity, complexity and difficulty, they also change faster than before. New materials are developed all the time, social patterns alter quickly, the culture itself is changing faster than it has ever changed before.”

– Christopher Alexander, Notes on the Synthesis of Form, Harvard University Press, 1964

What else are the technologies incorporated in Smart City solutions but these “new materials” from which Architects can construct cities and buildings?

At the very least, it is inarguably the case that technologies such as the internet, social media and smartphones are intimately related to the significant changes taking place today in our culture and social patterns.

I’ve blogged many times about the emerging technologies that are making ever more sophisticated and intimate connections between the IT world and the physical world – in particular, in the article “Four avatars of the metropolis: technologies that will change our cities“. The new proximity of those two worlds is what has led to the “Smart Cities” movement; in a way it’s simply another example of the disruptions of industries such as publishing and music that we’ve seen caused by the internet. And if these two worlds are merging, then perhaps our professions need at least to work more closely together.

Already we’re seeing evidence of the need to do so: many city leaders and urbanists I’ve spoken to have described the problems caused by the separation of economic and spatial strategies in cities; or of the need for a better evidence-base for planning and decision making – such as the one that IBM’s Smarter Cities Challenge team in Birmingham are helping the City Council to create. In response, we are starting to see technology experts taking part in some city and regional master-planning exercises.

Over the last few years this convergence of technology concerns with the many disciplines within urbanism has given me the opportunity to work with individuals from professions I would never previously have interacted with. It has been an honour and a pleasure to do so.

In a similar vein, I have quite deliberately posted links to this article in communities with wide and varied membership, and that I hope will include people who will disagree with me – perhaps strongly – and be kind enough to share their thoughts.

I’d like to thank the following people for their contributions in various discussions that have shaped this article:

%d bloggers like this: