Inspirational Simpli-City

(Recycling bins in Curitiba, Brazil photographed by Ana Elisa Ribeiro)

In the past few years, terms such as “Smart Cities” and “Future Cities” have emerged to capture the widespread sense that the current decade is one in which trends in technology, the economy, demographics and the environment are coinciding in an exciting and meaningful way.

Common patterns have emerged in the technology platforms that enable us to address these economic, social and environmental challenges. For example, the “Digital Cities Exchange” research programme at Imperial College, London; the “FI-WARE” project researching the core platform for the “future internet”; the “European Platform for Intelligent Cities (EPIC)“; and IBM’s own “Intelligent Operations Centre” all share a similar architecture.

I think of these platforms as 21st Century “civic infrastructures”. They will provide services that can be composed into new city systems and local marketplaces. Those services will include the management of personal data and identity; authentication; local currencies; micro-payments; and the ability to access data about city systems, amongst others.

But whilst some trends in technology are technically cohesive and can be defined by a particular architecture – as was the case for client/server computing, distributed computing, the initial emergence of the mobile internet, or Service-Oriented Architecture (SOA) – other trends are more nebulous.

Five years ago, my role for IBM was to develop and evangelise the opportunities that social computing  and “Web 2.0” represented for our customers. Whilst various patterns emerged to express the ways in which technology at that time could provide new value to businesses, communities and individuals, no single technology or platform accompanied the trend. Rather, “Web 2.0” was the label for a period in time in which the internet and related technologies once again became a valuable source of innovation following the “dot.com crash”. Tim O’Reilly, widely credited with coining the term “Web 2.0”, acknowledged this interpretation in his “How to succeed in 2007” interview with CNN.

Cities are such complex systems of systems, and face such a multitude of challenges in a rich variety of contexts, that no single technology solution could possibly address them all. In fact an incredibly rich variety of technologies has already been used to create “Smart” systems in cities. But whilst I’m preparing an article that I hope to publish on this blog next week that lays out a framework for considering those technologies systematically, there’s a more fundamental observation that’s worth making:

Some of the technologies at the heart of urban innovations are incredibly simple.

15 years ago, I lived through the transformation of a city neighbourhood that illustrates this point. It involved community activism and crowdsourced information, enabled by an accessible technology – analogue photography.

As a University student in Birmingham, I lived in rented accommodation in the city’s Balsall Heath area. Balsall Heath has one of Birmingham’s largest Muslim communities, in addition to its substantial student population.

And, for the best part of half a century from the 1950s to the 1990s, it was Birmingham’s “red light” district, the centre of prostitution in the city.

At the time, Balsall Heath’s prostitution trade was so open that Cheddar Road – just across the street from the house that I lived in – was the only road in the UK with houses with “red light” front rooms.

Balsall Heath was clearly a district with substantial differences in culture – which were accommodated very peacefully, I should say. But in 1994, members of the Muslim community decided to change their neighbourhood. They put out old sofas and chairs on street corners, and sat on them each night, photographing anyone walking or driving around the area seeking prostitutes. Those simple steps tapped into the social motivations of those people and had a powerfully discouraging effect on them. Over the course of a year, prostitution was driven out of Balsall Heath for the first time in 50 years. It has never returned, and the district and its communities were strengthened as a result. The UK Prime Minister David Cameron has referred to the achievements of Balsall Heath’s community as an inspiration for his “Big Society” initiative.

I have just given a very simplified description of a complex set of events and issues; and in particular, I did not include the perspective of the working women who were perhaps the most vulnerable people involved. But this example of a simple technology (analogue photography) applied by a community to improve their district, with an understanding of the personal and social motivations that affect individual behaviour and choice, is an example that I have been regularly reminded of throughout my work in social media and Smarter Cities.

(Photo from Digital Balsall Heath of residents warning kerb-crawlers on Cheddar Road in the 1990s that they would be watched and recorded)

The city systems facing economic, demographic and environmental challenges today are immensely complex. They provide life-support for city populations – feeding, transporting, and educating them; providing healthcare; and supporting individuals, communities and businesses. As we continue to optimise their operation to support larger, more dense urban populations, maintaining their resilience is a significant challenge.

At the same time, though, the simplicity of Balsall Heath’s community action in the 1990s is inspirational; and there are many other examples.

Jaime Lerner started one of the earliest and most effective city recycling programmes in the world by harnessing the enthusiasm of children to influence the behaviour of their parents. In Mexico City a new “bartering market” allows residents to exchange recyclable waste material for food. In Kenya, SMS messages are used to optimise the distribution of malaria medication between local pharmacists; and in Australia, OzHarvest redistribute excess food from restaurants and hotels to charities supporting the vulnerable.

These innovations will not always be simply transferable from one city to another; but they could form the basis of a catalogue or toolkit of re-usable ideas, as was suggested by the Collective Research Initiatives Trust (CRIT) in their research on urban innovation in Mumbai, “Being Nicely Messy“, echoing Colin Rowe and Fred Koetter’s “Collage City“.

As I wrote recently in the article “Zen and the art of messy urbanism“, many of the Smart systems of tomorrow will be surprising innovations that cut across and disrupt the industry sectors and classifications of city systems that we understand today; and in order to provide food, energy, water, transport and other services to city populations, they will need to be robustly engineered. But drawing inspiration from good, simple ideas with their roots in human behaviour rather than new technology is surely a good starting point from which to begin our journey towards discovering them.

Zen and the art of messy urbanism

(Children playing in the “Science Garden” outside Birmingham’s Science Museum at Millenium Point; part of the new Eastside City Park, a vast urban space surrounded by education, culture and manufacturing.)

Over the past few months and weeks, some interesting announcements have been made concerning emerging frameworks and protocols for Smarter Cities.

Perhaps the highest profile was the formation of the “City Protocol” collaboration in Barcelona, which will be formally launched at the Smart City Expo later this month. The protocol has been established to identify and capture emerging practises and standards to promote interoperability across city systems and enable progress towards city-level goals to be stimulated, coordinated and measured.

More recently, UN-HABITAT, the United Nations agency for human settlements which promotes socially and environmentally sustainable towns and cities, and a source frequently referred to for statistics concerning the progress of urbanisation, published its “State of the World’s Cities 2012/2013” report, which includes extensive consultation with cities around the world. It proposes a number of new mechanisms which are intended to assist decision makers in cities.

These resources of knowledge and experience will be key to helping cities face the grand challenge of demographics, economics and sustainability that is becoming acute. In a paper published in the respected, peer-reviewed scientific journal Nature, Professors Geoffrey West and Luis Bettencourt described it as “the greatest challenge that the planet has faced since humans became social“; and we have already seen evidence of its urgency. The “Barnett graph of doom“, for example, famously predicted that within 20 years, unless significant changes in public services are made, cities will be unable to afford to provide any services except social care; the UK’s energy regulator Ofgem’s recently warned that the country could experience power shortages in the winter of 2015-2016; and there is concern that this year’s drought in the US will once again cause food shortages across the world.

However, we should not expect that cities will reach a sustainable future state through the process of city leaders and institutions adopting a deterministic framework or method. Such an approach may work when applied to the transformation of organisations and their formal relationships with partners; but cities are more fundamentally complex “systems of systems” incorporating vast numbers of autonomous agents and interrelationships.

The Collective Research Initiatives Trust (CRIT) recently produced a fascinating piece of research, “Being Nicely Messy“, about the evolution of Mumbai’s economy in this context. As a background for the transformative changes taking place, they state that:

“While the population in Mumbai grew by 25% between 1991 and 2010, the number of people traveling by trains during the same years increased by 66% and number of vehicles grew by 181%. At the same time, the number of enterprises in the city increased by 56%. All of this indicates a restructuring of the economy, where the nature of work and movement has changed.”

Rather than focus on the policies and approaches of the city’s institutions, CRIT’s research focussed on the activities of everyday entrepreneurs in Mumbai – average people, finding a way to make their livelihood within the city:

“… new patterns of work emerged as the new entrepreneurs struggled to survive and settle. they occupied varied locations and blurred the distinction between formality and informality; legality and illegality as all of them produced legitimate commodities and services.”

“… the entrepreneurs of Mumbai have innovatively occupied city spaces maximizing their efficiency …”

“… the blurry / messy condition … contributes to the high transactional capacity of the urban form.”

“… mumbai’s urbanism is like a froth with overlapping ecosystems of geographies, legislations, claims, powers, kinships, friendships & information.”

Crucially, CRIT relate this “messy” innovative activity to the ability of individuals within the city to access opportunities to create their own wealth and livelihood within the city and its changing economy:

“… mobility or to mobilize is the ability to navigate the complex urban ecosystem of geographies, legislations, claims, powers, relationships and information to construct one’s path for the future amidst these movements.”

(Photo by lecercle of a girl in Mumbai doing her homework on whatever flat surface she could find. Her use of a stationary tool usually employed for physical mobility to enhance her own social mobility is an example of the very basic capacity we all have to use the resources available to us in innovative ways)

This sort of organic innovation takes place continuously in cities, and increasingly exploits technology resources as well as the capacity of the physical urban environment and its transport systems. For example I wrote recently about the community innovation that’s taking place in Birmingham currently; including “social media surgeries” and “hacking” weekends. There is currently a considerable hope that this adoption of technology by community innovators will enable them to achieve an impact on cities as a whole.

But creating sustainable, scalable new enterprises and city services from these innovations is not straightforward. After analysing the challenges that have caused many such initiatives to achieve only temporary results, O’Reilly Radar wrote recently that cities seeking to sustainably exploit open data and hacktivism need to invest in “sustainability, community, and civic value”; and San Francisco announced a series of measures, including both legislation for open data and the appointment of a “Chief Data Officer” for the city, intended to achieve that. I have previously argued that in addition, cities should analyse the common technology services required to support these innovations in a secure and scalable way, and make them available to communities, innovators and entrpreneurs.

For this to happen, new relationships are required between city institutions, their service delivery and technology partners, communities, entrepreneurs, businesses, social enterprises and all of the other very varied stakeholders in the city ecosystem. I’ve previously described the conversations and creation of trust required to build these relationships as a “soft infrastructure” for cities; and new models of collaborative decision-making and activity such as “constellations” and “articulations” are emerging to describe them.

It’s very important to not be too structured in our thinking about soft infrastructure. There is a temptation to revert to thinking in silos, and assume that city communities can be segmented into areas of separate concern such as neighbourhoods, sectors such as “digital entrepreneurs”, or service user communities such as “commuters”. To do this is to forget where and how innovation and the creation of new value often occurs.

Michael Porter, creator of the famous “five forces” model of business, and his colleagues have written that new value is often created when capabilities – and technologies – are converged across sectors. In 2006,  IBM’s worldwide survey of CEOs in public and private sector carried out with The Economist’s Intelligence Unit identified several different areas of innovation: products and services, markets, operations and business models. In particular, innovations that use new business models to offer products and services that transcend and even disrupt existing market structures have the potential to create the most value.

The CRIT research recognised this need to blur boundaries; and went further to state that imposing formal boundaries inhibits the transactions that create value in the economy and society of cities. Tim Stonor has written and presented extensively on the idea that a city should be a “transaction engine”; and many urbanists have asserted that it is the high density of interactions that cities make possible that have led to the city becoming the predominant form of human habitation.

(Photo by Halans of volunteers collecting food for OzHarvest, who redistribute excess food from restaurants and hotels in Australian cities to charities supporting the vulnerable.)

Human thinking creates boundaries in the world; our minds recognise patterns and we impose those patterns on our perceptions and understanding. But this can inhibit our ability to recognise new possibilities and opportunities. Whilst many useful patterns do seem to be emerging from urban innovation – a re-emergence of bartering and local exchanges, social enterprises and community interest companies, sustainable districts, for example – it’s far too early for us to determine a market segmentation for the application of those models across city systems. Rather than seeking to stimulate innovation within specific sectors, CRIT argue instead for the provision of catalogues of “tools” that can be used by innovators in whatever context is appropriate for them.

The European Bio-Energy Research Institute in Birmingham, for example, is seeking to establish a regional supply chain of SMEs to support its work to develop small-scale, sustainable technology for recovering energy from waste food and sewage; in Mexico City, a new bartering market allows residents to exchange recyclable waste material for food; and in the UK the “Eco-Island” Community Interest Company is establishing a local smart-grid on the Isle of Wight to harness sustainable energy sources to enable the entire island to become self-sufficient in energy. These very different models are converging city systems such as food, waste and energy and disrupting the traditional models for supporting them.

In “The Way of Zen“, Alan Watts comments of Zen art that “the very technique involves the art of artlessness, or what Sabro Hasegawa has called the ‘controlled accident’, so that paintings are formed as naturally as the rocks and grasses which they depict”. Just as the relentless practise of technique can enable artists to have “beautiful accidents” when inspiration strikes; so cities should look to provide more effective tools to innovators for them to exploit in whatever context they can create new value. We should not expect the results always to be neat and tidy; and nor should our approach to encouraging them be.

Tea, trust, and hacking – how Birmingham is getting Smarter

(The Custard Factory in Birmingham, at the heart of the city’s creative media sector)

As I described in my last article on this blog, the second meeting of Birmingham’s Smart City Commission last week addressed the question: “what will make Birmingham a Smart City, not just a place where a few “smart things” happen?

A large part of our discussion was concerned with the way a city-level Smart initiative can engage in and enable the communities and individuals who are already creating innovations in the city.

Nick Booth of Podnosh told the Commission about his work running social media surgeries in Birmingham. Nick helps these conversations to take place across the city’s communities; their purpose is to share an understanding of the power that social media can offer to communities to share resources more effectively and create social value. Nick and the volunteers he works with were recently honoured by the UK Prime Minister, David Cameron, with a “Big Society Award” in recognition of their work.

Social media is not the answer to all the challenges of Smarter Cities; but it still has tremendous unrealised potential to contribute to them. I’ve written many times on this blog about the fundamental changes that internet and social media technologies have caused in industries such as publishing, music and video over the last decade; but there are still many communities who are not yet making full use of them.

The physicist and biologist Geoffrey West’s work has shown that the nature of human social behaviour creates a feedback loop that will lead to ongoing growth in the size and density of city populations; and this in turn will create ongoing increases in the consumption of resources. As I remarked recently, there’s a growing consensus that we cannot continue to consume resources at the rate that this growth suggests. The solution, according to Professor West, is to create changes in the way that social and urban systems work. He is not prescriptive about what those changes should be; but in my view we have already seen enough examples of the use of social media to create sustainable systems to suggest that it could be at least part of the solution. Examples include Carbon Voyage‘s system for sharing taxis;  the business-to-consumer and business-to-business markets in sustainable food production operated by Big Barn and Sustaination; and the Freecycle recycling network.

(Photo of a Social Media Surgery held in Birmingham by Nick Booth. The surgeries have now spread across the UK and to five other countries).

The social media surgeries that Nick runs in Birmingham are helping communities to create similar innovations for themselves. What makes them work is the personal philosophy that’s applied by those who engage in them: a willingness to “turn up and have something to offer” in an informal conversation.

In answer to the question “what could make Birmingham a Smart City?”, Nick went so far as to reply “having more conversations over cups of tea”.

Nick’s comment reminded me of one of the quotations from Hagakure: The Book of the Samurai that appears in Jim Jarmusch’s film “Ghost Dog“:

Among the maxims on Lord Naoshige’s wall there was this one: Matters of great concern should be treated lightly. Master Ittei wrote: Matters of small concern should be treated seriously.

The point is that behaving “lightly” and taking the trouble to go to meet people in the environments where they are comfortable are profoundly important components of the approach that makes social media surgeries work. They create trust, and invite contribution and co-creation. And they encourage those who receive help at one surgery in turn to offer help at another.

Several of us came together in Birmingham last weekend for another conversation to create value in the city: the “Smart Hack” organised by Gavin Broughton at Birmingham Science Park Aston – an example of the increasingly common “hackathons” in which developers contribute their time and expertise to create new “apps” for the cities where they live. I was really pleased that IBM helped to fund the facilities and catering for the event.

(As a brief aside: the word “hacking” can mean many things; but when it is used by computer programmers in this context, it means using technology in a clever and innovative way to solve a problem. It is a very positive activity. Some programmers would even describe the astonishing technology innovations that made it possible to land on the moon in 1969 as “hacks”, and would consider doing so to be a demonstration of their deep respect and admiration for the scientists and engineers involved).

Following a series of introductory provocations about Open Data and Smarter Cities technologies, about thirty of us discussed the challenges and opportunities facing Birmingham that such approaches could apply to. Within a short time, an idea had been proposed which seemed viable – could an “app” be created to connect charities that distribute food to catering services who might have leftover food to spare?

(The discussion group at #SmartHack in Birmingham photographed by Sebastian Lenton)

The importance of addressing wastage and efficiency in urban food systems is something that I’ve written about before on this blog. The idea the Smart Hack team created was carefully formulated as a way to reduce food wastage that would be compliant with food safety and hygiene legislation. A smaller team of 10 or so coders subsequently spent Saturday and Sunday building an app based on the idea, fuelled by beer and pizza – and by their own willingness to contribute to their city.

In Birmingham’s Smart City Commission we discussed how conversations such as social media surgeries and the “Smart Hack” lead to innovation; and asked whether they represent a “soft infrastructure” for Smarter Cities in which it is just as worthwhile to invest as the “hard infrastructure” with which we are perhaps more familiar – open data portals, network infrastructure and so on. I certainly think they do. I’ve spent today at the “Smart Infrastructure” summit organised by IBM and the Start Initiative having a similar discussion focussed on challenges, opportunities and communities in Glasgow, and the same thinking seemed to apply there.

(Coders at work at the Birmingham “Smart Hack”, photographed by Sebastian Lenton)

This approach of engagement through conversation also offers cities a chance to deliver new “hard” infrastructures for Smarter Cities that are better suited to the needs of communities, innovators, citizens and businesses: by becoming a “listening” city, and by understanding and then removing some of the barriers that make it hard for small organisations to create successful innovations. That might mean investing in broadband or wireless internet coverage in areas that don’t have it; making public sector procurement processes more open to small businesses; or simply helping communities to win funding to build better places in which to come together to communicate and create ideas, such as the new “Container City” incubation facility for social enterprises in Sunderland.

The European Union recognised the importance of supporting social innovation this way in a recent report, “Empowering people, driving change – social innovation in the European Union“, and the European Commission’s president José Manuel Barroso will launch a social innovation competition on 1 October, the “Europe Social Innovation Prize“. The Guardian newspaper in the UK wrote an interesting article about these annoucements, and offering several other examples of the power of community-based social innovation.

If we are really going to make our cities “Smarter” and more successful, then we must allow all of the individuals and communities in cities to participate in that process. The way to start doing that is through conversations that build trust and create the environment for inclusive innovation. Tea, trust and hacking. It’s what will make Birmingham – and every other city – Smarter.

(This article and the events it describes are the result of the activities of many people, several of whom appear in the photographs I’ve used by Sebastian LentonNick Booth of Podnosh; Gavin Broughton; David Roberts of DropletPay; James Cattell who following his great work on Open Data for Digital Birmingham has recently joined the Government Digital Service; Andy Mabbett; Oojal Jhutti of iWazat – who first suggested the idea for the food “app” at the “Smart Hack” event; and Andy Cowin of Sanfire who has forgotten more about creating innovation through conversations than I’ll ever know. I also owe a deep debt of thanks to Tom Baker and his colleagues at Sunderland City Council for introducing me to some of the amazing social innovators in Sunderland at the start of our work on Sunderland’s “City Cloud” – they have been an inspiration to me ever since).

Five steps to a Smarter City; and the philosophical imperative for taking them

(Photo of digital lights in “The Place” in Beijing by Trey Ratcliff)

This year more and more cities have started on the road to getting Smarter. In part that momentum has been catalysed in the UK by the Technology Strategy Board’s “Future Cities Demonstrator” competition, in which thirty cities have been awarded small grants to carry out feasibility studies for a £24 million demonstrator project; and across Europe it has been encouraged by continuing investment from the European Union.

Over the last few months I’ve written articles on many of the challenges and considerations faced by cities setting out on this journey. This week I thought it would be useful to look back and summarise how they fit together into an overall approach consisting of five steps; and then to revisit the reasons why it is so vitally important that we take those steps.

1. Define what a “Smarter City” means to you

Many urbanists and cities have grappled with how to define what a “Smart City”, a “Smarter City” or a “Future City” might be. It’s important for cities to agree to use an appropriate definition because it sets the scope and focus for what will be a complex collective journey of transformation.

In his article “The Top 10 Smart Cities On The Planet“, Boyd Cohen of Fast Company defined a Smart City as follows:

“Smart cities use information and communication technologies (ICT) to be more intelligent and efficient in the use of resources, resulting in cost and energy savings, improved service delivery and quality of life, and reduced environmental footprint–all supporting innovation and the low-carbon economy.”

This definition shares a useful distinction that was made to me by the Technology Strategy Board‘s Head of Sustainability, Richard Miller: a “Smart City” is one that transforms itself into a “Future City” by using technology. In IBM we use the phrase “Smarter City” to describe a city that is making progress on that path.

As is frequently quoted, more than half of the world’s population now lives in urban areas; and in the UK where I live, that’s true of more than 90% of us. So its not surprising that so many people have strong views on what Smart, Smarter and Future Cities should be.

Personally I think that a useful and holistic definition of a “Future City” needs to include the following concepts:

  • A Future City is in a position to make a success of the present: for example, it is economically active in high-value industry sectors and able to provide the workforce and infrastructure that companies in those sectors need.
  • A Future City is on course for a successful future: with an education system that provides the skills that will be needed by future industries as technology evolves.
  • A Future City creates sustainable, equitably distributed growth: where education and employment opportunities are widely available to all citizens and communities, and with a focus on delivering social and environmental outcomes as well as economic growth.
  • A Future City operates as efficiently & intelligently as possible: so that resources such as energy, transportation systems and water are used optimally, providing a low-cost, low-carbon basis for economic and social growth, and an attractive, healthy environment in which to live and work.
  • A Future City enables citizens, communities, entrepreneurs & businesses to do their best; because making infrastructures Smarter is an engineering challenge; but making cities Smarter is a societal challenge; and those best placed to understand how societies can change are those who can innovate within them.

If those objectives provide – an admittedly very generic – view of what a “Future City” is, then a “Smarter City” is one that uses technology to accomplish them.

Creating a more specific vision is a task for each city to undertake for itself, taking into account its unique character, strengths and challenges. This process usually entails a collaborative act of creativity by city stakeholders.

(The members of Birmingham’s Smart City Commission)

2. Convene a stakeholder group to create a specific Smarter City vision

For a city to agree a shared “Smarter City” vision involves bringing an unusual set of stakeholders together in a single forum: political leaders, community leaders, major employers, transport and utility providers, entrepreneurs and SMEs, universities and faith groups, for example. The task for these stakeholders is to agree a vision that is compelling, inclusive; and specific enough to drive the creation of a roadmap of individual projects and initiatives to move the city forward.

This is a process that I’m proud to be taking part in in Birmingham through the City’s Smart City Commission. I discussed how such processes can work, and some of the challenges and activities involved, back in July in an article entitled “How Smarter Cities Get Started“.

3. Populate a roadmap that can deliver the vision

In order to fulfill a vision for a Smarter City, a roadmap of specific projects and initiatives is needed, including both early “quick wins” and longer term strategic programmes.

Those projects and initiatives take many forms; and it can be worthwhile to concentrate initial effort on those that are simplest to execute because they are within the remit of a single organisation; or because they build on cross-organisational initiatives within cities that are already underway.

In my August article “Five roads to a Smarter City” I gave some ideas of what those initiatives might be, and the factors affecting their viability and timing, including:

  1. Top-down, strategic transformations across city systems;
  2. Optimisation of individual infrastructures such as energy, water and transportation;
  3. Applying “Smarter” approaches to “micro-city” environments such as industrial parks, transport hubs, university campuses or leisure complexes;
  4. Exploiting the technology platforms emerging from the cost-driven transformation to shared services in public sector;
  5. Supporting the “Open Data” movement.

A roadmap consisting of several such individual activities within the context of a set of cross-city goals, and co-ordinated by a forum of cross-city stakeholders, can form a powerful programme for making cities Smarter.

4. Put the financing in place

A crucial factor in assessing the viability of those activities, and then executing them, is putting in place the required financing. There are many ways in which that can be done, and I’ve described several of them in two articles over the last two weeks:

In “Ten ways to pay for a Smarter City (part one)“:

And in “Ten ways to pay for a Smarter City (part two):

I’m a technologist, not a financier or economist; so those articles are not intended to be exhaustive or definitive. But they do suggest a number of practical options that can be explored.

(Meeting with social entrepreneurs in Sunderland who create local innovations in the city)

5. Thinking beyond the future: how to make “Smarter” a self-sustaining process

Once a city has become “Smart”, is that the end of the story?

I don’t think so. The really Smart city is one that has put in place soft and hard infrastructures that can be used in a continuous process of reinvention and creativity.

In the same way that a well designed urban highway should connect rather than divide the city communities it passes through, the new technology platforms put in place to support Smarter City initiatives should be made open to communities and entrepreneurs to constantly innovate in their own local context. I described that process along with some examples of it in “The amazing heart of a Smarter City: the innovation boundary“.

When it works well, the result is the ongoing creation of new products, services or even marketplaces that enable city residents and visitors to make choices every day that reinforce local values and synergies. I described some of the ways in which technology could enable those markets to be designed to encourage transactions that support local outcomes in “From Christmas lights to bio-energy: how technology will change our sense of place“. And the money-flows within those markets can be used as the basis of financing their infrastructure, as I discussed in “Digital Platforms for Smarter City Market-Making“.

Birmingham’s Smart City Commission is due to meet again in two weeks’ time. Since it last met I’ve been discussing its work with entrepreneurs, academics and urbanists in the city. I hope that together we can successfully help the UK’s second city along this path.

(Artist’s impression of a vertical urban farm shared by Curbed SF)

A philosophical imperative

It’s worth at this point reminding ourselves why we’re compelled to make cities Smarter. I’ve often referred to the pressing economic and environmental pressures we’re all aware of as the reasons to act; but they are really only the acute symptoms of an underlying demographic trend and its effect on the behaviour of complex systems within cities.

The world’s population is expected to grow towards 10 billion in 2070; and most of that growth will be within cities. The physicist and biologist Geoffrey West’s work on cities as complex systems showed that larger, denser cities are more successful in creating wealth. That creation of wealth attracts more residents, causing further growth – and further consumption of resources. At some point it’s inevitable that this self-reinforcing growth triggers a crisis.

If this sounds alarmist, consider the level of civic unrest associated with the Eurozone crisis in Greece and Spain; or that in the 2000 strike by the drivers who deliver fuel to petrol stations in the UK, some city supermarkets came within hours of running out of food completely. Or simply look to the frightening global effects of recent grain shortages caused by drought in the US.

Concern over this combination of the cost of resources and uncertainty in their supply has lead to sustainability becoming a critical economic and social issue, not just a long-term environmental one. And it demands changes in the way that cities behave.

As an example of just how far-reaching this thinking has become, consider the supply of food to urban areas. Whilst definitions vary, urban areas are usually defined as continuously built-up areas with a population of at least a few thousand people, living at a density of at least a few hundred people per square kilometer. Actual population densities in large cities are much higher than this, typically a few tens of thousands per square kilometer in developed economies, and sometimes over one hundred thousand per square kilometer in the largest megacities in emerging economies.

In contrast, one square kilometer of intensively farmed land with fertile soil in a good climate can feed approximately 1000 people according to Kate Cooper of the New Optimists forum, which is considering scenarios for Birmingham’s food future in 2050. Those numbers tell us that, then unless some radical new method of growing food appears, cities will never feed themselves, and will continue to rely on importing food from ever larger areas of farmland to support their rising populations.

(Photo by TEDxBrainport of Dr Mark Post explaining how meat can be grown artificially)

As I’ve noted before, such radical new methods are already appearing: artificial meat has been grown in laboratories; and the idea of creating “vertical farms” in skyscrapers is being seriously explored.

But these are surely scientific and engineering challenges; so why do I refer to a philosophical imperative?

I’ve previously referred to artificial meat and vertical farming as examples of “extreme urbanism“. They certainly push the boundaries of our ability to manipulate the natural world. And that’s where the philosophical challenge lies.

Do we regard ourselves as creatures of nature, or as creatures who manipulate nature? To what extent do we want to change the character of the world from which we emerged? As the population of our planet and our cities continues to rise, we will have to confront these questions, and decide how to answer them.

Geoffrey West’s work clearly predicts what will happen if we continue our current course; and I think it is likely that scientists and engineers will rise to the challenge of supporting even larger, denser cities than those we currently have. But personally I don’t think the result will be a world that I will find attractive to live in.

Organisations such as Population Matters campaign carefully and reasonably for an alternative path; an agenda of education, access to opportunity and individual restraint in the size of our families as a means to slow the growth of global population, so that more orthodox solutions can be affective – such as increasing the efficiency of food distribution, reducing food wastage (including our personal food wastage) and changing dietary habits – for instance, to eat less meat.

I don’t claim to know the answer to these challenges, but I’m thankful that they are the subject of urgent research by serious thinkers. The challenge for cities is to understand and incorporate this thinking into their own strategies in ways that are realistic and practical, in order that their Smarter City programmes represent the first steps on the path to a sustainable future.

Four avatars of the metropolis: technologies that will change our cities

(Photo of Chicago by Trey Ratcliff)

Many cities I work with are encouraging clusters of innovative, high-value, technology-based businesses to grow at the heart of their economies. They are looking to their Universities and technology partners to assist those clusters in identifying the emerging sciences and technologies that will disrupt existing industries and provide opportunities to break into new markets.

In advising customers and partners on this subject, I’ve found myself drawn to four themes. Each has the potential to cause significant disruptions, and to create opportunities that innovative businesses can exploit. Each one will also cause enormouse changes in our lives, and in the cities where most of us live and work.

The intelligent web

(Diagram of internet tags associated with “Trafalgar” and their connections relevant to the perception of London by visitors to the city by unclesond)

My colleague and friend Dr Phil Tetlow characterises the world wide web as the biggest socio-technical information-computing space that has ever been created; and he is not alone (I’ve paraphrased his words slightly, but I hope he’ll agree I’ve kept the spirit of them intact).

The sheer size and interconnected complexity of the web is remarkable. At the peak of “web 2.0” in 2007 more new information was created in one year than in the preceding 5000 years. More important, though, are the number and speed of  transactions that are processed through the web as people and automated systems use it to exchange information, and to buy and sell products and services.

Larger-scale emergent phenomena are already resulting from this mass of interactions. They include universal patterns in the networks of links that form between webpages; and the fact that the informal collective activity of “tagging” links on social bookmarking sites tends to result in relatively stable vocabularies that describe the content of the pages that are linked to.

New such phenomena of increasing complexity and significance will emerge as the ability of computers to understand and process information in the forms in which it is used by humans grows; and as that ability is integrated into real-world systems. For example, the IBM “Watson” computer that competed successfully against the human champions of the television quiz show “Jeopardy” is now being used to help healthcare professionals identify candidate diagnoses based on massive volumes of research literature that they don’t have the time to read. Some investment funds now use automated engines to make investment decisions by analysing sentiments expressed on Twitter; and many people believe that self-driving cars will become the norm in the future following the award of a driving license to a Google computer by the State of Nevada.

As these astonishing advances become entwined with the growth in the volume and richness of information on the web, the effects will be profound and unpredictable. The new academic discipline of “Web Science” attempts to understand the emergent phenomena that might arise from a human-computer information processing system of such unprecedented scale. Many believe that our own intelligence emerges from complex information flows within the brain; some researchers in web science are considering the possibility that intelligence in some form might emerge from the web, or from systems like it.

That may seem a leap too far; and for now, it probably is. But as cities such as Birmingham, Sunderland and Dublin pursue the “open data” agenda and make progress towards the ideal of an “urban observatory“, the quantity, scope and richness of the data available on the web concerning city systems will increase many-fold. At the same time, the ability of intelligent agents such as Apple’s “Siri” smartphone technology, and social recommendation (or “decision support”) engines such as FourSquare will evolve too. Indeed, the domain of Smarter Cities is in large part concerned with the application of intelligent analytic software to data from city systems. Between the web of information and analytic technologies that are available now, and the possibilities for emergent artificial intelligence in the future, there lies a rich seam of opportunity for innovative individuals, businesses and communities to exploit the intelligent analysis of city data.

Things that make themselves

(Photo of a structure created by a superparamagnetic fluid containing magnetic nanoparticles in suspension, by Steve Jurvetson)

Can you imagine downloading designs for chocolate, training shoes and toys and then making them in your own home, whenever you like? What if you could do that for prosthetic limbs or even weapons?

3D printing makes all of this possible today. While 3D printers are still complex and expensive, they are rapidly becoming cheaper and easier to use. In time, more and more of us will own and use them. My one-time colleague Ian Hughes has long been an advocate; and Staffordshire University make their 3D printer available to businesses for prototyping and exploratory use.

Their spread will have profound consequences. Gun laws currently control weapons which are relatively large and need to be kept somewhere; and which leave a unique signature on each bullet they fire. But if guns can be “printed” from downloadable designs whenever they are required  – and thrown away afterwards because they are so easy to replace – then forensics will rarely in future have the opportunity to match a bullet to a gun that has been fired before. Enforcement of gun ownership will require the restriction of access to digital descriptions of gun designs. The existing widespread piracy of music and films shows how hard it will be to do that.

3D printers, combined with technologies such as social media, smart materials, nano- and bio-technology and mass customisation, will create dramatic changes in the way that physical products are designed and manufactured – or even grown. For example CocoWorks, a collaboration involving Warwick University, uses a combination of social media and 3D printing to allow groups of friends to collectively design confectionery that they can then “print out” and eat.

These changes will have significant implications for city economies. The reduction in wage differentials between developed and emerging economies already means that in some cases it is more profitable to manufacture locally in rapid response to market demand than to manufacture globally at lowest cost. In the near-future technology advances will accelerate a convergence between the advanced manufacturing, design, communication and information technology industries that means that city economic strategies cannot afford to focus on any of them separately. Instead, they should look for new value at the evolving intersections between them.

Of mice, men and cyborgs

(Professor Kevin Warwick, who in 2002 embedded a silicon chip with 100 spiked electrodes directly into his nervous system. Photo by M1K3Y)

If the previous theme represents the convergence of the information world and products and materials in the physical world; then we should also consider convergence between the information world and living beings.

The “mouse” that defined computer usage from the 1980s through to the 2000s was the first widely successful innovation in human/computer interaction for decades; more recently, the touchscreen has once again made computing devices accessible or acceptable to new communities. I have seen many people who would never choose to use a laptop become inseparable from their iPads; and two-year-old children understand them instinctively. The world will change as these people interact with information in new ways.

More exciting human-computer interfaces are already here – Apple’s intelligent agent for smartphones, “Siri”; Birmingham City University’s MotivPro motion-capture and vibration suit; the Emotiv headset that measures thoughts and can interpret them; and Google’s augmented reality glasses.

Even these innovations have been surpassed by yet more intimate connections between ourselves and the information world. Professor Kevin Warwick at Reading University has pioneered the embedding of technology into the human body (his own body, to be precise) since 2002; and in the effort to create ever-smaller pilotless drone aircraft, control technology has been implanted into insects. There are immense ethical and legal challenges associated with these developments, of course. But it is certain that boundaries will crumble between the information that is processed on a silicon substrate; information that is processed by DNA; and the actions taken by living people and animals.

Historically, growth in Internet coverage and bandwidth and the progress of digitisation technology led to the disintermediation of value chains in industries such as retail, publishing and music. As evolving human/computer interfaces make it possible to digitise new aspects of experience and expression, we will see a continuing impact on the media, communication and information industries. But we will also see unexpected impacts on industries that we have assumed so far to be relatively immune to such disruptions: surgery, construction, waste management, landscape gardening and arbitration are a few that spring to mind as possibilities. (Google futurist Thomas Frey speculated along similar lines in his excellent article “55 Jobs of the Future“).

Early examples are already here, such as Paul Jenning’s work at Warwick University on the engineering of the emotional responses of drivers to the cars they are driving. Looking ahead, there is enormous scope amidst this convergence for the academic, entrepreneurial and technology partners within city ecosystems to collaborate to create valuable new ideas and businesses.

Bartering 2.0

(Photo of the Brixton Pound by Matt Brown)

Civilisation has grown through the specialisation of trades and the diversification of economies. Urbanisation is defined in part by these concepts. They are made possible by the use of money, which provides an abstract quantification of the value of diverse goods and services.

However, we are increasingly questioning whether this quantification is complete and accurate, particularly in accounting for the impact of goods and services on the environments and societies in which they are made and delivered.

Historically, money replaced bartering,  a negotiation of the comparative value of goods and services within an immediate personal context, as the means of quantifying transactions. The abstraction inherent in money dilutes some of the values central to the bartering process. The growing availability of alternatives to traditional bartering and money is making us more conscious of those shortcomings and trade-offs.

Social media, which enables us to make new connections and perform new transactions, combined with new technology-based local currencies and trading systems, offer the opportunity to extend our personalised concepts of value in space and time when negotiating exchanges; and to encourage transactions that improve communities and their environments.

It is by no means clear what effect these grass-roots innovations will have on the vast system of global finance; nor on the social and environmental impact of our activities. But examples are appearing everywhere; from the local, “values-led” banks making an impact in America; to the widespread phenomenon of social enterprise; to the Brixton and Bristol local currencies; and to Droplet, who are aiming to make Birmingham the first city with a mobile currency.

These local currency mechanisms have the ability to support marketplaces trading goods and services such as food, energy, transport, expertise and many of the other commodities vital to the functioning of city economies; and those marketplaces can be designed to promote local social and environmental priorities. They have an ability that we are only just beginning to explore to augment and accelerate existing innovations such as the business-to-consumer and business-to-business markets in sustainable food production operated by Big Barn and Sustaination; or what are so far simply community self-help networks such as Growing Birmingham.

As Smarter City infrastructures expose increasingly powerful and important capabilities to such enterprises – including the “civic hacking” movement – there is great potential for their innovations to contribute in significant ways to the sustainable growth and evolution of cities.

Some things never change

Despite these incredible changes, some things will stay the same. We will still travel to meet in person. We like to interact face-to-face where body language is clear and naturally understood, and where it’s pleasant to share food and drink. And the world will not be wholly equal. Humans are competitive, and human ingenuity will create things that are worth competing for. We will do so, sometimes fairly, sometimes not.

It’s also the case that predictions are usually wrong and futurologists are usually mistaken; so you have good cause to disregard everything you’ve just read.

But whether or not I have the details right, these trends are real, significant, and closer to the mainstream than we might expect. Somewhere in a city near you, entrepreneurs are starting new businesses based on them. Who knows which ones will succeed, and how?

The amazing heart of a Smarter City: the innovation boundary

(Photo of a mouse by pure9)

Innovation has always been exciting, interesting and valuable; but recently it’s become essential.

The “mouse” that defined computer usage from the 1980s through to the 2000s was an amazing invention in its time. It was the first widely successful innovation in human/computer interaction since the typewriter keyboard and video display which came decades before it; and it made computers accessible to new communities of people for the first time.

But whilst the mouse, like the touchscreen more recently popularised by the iPhone and iPad, was a great innovation that increased the usability and productivity of personal computers, it wasn’t really necessary for a greater and pressing purpose. Its benefits came later as we explored its capabilities.

We now have a greater purpose that demands innovation: the need to make our cities and communities more sustainable, vibrant and equal in the face of the severe economic, environmental and demographic pressures that we face; and that are well described in the Royal Society’s “People and the Planet” report.

We have already seen those pressures create threats to food and energy security; and in recent months I’ve spoken to city leaders who are increasingly concerned with the difference in life expectancy between the most affluent and most deprived areas of their cities – it can be 10 years or more. There are much worse inequalities on a global scale, of course. But this is a striking local difference in the basic opportunity of people to live.

Barnett Council in North London famously predicted recently that within 20 years, unless significant changes in public services are made, they will be unable to afford to provide any services except social care. There will be no money left to collect waste, run parks and leisure facilities, clean streets or operate any of the other services that support and maintain cities and communities. I have spoken informally to other Councils who have come to similar conclusions.

All the evidence, including the scientific analysis of the behaviour and sustainability of city systems by the Physicist Geoffrey West, points to the need to create innovations that change the way that cities work.

But where will this innovation come from?

I think innovation of this sort takes place at an “innovation boundary”: the boundary between capability and need.

When a potentially transformative infrastructure such as a Smarter City technology platform is designed and deployed well, then the services it provides precisely embody that boundary.

This idea is fundamental to the concept of Smarter Cities, where we are concerned with the capability of technology to transform cities. Technology vendors – including, but not limited to, my employer IBM – are sometimes expected to use the Smarter City movement as a channel through which to sell generic technology platforms. As vendors, we do deliver technology platforms for cities, and they are part of the capability required to transform them. But they are not the only part – far from it. And they must not be generic.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times – and suggestions for alternative routes.)

As I hope regular readers of this blog will know, I often explore the role of people and communities in transforming how cities work. A city is the combined effect of the behaviour of all of the people in it – whether they are buying food in a supermarket, traveling to work, relaxing in a park, planning an urban development or teaching in a school. No infrastructure – whether it is a road, a building, a broadband network or an intelligent energy grid – will have a transformative effect on a city unless it engages with individuals in a way that results in a change of behaviour. Work by my colleagues in IBM on transportation in California (pictured, left) and on water and energy usage in Dubuque, Iowa provide examples of what can be achieved when technology solutions are designed in the context of individual and community behaviour.

The innovations that discover how technology can change behaviour are sometimes very localised. They can be specific to the nature, challenges and opportunities of local communities; and are often therefore created by individuals, entrepreneurs, businesses and social enterprises within them. The “civic hacking” and “open data” movements are great examples of this sort of creativity.

But this is not the only sort of innovation that is required to enable Smarter City transformations. The infrastructures that support cities literally provide life-support to hundreds of thousands or millions of individuals. They must be highly resilient, performant and secure – particularly as they become increasingly optimised to support larger and larger city populations sustainably.

The invention, design, deployment and operation of Smarter City infrastructures require the resources of large organisations such as technology vendors, infrastructure providers, local governments and Universities who are able to make significant investments in them.

The secret to successfully transforming cities lies at the boundary between local innovations and properly engineered platforms. “Smarter City” transformations are effective when new and resilient information infrastructures are designed and deployed to meet the specific needs of city communities. One size does not fit all.

A technology infrastructure is no different in this regard to a physical infrastructure such as a new urban highway. In each case, there are some requirements that are obvious and generic – getting traffic in and out of a city centre more efficiently; or  making superfast broadband connectivity universally accessible. But other crucially important requirements are more complex, subtle and varied. How can a new road be integrated into the existing environment of a city so that local communities benefit from it, and so that it does not divide them? What access points, support and funding assistance are needed so that communities can use superfast broadband networks; and what services and information can be delivered to them using those networks that will make a difference?

If we understand those requirements, we can design infrastructures that properly support the innovation boundary. Doing so demands that we address three challenges:

Firstly, we must identify the specific information and technology services that can be provided to individuals, communities, entrepreneurs, businesses and social enterprises to help them succeed and grow. I’ve referred many times to the Knight Foundation’s excellent work in this area; it has inspired my own work with entrepreneurs and social enterprises in Sunderland and elsewhere.

(Meeting with social entrepreneurs in Sunderland to understand how new technology can help them)

Secondly, we need to understand and then supply the heavily engineered capabilities that are beyond the means of local communities to deliver for themselves; but that which enable them to create innovations with real significance.

At the 3rd EU Summit on Future Internet, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project, addressed this topic and identified the specific challenges that local innovators need help to overcome, and that could by provided by city information infrastructures. His challenges included: real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust. As we continue to engage with communities of innovators in cities, we will discover other requirements of this sort.

Finally, the boundary needs to be defined by standards. Many cities will deploy many information infrastructures, and many different vendors will be involved in supplying them. In order that successful local innovations can spread and interact with each other, Smarter City infrastructures should support Open Standards and interoperability with Open Source technologies.

It will take work to achieve that, of course. It is very easy to underestimate the complexity of the standards required to achieve interoperability. For example, in order to make it possible to safely change something as simple as a lightbulb, standards for voltage, power, physical dimensions, brightness, socket shape and fastening type, fragility and heat output are required. Some standards for Smarter City infrastructures are already in place – for example, Web services and the Common Alerting Protocol – but many others will need to be invented and encouraged to spread. Fortunately, the process is already underway. As an example, IBM recently donated MQTT, a protocol for connecting information between small devices such as sensors and actuators in Smarter City systems to the Open Source community.

(The first “Local Gov Camp” unconference in 2009, attended by community innovators with an interest in transforming local services, held in Fazeley Studios in Birmingham. Photo by s_p_a_c_e_m_a_n)

In the meantime, the innovation boundary is an amazing place to work. It puts me in contact with the leading edge of technology development – with IBM Research, and with new products such as the Intelligent Operations Centre for Smarter Cities. And it offers me the chance to collaborate with the academic institutions and thought-leaders who are defining the innovation boundary through initiatives such as “disruptive business platforms” (see this work from Imperial college, or these thoughts from my colleague Pete Cripps).

But more importantly, my work puts me in touch with innovators who are creating exciting and inspiring new ways for cities to work; often in the communities that need the most help, such as Margaret Elliott in Sunderland; Mark Heskett-Saddington of Sustainable Enterprise Strategies; and the team at Droplet in Birmingham.

I count myself terrifically honoured and lucky to have the privilege of working with them.

From Christmas lights to bio-energy: how technology will change our sense of place

(Photo of Vancouver from the waterfront in Kitsilano by James Wheeler)

Why do we care about cities?

Why are private sector companies, public sector authorities and organisations such as the European Union making such enormous investments in “Smarter Cities“, “Sustainable Cities” and “Future Cities”?

Usually we would say it’s because of a combination of social, environmental and economic challenges facing us all. But there’s a powerful personal force at work too: where we live matters to us.

The choices that the 7 billion of us who share the planet make that are affected by our relationship with the places where we live have an incredible impact, especially when they are concentrated in cities. For example, the combined carbon impact of those who commute into cities to work each day because they choose to live in the less densely populated areas outside them is immense.

If we’re going to succeed in facing the significant challenges facing us, we need to exploit the powerful connections between people and places to motivate us to choose and behave differently.

The super-rich own houses around the world and have the means to travel between them as they choose or as their business demands it; and some professionals or tradespeople choose or accept a life that involves constant travel in the interests of work and employment. But on the whole, these are the exceptions.

Humans are physical not virtual. Whilst we move or travel from time to time out of choice or necessity, most people work and live day-by-day within a place. Some people and communities face challenges of social and transport mobility, and simply have no choice about where they live. Others may have some choice of location, but are limited by means to investing in living in one place. To a greater or lesser degree we all want to make the most of that investment, and don’t want to relocate too often or travel too far or frequently away from home in order to work.

The value we perceive in our connections to places is determined by their physicality, economics and communities. Many cities and regions exploit this by publicising the attractive qualities of the environment that they can offer – to individuals looking for homes, or to businesses looking for locations to operate from. Whilst the qualities of natural geography are certainly an important contributor to the quality of those environments, many of the other factors are to do with the people within them.

The choices and actions of people can have unusual effects on their environment; for example, the residents of Broadwater Road in Southampton choose collectively to mount striking lighting displays on their houses every Christmas. Or local regulations can constrain the choices of residents to achieve sometimes impressive results, such as in the beautiful urban village of Bourneville in Birmingham.

(Photo of the beautifully maintained frontage of houses in Bournville, Birmingham, by C. Wess Daniels)

Place and economy have many and complex influences on each other. The “Silicon Roundabout” cluster of entrepreneurial technology businesses in London exists where it does because of a combination of proximity to London’s financial services sector – and its venture capitalisists – and the availability of cheap flats, pubs and food outlets. These latter make it an affordable, attractive place to live for the young people with technology skills that start-up companies need to hire.

In other cases, the influences are less constructive. London’s economy has succeeded through businesses that rely on higly educated, skilled people; who in turn are recompensed with some of the highest wages in the country. Accordingly, house prices are extremely high. This it turn makes it difficult or impossible for many people in careers with more modest salaries to afford housing – for example, teachers. If there’s one thing that educated, successful people can be pretty much guaranteed to care about, it’s providing a high quality education for their children. But their success and affluence makes it hard for teachers to live nearby and provide it.

Modern communication technologies provide new opportunities for communities to form and interact in ways that give them more insight into and control over the impact of their interactions. Somewhere between the inventions of the telegraph and virtual worlds, we passed a tipping point: the earliest technologies were simply means to pass messages between people who already knew each other; the ones we have now – especially social media – enable people to identify, contact and transact with complete strangers based on some common interest.

Some simple examples of these technologies allowing communities to behave in more sustainable ways are the recycling network Freecyle, the LandShare initiative that provides access to untended land to people who want to grow food but don’t have gardens, and Carbon Voyage, one of many platforms that promote the sharing of cars, taxis and other forms of transport.

These technologies gives us the opportunity to build new marketplaces and currencies which can be used to encourage transactions that create social, environmental and economic value for communities. For example, organisations such as Big Barn and Sustaination are building new business-to-consumer and business-to-business marketplaces to encourage more sustainable food production and consumption.

(Photo of a 3D printer at work by Media Lab Prado)

What’s even more interesting is to look ahead to emerging technologies that could make it possible for such community markets to create some very surprising disruptions in the way city systems and some industries work. Smart materials and 3D printers, combined with the reduction in cost differentials between emerging and mature markets, are bringing some striking changes to manufacturing; meaning that in some cases it is more important to be able to manufacture customised items locally in immediate response to individual demand than it is to globally source the lowest cost manufacturer of commodity items.

New innovations in user interfaces are also making it easier to connect people to digital information and services. Whilst significant challenges remain in making such services truly accessible to all, it’s already striking to see tablet computers and e-readers being widely used by people who would never choose to buy or use a laptop. And once you’ve seen how naturally very young toddlers interact with tablet computers in particular, you realise how significantly the world will change in future years.

(Photo of me wearing the Emotiv headset)

Technology has already advanced even further; Emotiv‘s headset, which measures brain activity, has already been used by my colleagues to drive a London Taxi around an airfield by using the headset to monitor their thoughts; and Professor Kevin Warwick of Reading University has pioneered the use of computing technology embedded in our bodies as a means of interacting with information systems in our environment. As such technologies mature and spread they’ll have impacts that are impossible to predict.

The New Optimists, a community of scientists and industry experts came together in Birmingham recently to explore the opportunities that new technologies offer for highly distributed energy production systems in communities. Domestic solar panels are an obvious means to do this; but geo-thermal energy, wind and tidal energy are other candidates. Southampton is already producing its own geo-thermal energy, for example, and Eco-Island are attempting to harness several such approaches to make the Isle of Wight not just self-sufficient in terms of energy, but a net exporter. The European Bio-Energy Research Institution (EBRI) at Aston University in Birmingham is developing new, more efficient means of producing energy from biological waste material such as discarded food. A prototype power-plant is already providing energy to 800 households in Shropshire. The New Optimists discussion looked ahead to the possibility that such technologies could be scaled-down even further for use in individual homes.

The systems exploiting these technologies in communities are winning investment because they are market-based: they create money-flows and revenue streams against which investments can be justified. Whilst their focus is local, it is not isolated: complete self-sufficiency will probably never be achieved, and is usually not the goal. Rather, it’s to maximise the benefits of local trading whilst making the impact of import and export more transparent so that more informed choices can be made.

Such place-based trading networks could connect the choices we make every day more directly with their impact on the places in which we live and work; exploiting our consciousness of the investments we’ve made in those places to persuade us to choose differently to protect and improve them. And if they’re linked sufficiently to the industrial national and international supply chains that provide what can’t be sourced locally, they could take into account the wider social and environmental impact of imported goods and services too. Of course, that will only be achieved if those systems are made more transparent, but the pressure to do that already exists. And the more we have the means to exploit transparency, the more effective that pressure will be.

We want to make our cities and lives more sustainable because we’re conscious of the environmental, social and economic challenges facing our planet; we’re most likely to do so through choices that have positive impacts we can see on the places where we live. Technology will continue to provide new mechanisms that can make such choices available to us; but its down to us as individuals and communities to harness and use them.

Digital Platforms for Smarter City Market-Making

Local delicacies for sale in Phnom Penh’s central market

There’s been a distinct change recently in how we describe what a “Smarter City” is. Whereas in the past we’ve focused on the capabilities of technology to make city systems more intelligent, we’re now looking to marketplace economics to describe the defining characteristics of Smarter City behaviour.

The link between the two views is the ability of emerging technology platforms to enable the formation of new marketplaces which make possible new exchanges of resources, information and value. Historically, growth in Internet coverage and bandwidth led to the disintermediation of value chains in industries such as retail, publishing and music. Soon we will see technologies that connect information with the physical world in more intimate ways cause disruptions in industries such as food supply, manufacturing and healthcare.

There are two reasons we’ve switched focus from a technology to an economic perspective of Smarter Cities. The first is that these new marketplaces are the way to make both public service delivery and economic growth within cities sustainable. The second is that it’s only by examining the money flows within them that we can identify the revenue streams that will fund the construction and operation of their supporting technology platforms.

The importance of driving sustainable, equitably distributed recovery to economic growth from the current financial crisis was championed by Christine Lagarde, the Managing Director of the International Monetary Fund, in her speech ahead of the Rio +20 Summit. She emphasised the role of stability in enabling such a recovery. Instability is change, and managing change consumes resources. So stable systems – or stable cities – consume less resources than unstable ones. And they’re much more comfortable places to live.

(Photo of a Portuguese call centre by Vitor Lima)

This concept explains a shift in the economic strategy of some cities and nations. In recent decades cities have used Foreign Direct Investment (FDI) tools such as tax breaks to incent existing businesses to relocate to their economies. When cities such as Sunderland and Birmingham lost 10%-25% of their jobs in less than two decades in the 1980’s and 1990’s, FDI provided the emergency fix that brought in new jobs in call centres, financial services and manufacturing.

But businesses that find it possible and cost-effective to relocate for these reasons can and do relocate again when more attractive incentives are offered elsewhere. So they tend to integrate relatively shallowly in local economies – retaining their existing globalised supply chains, for example. When they move on, they cause expensive, socially damaging instabilities in the cities they leave behind.

(Photo of the Clock Tower in Birmingham’s Jewellery Quarter by Roland Turner)

The new focus is on sustainable, organic economic growth driven by SMEs in locally re-inforcing clusters. By building clusters of companies providing related products and services with strong input/output linkages, cities can create economies that are more deeply rooted in their locality. Examples include the cluster of wireless technology companies in Cambridge with strong ties to the local university; or Birmingham’s Jewellery Quarter, an incredibly dense cluster of designers, manufacturers and retailers who work with Birmingham City University’s School of Jewellery and Horology and their Jewellery Innovation Centre. Many cities I work with are focussing their economic development resources on clusters in the specific industry sectors where they can demonstrate unique strength.

In order to succeed, such clusters need access to transactional marketplaces for trading with each other; and for winning business in local, national and international markets. The disruptive, disintermediating capabilities of Smarter City technologies could help such marketplaces to work more quickly, at lower cost; to extend the market reach of their members; to find new innovations through discovering synergies across traditional industry sectors; or to support the formation of innovative business models that recognise and capitalise social and environmental value. These marketplaces are also exactly what’s needed to support the transformation to open public services.

(Photo of cattle market in Kashgar, China by By Ben Paarmann)


Marketplaces need infrastructure. In traditional terms, that infrastructure might have consisted – in the case of my local cattle market in Kidderminster say – of a physical building; a hinterland connected by transport routes; a governing authority; a system of payments; and a means of determining the quality and value of goods and services to be exchanged. Smarter City markets are no different. They may be based on technology platforms rather than in buildings; but they need governance, identity and reputation management, payment systems and other supporting services. The implementation and operation of those infrastructure capabilities has a significant cost.

This is where large and small organisations need to partner to deliver meaningful innovation in Smarter Cities. The resources of larger organisations – whether they are national governments, local councils, transport providers, employers or technology vendors – are required to underwrite infrastructure investments on the basis of future financial returns in the form of commercial revenues or tax receipts. But innovations in the delivery of value to local communities are likely to be created by small, agile organisations deeply embedded in those communities. An example where this is already happening is in Dublin, where entrepreneurial organisations are using the city’s open data portal to develop new business models that are winning venture capital backing.

(Photo of the “Container City” incubation hub for social enterprises operated by Sustainable Enterprise Strategies in Sunderland)


In order to replicate at scale what’s happening in Dublin and Sunderland, we need to define the open standards through which agile “Apps” developed by local innovators can access the capabilities of new marketplace infrastructures. Those standards need to be associated with financial models that balance affordability for citizens, communities and entrepreneurial businesses with the cost of operating resilient infrastructures.

If we can get that balance right, then stakeholders across city systems everywhere could work more effectively together to deliver Smarter City solutions that really address the big survival challenges facing us: reliable systems that everyone can use across the rich diversity of our cities, communities and citizens.

Will we reach our food future through evolution or catastrophe?

(Photo of Oregon Chai Tea and a vitamin pill by Sam Reckweg)

The food that we eat in 2050 will be dramatically different to what’s on our plates today; and it will reach our tables through an unrecognisable supply chain. We have some big choices to take – or more accurately a lot of small ones – in determining what that food future will look like; and whether we reach it through a deliberately chosen process of change, or by allowing a catastrophe to overtake us.

If that sounds alarmist, consider the level of civic unrest associated with the Eurozone crisis in Greece and Spain; or that in the 2000 strike by the drivers who deliver fuel to petrol stations in the UK some city supermarkets came within hours of running out of food completely. Or simply look to the frightening effects of last year’s grain shortage.

The economic and social systems under pressure today are connected globally, and connected to food supply; and whilst the current crises were precipitated by short term circumstances, their severity is determined by longer term forces that are here to stay.

Three such forces are at work. The first and fundamental force is the expected growth in the world’s population towards 10 billion in 2070. Second is our expectation that we can continue to enjoy the resource-intensive lifestyles of today’s developed economies, and specifically to continue to eat a lot of cheap meat. This expectation will become unsustainable as growth in developing economies rightly corrects inbalances in the distribution of wealth and provides a better quality of life globally. Finally as global economic growth increases the demand for energy, and as fossil fuels become scarcer and harder to extract, the cost of the energy required to grow and transport food will increase (this article in The Economist magazine describes the complex issues around future energy availability).

Ahead of the the Rio+20 Sustainable Development Summit, Christine Lagarde, Managing Director of the International Monetary Fund, has described in a stark but very grounded way the threats to life, wellbeing and the economy that these forces are already creating, particularly in some of the poorest regions on the planet. Her speech is a call to action to world leaders to drive a sustainable and fairly distributed economic recovery from today’s situation. The evidence and expert testimony asserting the critical importance of choosing to do that now is growing – see for example these publications from the Royal Society in the UK and the prestigious scientific journal, Nature.

Part of that journey has to be a more sustainable approach to food production, distribution and consumption. Some amazing new technology-enabled businesses are making it easier to buy locally produced, seasonal food, for instance. Sustaination and Big Barn connect local food producers and consumers directly, using social media to disintermediate the traditional supply chain; whilst Growing Birmingham and Landshare encourage the use of more urban land and private gardens to grow food.

However, cities – the environments in which more than 90% of the UK’s population, and more than 50% of the world’s population live – will never feed themselves through these means alone. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency. Unless we accept food sources from “Extreme Urbanism” such as vertical farming or lab-grown artificial meat, cities will always import the majority of their food.

(An example of local food processing: my own homemade chorizo.)

Many of the good reasons to choose local food, though, are really to do with reducing the industrialisation of food production. The simple act of transporting food from one place to another isn’t necessarily bad, within reason; and only constitutes 4% of its environmental footprint, even in today’s supply chain. The other 96% is simply the energy required to grow and process food; and that’s what we need to reduce.

One of our main opportunities to do that is to choose to eat different food. As Wendy Coch at Business Insider says, “It typically takes a long time and lots of grain to raise cattle. That’s why red meat has 18 times the carbon footprint as an equal amount of pasta.”

The other opportunity is to reduce food wastage. We produce more food, and catch more fish, than we need; and we throw too much of it away because it doesn’t meet quota restrictions, or because of inefficiencies in distribution. Those are big political challenges that world governments are wrestling with in the lead-up to the Rio summit. Whilst many are pessimistic that they will find and agree solutions, there was good news on this front from the European Union today with an agreement to ban fishing ships from throwing away their excess catch.

(Photo by Nick Saltmarsh)

But we as consumers are responsible for food waste too. Just one UK supplier of readymade sandwiches throws away 13,000 slices of bread every day because we don’t want to eat sandwiches made with crusts. We plan our meals and food-buying so poorly that much of the food we buy goes rotten before we use it. And few of us are familiar with the recipes and food processing techniques that make use of leftover food, or the tougher cuts of meat such as chuck steak and pork shoulder – homemade jams, soups, stews, sausages and pâtés, for example.

So at one level, the solution to our food challenge is simple. As a delegate at the New Optimists Food Forum (part of the EU Smart Agri Food programme) told me this week, if we choose to eat meat 2-3 times a week rather than 2-3 times a day, we would go a long way towards a sustainable food system. Choosing to be more organised in our domestic lives and learning some new kitchen skills would help too.

Of course the real challenge is persuading billions of human beings to make such new choices about buying, preparing and eating food every day. So whilst the ability of technology to continue to disintermediate new industries such as food is a marvellous adventure for our times; perhaps its real role in this context is much simpler: to spread awareness of the impact of our food consumption; to popularise meat-free dishes as a choice for all of us, not just for vegetarians; and to re-educate us about traditional techniques and recipes for using leftover food.

In summary: to promote and enable informed, responsible decisions about food. I hope I’ve done just a little bit of that today.

Will the city of the future be a hyperlocal manufacturing cluster?

20120605-005134.jpg

(Image by Rob Boudon)

I’ve become really excited recently about the ability of three trends to transform city economies: improving bandwidth and connectivity; the increasingly intimate way that information technology can be connected to the physical environment; and the relationship between industry convergence, localism and the creation of economic value.

Together, they lead me to the question in the title of this post: will the city of the future be a hyperlocal manufacturing cluster?

(They also lead me to a serious challenge. But I’ll return to that at the end).

Let’s take each theme in turn:

How increasing bandwidth improves the quality of user experience to the point of industry disruption

As the bandwith available for communications has increased over time, the quality of user experience we are able to provide online in advertising, shopping, music, telephony and video has in turn lead to disruptions that disintermediate traditional industry structures – epitomised by Craig’s List, Amazon, iTunes, Skype and YouTube. Business and technology innnovators are constantly looking for new opportunities to cause disruptions and take controlling stakes in the new markets they create.

How the digitisation of materials and physical processes will transform manufacturing

Digitisation and mass customisation are now sweeping through manufacturing. Intelligent materials and components capable of storing information will communicate instructions to the production machines processing them to indicate what product they should be fashioned into. New “apps” will be downloaded to those machines to change their function. Small versions of such “Smart machines” – the evolution of today’s 3D printers – will be distributed throughout cities, and even in our homes, along with a stock of raw smart materials. This wave of change is already known as “Industry 4.0” and is emerging as a strong theme of Germany’s economic strategy, as described by Professor Wolfgang Wahlster of the German Research Centre for Artificial Intelligence.

As these incredible advances in the ability of information technology to control physical materials take place, for some products it is becoming more important to be able to manufacture customised items locally in immediate response to individual demand – i.e. to perform in-market innovation – than it is to globally source the lowest cost manufacturer for large numbers of identical items.

How convergence between industries creates economic value

All of the examples above represent convergence between related industries such as technology, communications, publishing and consumer electronics. The theory of economic clusters states that such convergence is necessary to maintain profit margins, because over time those margins otherwise diminish through competition and innovation in supply. To maintain profit margins, products and services need to be adapted by adding additional features, often produced by capabilities associated with related industry sectors.

Convergence is usually caused by the exploitation of newly availabe – or newly cost-effective – technology in response to, or in order to create, market demand. Amazon’s appropriation of consumer device technology in the form of the Kindle is an example. This convergence at the level of individual capabilities takes place constantly, in addition to the industry disruptions in my original examples. From time to time, a combination of the two effects creates entirely new markets such as search, which was captured very effectively by Google following the initial successes of AltaVista and Yahoo.

Why the Smarter City of the future will be a low carbon hyperlocal manufacturing cluster

The near-future ideas of Industry 4.0 represent a convergence between the technology, communications and manufacturing industries. To an extent they’ve been here for some time in the form of highly configurable car factories such as the Nissan plant in Sunderland, where up to 6 models have been produced from just two production lines over the past 2 years. It is the most productive car plant in Europe.

The spread of Industry 4.0 to localised application in city environments and even homes will be transformative. The carbon footprint created by transportation in the supply chain will be reduced; and new careers (such as some of those suggested by Google’s Futurist Thomas Frey) will be created to exploit the capabilities of these new manufacturing platforms.

The use of social media to turn product design into a collaborative process (as Zuda did for Comics and Threadless did for T-shirts) could be applied in the home to more physically complicated goods such as confectionary (for example using 3D printers for chocolate).

I was lucky enough this week to speak at the 3rd European Summit on the Future Internet at the University of Aalto in Espoo, Finland. Speakers such as Wolfgang Wahlster, Jean-Luc Beylat (President of Alcatel-Lucent Bell Labs in France), and Ilkka Lakaniemi (Director of Business Environment Strategy for Nokia) all spoke on themes related to the ideas in this post.

The challenge for society in the Industry 4.0 era

To temper the excitement associated with these profound changes, considerable concern was also expressed at the summit for the effects on mass employment. Whilst the “re-shoring” of manufacturing is already bringing some manufacturing employment back to developed economies as global wage differentials reduce, there’s no doubt that less people, and with considerably different skills, will be employed in the process of making things as Industry 4.0 gathers pace.

Our challenge as a society and individuals is to continue to create new exchanges of value between each other, in new forms. My observation in the UK is that hand-made products and locally sourced food are in increasing demand, for instance. And there’s no doubt that the quality of our lives would in many cases be improved if more effort were expended maintaining and improving the physical environment around us.

Indeed, there’s some evidence to suggest that growth in the so-called “DIY economy” of freelance employment across trade and professions is accelerating following the recession, supported in some cases by technology platforms for “micro-entrepreneurialism” (such as Etsy‘s online market for handmade goods). These can also be seen as examples of convergence and disintermediation.

I hope we turn out to be as innovative and determined in addressing this social challenge as we are in exploiting the advances of technology for economic reasons.