Smarter City myths and misconceptions

(A good example of a technology dilemma: do smartphones encourage social interaction, or inhibit it?. Photo by LingHK)

Part of my job is to communicate the ideas behind Smarter Cities, and to support those ideas with examples of the value they create when applied in cities such as Sunderland, Dublin, Birmingham and Rio.

In doing so, I often find myself countering a few common challenges to the concept of a Smarter City that I believe are based on a misconception of how Smarter Cities initiatives are carried in practise out by those involved in them.

Everyone that I know who works in this space – for technology vendors, for city Councils, Universities, charities, social enterprises, small businesses, or for any of the other institutions who might be involved in a city initiative – understands one thing in particular: that cities are incredibly complicated. Understanding how to apply any intervention to achieve a specific change or outcome in them is extremely difficult.

I know technology very well; and I have no difficulty imagining new ways in which it could be used in cities. But understanding how in practise people might respond to those ideas is more complex. Will they be motivated to adopt a new technology, or a new technology-enabled service? Why? Will they appropriate it for some purpose other than it was intended? Is that a good or a bad thing? What might the side effects be?

In the case of real innovations, it’s not always possible to answer those questions definitively, of course; but it’s important to consider them in the course of the design process. And to do so we need the skills not just of technologists and businesspeople but social scientists, urban designers, economists, community workers – and, depending on the context, any number of other specialisms.

However, we are still going through the process of creating a shared understanding of Smarter Cities between all of those disciplines; and of communicating that understanding to the world at large. In the conversations taking place today as we try to do that, here are five of the most common challenges that I encounter to the idea of Smarter Cities; and why I think those challenges are based on misconceptions of how we actually go about building them.

I’ll start with the misconception that I’m most guilty of myself:

Myth or misconception 1: Everybody knows we need Smarter Cities

(Most people live in cities, and most people use technology: people socialising with technology at a flashmob in Liverpool. Photo by blogadoon)

I spend most of my professional life working on Smarter Cities projects; it’s easy for me to forget that most people aren’t even aware of the concept, let alone convinced by it.

I doubt that many of the one third of the world’s population who aren’t connected to the internet, for example, are particularly familiar with the term Smarter Cities; nor the 14% of UK adults who’ve never used it. For many of them – and, I suspect, billions of other people who may be internet users, but who spend most of their energy focussing on their busy social, working and family lives – it will simply not have reached their attention.

This matters because whilst most people do not spend their time considering the ideas we discuss in the world of Smarter Cities, most of them nevertheless use city systems and technology.

As most people reading this blog will know, according to sources including the World Health Organisation, more than half of the world’s population now lives in urban areas; and in the UK where I live, that’s true of more than 90% of us. So most people live in cities; and many who don’t are employed in occupations such as farming and transport which are increasingly dominated by the need to support the populations of cities.

Similarly, by the end of this year, ABI Research estimate there will be 1.4 billion SmartPhone users in the world; there are already 5 billion mobile phone users. Most people happily adopt the latest consumer technologies relatively quickly once they become affordable.

Every person who lives in a city is a target customer for private sector service providers; a taxpayer or voter for city officials; a potential campaigner or activist; or the leader or employee of an organisation providing city services. Politicians, businesses and public officials will only deliver Smarter Cities when people want them; and people won’t want them until they know what they are, and why they matter to them as individuals.

Simon Giles of Accenture was quoted recently in an article on UBM’s Future Cities site that the Smarter Cities industry has not done a good enough job of selling the benefits of its ideas to a wide audience; I think that’s a challenge we need to face up to, and start to tell better stories about the differences Smarter Cities will make to everyday lives.

Of course, there are also many people who are perfectly aware of the Smarter Cities movement, but who disagree with its ideas. In practise, I often find that such disagreements are less to do with the specific characteristics of any of the technologies involved, but arise from a concern that in principle Smarter Cities represents a technocratic assertion that we should change the way we design and build cities by putting the capabilities of technology ahead of the needs of citizens.

That’s simply not the case; and I’ll argue why it’s not by describing a few more misconceptions I’ve encountered.

Myth or misconception 2: The idea of applying technology in cities is new

(Human activity and transport technology have been competing for space in cities for centuries. Photo of urban streetlife circa 1900 by the Kheel Center, Cornell University)

Urbanists such as the architect and town planner Tim Stonor  and Enrique Peñalosa, former mayor of Bogotá, have argued powerfully for city design to shift its emphasis towards human behaviour, and away from a focus on the last technology that transformed them: the car.

That debate about the role of technology in cities, then, is far from new. Jane Jacobs, writing in the 1960s when she was concerned that rapid growth in road transport was dominating the thinking of planners, quoted at length an essay on the development of cities in the Industrial Revolution to illustrate the extent to which, a century earlier, city streets were dominated by the previous generation of transport technology – the horse.

As human beings we have used technology since we first made tools from stones and wood. From there we embarked on a complex process of socio-technological evolution that continues today.

What is arguably a new characteristic of that evolution in current times is what appears to be the prolonged exponential growth we’ve experienced in the capability of digital technologies over the past few decades.

In his 2011 book “Civilization“, Niall Fergusson comments that news of the Indian Mutiny in 1857 took 46 days to reach London, travelling in effect at 3.8 miles an hour. By Jan 2009 when US Airways flight 1549 crash landed in the Hudson river, Jim Hanrahan’s message on Twitter communicated the news to the entire world four minutes later; it reached Perth, Australia at more than 170,000 miles an hour. The astonishing speed and ease of communication which we take for granted has led to an explosion of information; more new information was created in 2007 than in the preceding 5000 years.

Only history will tell if the speed and societal impact of the developments we’re experiencing in digital technology constitute a historical tipping point in the form of an “Information Revolution”, or if we’re simply experiencing an increase in speed of a process that begin with the development of language and includes the inventions of writing and the printing press.

It’s useful sometimes to be reminded of that historical perspective, and to remember that the evolution of human beings, human behaviour, technology and cities is a single process.

Myth or misconception 3: Smarter Cities are inhuman technologies that risk being as damaging in their effects on cities as road traffic

(Technology is part of everyday social life. Photo taken in St. James Park London by David Jones)

In describing to her readers the role of horse-drawn transport in shaping the cities of the Industrial Revolution, Jane Jacobs reminded them that it’s impact on them was similar to that of the motor car in the 20th Century: horses were physically dangerous to pedestrians; took up a lot of space; created effluent pollution in city streets that we would find unthinkably repellent today; and that their hooves and cobbles were incredibly noisy.

However, her point was that none of this was evidence that either horse-drawn transport or cars destroy cities. On the contrary, they enable cities to grow.

Technology and cities have evolved together through history entirely as a consequence of our natural behaviour as individuals: we have dense cities with busy streets because people want to move and interact, not because someone invented the elevator or the car or first harnessed a horse.

Our challenge is always to bring the benefits and the impact of technology to an acceptable balance on behalf of people and communities. Fifty years on, Jacobs’ work should still remind us to focus not on technology, or planning, or pollution; but on the needs and behaviour of people.

There is nothing inhuman about technology; but is not always the case that we design technological services in a way that shows understanding and empathy of the human requirements of their end users. Whilst that is itself an eminently human failing, it is one that we must challenge. Digital privacy and e-commerce are just two examples of technologies that can have such a profound effect on the physical health and vitality of cities that it is imperative we employ them intelligently.

And we are fully capable of doing so. The residents of Stockholm voted to extend a road-use charging pilot to a permanent scheme after it was shown to reduce journey times and increase their reliability. And amongst the stories of successful community initiatives in the Birmingham Community Lovers’ Guide are several that depend on social media technology.

Smarter city initiatives succeed when they result in services that are well-designed to meet the needs of people; when people are involved in their co-creation; or when people are free to choose when and how to use the technologies available to them. Many urban and technology professionals would say that those statements simply repeat the principles of good design in their field.

Myth or misconception 4: Masdar and Songdo are the Smartest cities on the planet; OR: Masdar and Songdo are inhuman follies of technology

(A ventilation tower using natural airflow in Masdar, UAE. Photo by Tom Olliver)

In 2011 FastCompany named Songdo, South Korea, as the Smartest City in the World. Songdo, like Masdar in the United Arab Emirates, has been newly constructed using extremely high technology techniques in planning, construction and operation to create a liveable, efficient city. However: both have come in for criticism for being “inhuman”.

In my view, they are neither the Smartest Cities in the world, nor inhuman. Like everywhere else, they fall between those two extremes. But they are also absolutely necessary explorations of what we can achieve; and the people designing and building them are seeking to do so in the best interests of their inhabitants.

According to the United Nations Department of Economic and Social Affairs, by 2050, the world’s population will grow by 3 billion, mostly in cities with populations of 1 to 30 million inhabitants in rapidly growing economies in Asia, Africa and South America. We have never before engineered urban infrastructures to support such growth.Whenever we’ve tried to accommodate rapid, urban growth before, we’ve also failed to provide adequate infrastructure. Slums are the inevitable result of that failed urbanisation; and while some aspects of their self-organizing economies work very effectively, they don’t provide their inhabitants with a quality of life that most of us consider acceptable.

Masdar and Songdo are attempts to support rapid, sustainable urbanisation that should be applauded. They may not get everything right – but who does?

I recently asked a respected architect why it was that so many new urban developments seem not to take adequately into account the natural behaviour of the people expected to use them. He replied that new developments rarely work immediately: our behaviour adapts to make the best of the environment around us; when that environment changes, it takes time for us to adapt to its new form. Until we do so, that new form will not appear to suit us.

Being “Smarter” is most fundamentally about doing things in a different way: by challenging preconceptions, and by making intelligent use of available resources. Today, those resources include digital technologies: the “Internet of Things“, which allows us to collect data from and interact intimately with physical systems; “big data“, which allows us to draw sophisticated insight from that data; and social media, which puts the power of those insights into the hands of people, businesses and communities.

But the concept of “Smart” pre-dates those technologies, just as it pre-dates Songdo and Masdar. I spent a day discussing Smarter Cities with social scientists from around the world recently at a workshop at the University of Durham. From their perspective the idea is more than a decade old, and emerged from thinking about the innovative use of more basic technologies in stimulating economic growth and urban renewal.

I’m tremendously excited about the power we could unleash by making the capabilities of the sophisticated infrastructures of cities such as Masdar and Songod as accessible to and appropriateable by small-scale, local innovators as “mundane” technologies already are. That’s what happens in Dublin when the information shared by local authorities and services providers in the Dublinked partnership is made available to people and businesses as Open Data; and in Rio when the information provided by 30 city agencies and analysed in the city’s new operations centre is shared through social media.

Myth or misconception 5: Business as usual will deliver the result

(The SES "Container City" incubation facility for social enterprise in Sunderland)

(The “Container City” incubation facility for social enterprises operated by Sustainable Enterprise Strategies in Sunderland)

No, it won’t.

As public and private sector institutions evolved through the previous period of urbanisation driven by the Industrial Revolution they achieved mixed results: standards of living rose dramatically; but so unequally that life expectancy between the richest and poorest areas of a single UK city often varies by 10 to 20 years.

Why should we expect more equitable outcomes this time when the challenges facing us are of such enormous magnitude and taking place so quickly?

Many city leaders, businesspeople, activists and innovators recognise the need for new thinking to align the objectives of the business models that define the majority of the world’s economy with the need for what Christine Lagarde, Managing Director of the International Monetary Fund, described as sustainable, equitably distributed growth.

Consequently, new organisational models and co-operative ecosystems are emerging to deliver Smarter initiatives:

  • Social Enterprises, which develop financially sustainable business models, but which are optimised to deliver social, environmental or long-term economic benefits, rather than the maximum short-term financial return.
  • New partnerships between public sector agencies; educational institutions; service and technology providers; communities; and individuals – such as Dublinked; or the Dubuque 2.0 sustainability partnership in where the city authority, residents and utility providers have agreed to share in the cost of fixing leaks in water supply identified by smart meters.

There are also, of course, enormous roles for traditional public and private sector organisations to play as they evolve their existing operations.

Local authorities define the planning, policy and procurement frameworks that define the criteria that private sector investments in cities must fulfil. I was recently asked by a city I work closely with to contribute suggestions for how those frameworks could reflect the role of “Smarter City” ideas. I identified 23 candidate design principles for requiring that investments in physical infrastructure in the city not only conform to the city’s spatial strategy; but also contribute to its Smarter City vision, including the deployment of a cohesive civic technology infrastructure. That’s just one example of the many ways public sector authorities are evolving their policies to accommodate new challenges and new technologies.

And whilst their responsibility to shareholders is to achieve profitability and growth, many private sector businesses do so whilst balancing positive social and environmental impacts. As Smarter solutions demonstrate their ability to support business operations more efficiently through exploiting advanced technology, more businesses seeking that balance will adopt them.

But to what extent does market demand incent businesses to seek that balance?

In Collapse, Jared Diamond explores at length the role of corporations, consumers, communities, campaigners and political institutions in influencing whether businesses such as fishing and resource extraction are operated in the long term interests of the ecosystem containing them – including their communities and natural environment – or whether they are being optimised only for short term financial gain and potentially creating damaging impacts as a consequence.

(Photo by Stefan of Himeji, Japan, showing the forest that covers much of Japan’s landmass enclosing – and enclosed by – the city. In the 17th and 19th Centuries, Japan successfully slowed population growth and reversed a trend of of deforestation which threatened it’s society and economy, as described in Jared Diamond’s book “Collapse“.)

Diamond asserted that in principle a constructive,  sustainable relationship between such businesses and their ecosystems is perfectly compatible with business interest; and in fact is vital to sustaining long-term, profitable business operations. He described at length Chevron’s operations in the Kutubu oilfield in Papua New Guinea,  working in partnership with local communities to achieve social, environmental and business sustainability. The World Resources Institute’s recent report, “Aligning profit and environmental sustainability: stories from industry” contains many other examples.

However, the investment markets and shareholders are – to grossly oversimplify the issue – relatively ambivalent to these concerns, compared to their primary interest in financial returns over the short or medium term.

This is perhaps one of the most contentious issues in the domain of Smarter Cities; and one of the most important for us to resolve.

Some would say that the enormous market demand created by 2050 by those 3 billion new inhabitants of emerging market megacities will incent the private sector to develop sustainable services to supply them. Bill McKibben, writting in Rolling Stone magazine last year on “Global Warming’s Terrifying New Math“, argued that, on the contrary, trillions of dollars of investment are already locked into unsustainable business models.

Diamond himself argued that consumer choice could influence businesses to adopt sustainable models; but only when accurate, reliable information about the social and environmental impact of resources, goods and services flows through supply networks to inform consumers at the point where they are able to choose. Others argue that new approaches such as social enterprise are required.

I personally think that all of those positions have some validity; and that we’ll need to both develop new business models and adapt existing ones if we are to create successful, sustainable cities. Doing so will require the intelligent application of all of the skills and technologies at our disposal.

Mea Culpa

I’ll conclude this article by issuing a challenge: help me to find the misconceptions in my own thinking.

In working in this domain – and in particular in writing this blog – I offer opinions that go far beyond the areas of technology in which I consider myself expert, and extend into the other professional domains that are relevant to Smarter Cities.

I’ve described here the misconceptions and over-simplifications of Smarter Cities that I encounter in my work; I have no doubt whatsoever that in turn I harbour misconceptions in areas that are not my speciality.

I would be delighted for those shortcomings to be exposed: I have always found conversations with people who disagree with me in interesting ways to be the most effective way to learn. And there’s still much more that I don’t know about Smarter Cities than I do.

How to build a Smarter City: 23 design principles for digital urbanism

(Bradford’s City Park, winner of the Academy of Urbanism’s “Great Place” award for 2013. The park is a public space that has been reclaimed for city life from traffic, and which evolves from a daytime public square into an evening water-feature. The fountains and lighting can adapt to and follow individual or crowd movements. Photo by Chloe Blanchfield. )

At the same time that cities everywhere are seeking funds for Smarter City initiatives, and often relying on central government or research grants to do so, I know of literally billions of Pounds, Euros, and Dollars that are being spent on relatively conventional development and infrastructure projects that aren’t particularly “smart”.

Why is that?

One reason is that we have yet to turn our experience to date into prescriptive, re-usable guidance. Many examples of “Smarter City” projects have demonstrated that in principle technologies such as social media, information marketplaces and the “internet of things” can support city-level objectives such as wellbeing, social mobility, economic growth and infrastructure resilience. But these individual results do not yet constitute a normalised evidence base to indicate which approaches apply in which situations, and to predict in quantitative terms what the outcomes will be.

And whilst a handful of cities such as Portland and Dublin have implemented information platforms on which sophisticated research can be carried out to predict the effect that technology and other interventions will have on a specific city, elsewhere we are in the early stages of considering the strategic role that technology should play in the overall design, planning and governance of cities.

We have been in this position before. In her seminal 1961 work “The Death and Life of Great American Cities“, Jane Jacobs wrote of the extant planning regime that in her opinion was impeding, or even destroying, the growth of healthy, urban cities in favour of a misguided faith in the suburban “Garden City” vision and its derivatives:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

(The White Horse Tavern in Greenwich Village, New York. The rich urban life of the area was described by one of the Taverns’ many famous patrons, the urbanist Jane Jacobs. Photo by Steve Minor).

Similarly, today’s planning and procurement practises do not explicitly recognise the value of the Smart City vision, and therefore are not shaping the financial instruments to deliver it.

This is not because those practises are at fault; it is because technologists, urbanists, architects, procurement officers, policy-makers and planners need to work together to evolve those practises to take account of the new possibilities available to cities through technology.

I was recently asked by a city that I work closely with to contribute suggestions for how their next planning strategy could reflect the impact of the technology agenda. Drawing on experiences and conversations with cities, Universities, government bodies and professional organisations over the last year, including the “Digital Urbanism” workshop help at the Academy of Urbanism Congress 2013 in Bradford, UK on 16th May, I put together a set of intentionally provocative candidate “design principles” for them to consider.

I’ve reproduced those principles in this article. They will not be universally accepted, and it is not possible yet to provide a mature body of evidence to support them. Whilst some will seem obvious, some may be controversial – or simply naive. Many will change or be discarded in time; some will be found to be misguided or unworkable. Because the outcomes we are seeking are often qualitative – “vibrant communities”, for example – and because research into city systems and the work of standards bodies is still ongoing, many of them are aspirational and subjective. But by presenting active principles rather than passive observations, my hope is to stimulate a useful debate.

A final caveat: my profession is technology, not the architecture of buildings and structures, urban design or town-planning. I therefore lack the depth of background in urban thinking that will be shared by many of those who I hope to engage in this debate; and as a consequence, some of this material may duplicate well-established thinking; be unsophisticated in content or expression; or just plain wrong. I hope that you will forgive and accept the attempts of a passionate newcomer to contribute thinking from a new domain into one that is well established; and help me to improve on this first attempt.

Candidate Design Principles for Digital Urbanism

(Tina Saaby, Copenhagen's City Architect, addressing the Academy of Urbanism Congress in Bradford)

(Tina Saaby, Copenhagen’s City Architect, addressing the Academy of Urbanism Congress in Bradford)

The importance of “place” in town planning and urban design has come to encapsulate experience from a variety of domains about what makes urban environments successful from the perspective of the people, businesses and communities who use them. It was summarised by Copenhagen’s City Architect, Tina Saaby, in her address to the Academy of Urbanism Congress 2013 as “Consider urban life before urban space; consider urban space before buildings”.

In identifying “urban life” as the starting point, I think Tina was reminding us to begin always by considering the needs and behaviour of individual people, and then their interactions with each other. This was the basis of Jane Jacobs’ understanding of cities and systems such as their economies and governments; and more recently it has been used by Professor Geoffrey West of the Sante Fe Institute to perform detailed, quantitative analyses of the performance of city systems.

It’s equally important to use urban life and “place” as our starting points when guiding the application of technology in city systems, and so by analogy, a candidate principle for the digital agenda in cities could be:

Principle 1: Consider urban life before urban place; consider urban place before technology.

Recent scientific work has shown that the rate of change is increasing in modern society – and specifically in cities as they grow. For example, Geoffrey West’s work shows that larger cities create more wealth, more efficiently, than smaller cities. In doing so, they attract residents, grow bigger still, and accelerate wealth creation further. This self-reinforcing process results in an ever-increasing demand for resources. It powered the growth of cities in the developed world through the Industrial Revolution; it is powering the growth of cities in emerging markets today; and it is driving the overall growth in global population. Professor Ian Robertson of Trinity College Dublin has even shown that as cities get bigger, people in them walk faster.

So in the many cities which are growing both organically and by continuing to attract immigration, two further candidate principles could be:

Principle 2: Demonstrate sustainability, scalability and resilience over an extended timeframe.

Principle 3: Demonstrate flexibility over an extended timeframe.

Physical Infrastructures and Construction

A difficulty in most existing buildings is to adapt them to support new technology infrastructures – to update wiring, or to add cabling for new network technologies, for example. Any specific prediction concerning our needs for such infrastructures in the future will likely be wrong; but it is certain that those needs will be different from today; and so:

Principle 4: New or renovated buildings should be built to contain sufficient space for current and anticipated future needs for technology infrastructure such as broadband cables; and of materials and structures that do not impede wireless networks. Spaces for the support of fixed cabling and other infrastructures should be easily accessible in order to facilitate future changes in use.

Furthermore, broader trends that are influenced by technology – such as mobile working, collaborative working spaces, pop-up shops and the demise of some traditional retail enterprises – are evidence that the rate of change in the uses to which we want to put buildings and urban spaces is increasing. This leads to another candidate principle:

Principle 5: New or renovated buildings should be constructed so as to be as functionally flexible as possible, especially in respect to their access, infrastructure and the configuration of interior space; in order to facilitate future changes in use.

Connectivity and Information Accessibility

Sources as respected as McKinsey and Imperial College have asserted that we are entering an age in which economic value will be created through the use of the digital information that is increasingly ubiquitous not just in our online activities but in the systems that operate physical services such as transport, utilities and buildings.

A fundamental requirement to participate in the information economy is to be connected to digital networks, leading to candidate design principle six:

Principle 6: Any development should ensure wired and wireless connectivity is available throughout it, to the highest standards of current bandwidth, and with the capacity to expand to any foreseeable growth in that standard.

(An analysis based on GPS data from mobile phones of end-to-end journeys undertaken by users of Abidjan’s bus services. By comparing existing bus routes to end-to-end journey requirements, the analysis identified four new bus routes and led to changes in many others. As a result, 22 routes now show increased ridership, and city-wide journey times have decreased by 10%.)

Organisations of all types and sizes are competing for the new markets and opportunities that digital information creates – that is simply the natural consequence of the emergence of a new resource in a competitive economy. Much of that information results from data created by the actions and activities of all of us as individuals; so we are the ultimate stakeholders in the information economy, and should seek to establish an equitable consensus for how our data is used.

However, in most cases converting the data that is created by our actions into useful information with a business value requires either a computing infrastructure to process the data or human expertise to assess it. Both of those have a cost associated with them that must be borne by some individual or organisation.

Those forces of the information economy may only ever be resolved in specific contexts rather than in universal principle. But any new development or supporting technology system that adds to the cost of allowing data associated with it to be openly exploited in principle adds a potential impediment to future economic and social productivity. So, even if the means to bear the costs associated with providing useful information are not agreed initially:

Principle 7: Any new development should demonstrate that all reasonable steps have been taken to ensure that information from its technology systems can be made openly available without additional expenditure. Whether or not information is actually available will be dependent on commercial and legal agreement, but it should not be additionally subject to unreasonable expenditure. And where there is no compelling commercial or legal reason to keep data closed, it should actually be made open.

A central tenet of the Smarter Cities movement is to create value by integrating systems. The integration of technology systems is made simpler and less expensive when those systems conform to standards for the format, meaning, encoding and interchange of data. However, standards for interoperability for Smarter City systems are in the early stages of development, including contributions from initiatives such as the British Standards Institute’s Smarter Cities Strategy, the City Protocol Society, and IBM’s SCRIBE Research project into city information models. Candidate principle eight therefore states that:

Principle 8: The information systems of any new development should conform to the best available current standards for interoperability between IT systems in general; and for interoperability in the built environment, physical infrastructures and Smarter Cities specifically.

There is much debate as to whether, beyond basic network connectivity, higher-level digital services should form part of a national or civic infrastructure to support businesses and communities in creating growth through digital technologies. The EU “Future Internet” project FI-WARE and Imperial College’s “Digital Cities Exchange” research programme are both investigating the specific digital services that could be provided as enabling infrastructure to support this growth; and the British Standards Institute is exploring related standards to encourage growth amongst SMEs.

A further candidate principle expresses the potential importance of this research to the economic competitiveness of cities in the information economy:

Principle 9: New developments should demonstrate that they have considered the commercial viability of providing the digital civic infrastructure services recommended by credible research sources.

Sustainable Consumerism

(Graphic of energy use in Amsterdam from "Smart City Amsterdam" by Daan Velthauzs)

(Graphic of energy use in Amsterdam from “Smart City Amsterdam” by Daan Velthauzs)

The price of energy is expected to rise in the long term until new energy sources are scalably commercialised; and the UK specifically is expected to experience power shortfalls by 2015. Many urban areas are already short of power, limited simply by the capacity of existing delivery subsystems.

Overall it is clear that it is economically and environmentally sensible to reduce our use of energy. One way to do so is to make better use of the information from city systems and buildings that describe energy usage. Property developers in Amsterdam used such information to lower the cost of energy infrastructure for new developments by collaborating to create an investment case for smart grid infrastructure.

Candidate principle ten is therefore:

Principle 10: Any data concerning a new development that could be used to reduce energy consumption within that development, or in related areas of a city, should be made open.

As consumer awareness of energy costs and sustainability has increased, developers of residential communities that have provided state-of-the-art technologies for sustainable living have reported strong demand, leading to a further candidate principle:

Principle 11: Property development proposals should indicate how they will attract business and residential tenants through providing up-to-date sustainable infrastructures for heat and power such as CHP, smart metering, local energy grids and solar energy.

Urban Communities

Developments carried out according to plans developed in collaboration with existing residents have provided some of the most interesting examples of successful placemaking. Social media, virtual reality and other digital technologies offer the opportunity to enable richer, more widespread consultations and explorations of planned developments by the communities that they will effect. Candidate principles twelve and thirteen express the possibility for these technologies to contribute to placemaking and successful urban developments:

Principle 12: Consultations on plans for new developments should fully exploit the capabilities of social media, virtual worlds and other technologies to ensure that communities affected by them are given the widest, most immersive opportunity possible to contribute to their design.

Principle 13: Management companies, local authorities and developers should have a genuinely engaging presence in social media so that they are approachable informally.

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

City communities are not passive observers to the Smarter City phenomenon. They may be crowd-sourcing mapping information for OpenStreetMap; running or participating in hacking events such as the Government Open Hackday in Birmingham last year; or they may be creating new social enterprises or regional technology startups, such as the many city currencies and trading schemes that are appearing.

But access to and familiarity with social media is far from ubiquitous; the potential for new communities to adopt and benefit from such technology is enormous, and need not be expensive. Informal programmes to spread awareness and provide education, such as the social media surgeries started by Podnosh in Birmingham, can have a powerful effect helping communities to exploit social technology to uncover hidden synergies and connections.

Principle 14: Local authorities should support awareness and enablement programmes for social media and related technologies, particularly “grass roots” initiatives within local communities.

Local food initiatives – in which local food processing is more important than local food growing in cities with limited open space but plentiful manufacturing space – have the potential to strengthen community ties; provide employment opportunities; promote healthier diets; and reduce the carbon impact of food supply systems. They can be supported by measures such as the provision of generous gardens, allotments or public space in the physical environment; and by the use of technology to enable online food markets or related distribution systems.

Such initiatives are generally operated by private sector organisations – often small-scale entrepreneurial or social enterprises; but their formation may be facilitated by local authorities or developers during the course of development or regeneration programmes. Candidate principle fifteen is therefore:

Principle 15: Urban development and regeneration programmes should support the formation, activity and success of local food initiatives by cooperating with local community and business support programmes to support the infrastructures they need to succeed and grow.

Demographic and economic trends indicate that we are living longer and needing to support ourselves later in life. A variety of technologies can provide or contribute to that support:

Principle 16: Residential accommodation should incorporate space for environmental monitoring, interactive portals, and connectivity to enable remote support, telehealth systems and homeworking.

Economic Development and Vitality

(The Custard Factory in Birmingham, at the heart of the city’s creative media sector)

In his address to the Academy of Urbanism Congress, economist Michael Ward, Chair of the Centre for Local Economic Strategies, asserted that:

“The key task facing civic leaders in the 21st Century is this: how, in a period of profound and continuing economic changes, will our citizens earn a living and prosper?”

For cities to provide jobs, they need successful businesses; and technology will have a dramatic effect on what it means to be a successful business in the 21st Century.

Over the last two decades, the internet, mobile phone and social media have redefined the boundaries of the communications, technology, media, publishing and technology industries. The companies that thrived through those changes were those who best understood how to use technology to merge capabilities from across those industries into new business models. In the coming decade as digitisation extends to industries such as manufacturing through technologies such as 3D printing and smart materials, more and more industry sectors will be redefined by similar levels of disruption and convergence.

So how are the economies of our cities placed to be successful in that world of change?

Many have the mix of technology, creative and industrial capabilities to be successful in future economies in principle; but in practise those capabilities are in separate geographical locations, between which it is difficult for serendipitous interactions to create new innovations – I discussed these issues in the context of Birmingham, my home city, in an article a few weeks ago.

Spatial modelling techniques can predict the impact of planned developments on these characteristics of the cities surrounding them – i.e. whether they will improve or worsen connectivity between value-creating districts in different economic sectors. Candidate principles seventeen and eighteen express how these techniques could be used:

Principle 17: New developments should demonstrate through the use of the latest urban modelling techniques that they will increase connectivity – particularly by walking and cycling – between important value-creating districts and economic priority zones that are adjacent or near to them.

Principle 18: Developments should offer the opportunity of serendipitous interaction and innovation between stakeholders from different occupations.

The nature of work, business and employment in many industries is changing, driven by technology. Whilst these changes may not take place at the same speed in all businesses, in all industries, in all places; it will become increasingly important over time that cities and districts provide the facilities that future enterprises will require:

Principle 19: Developments should provide, or should be adaptable to provide, facilities to enable the location and success of future ways of working including remote and mobile working, “fab labs” (3d printing facilities), “pop-up”  establishments and collaborative working spaces.

Governance

Most urban spaces and developments do not succeed immediately; time is required for them to attract and adapt to the uses that they will eventually successfully support. That condition of success will be more rapidly achieved or new developments, and will be sustained for longer, if it is possible to easily adapt them. Such adaptability is particularly important given the speed of change and innovation that digital technology can enable, leading to candidate principle twenty:

Principle 20: Planning, usage and other policies governing the use of urban space and structures should facilitate innovation and changes of use, including temporary changes of use.

Privacy and Public Safety

Privacy and security are perhaps the greatest current challenges of the digital age; but that is simply a reflection of their importance in all aspects of our lives. Jane Jacobs’ description of urban systems in terms of human and community behaviour was based on those concepts, and is still regarded as the basis of our understanding of cities.

But new technologies are changing the relationship between physical and digital environments with the consequence that a failure in privacy or security digital systems could affect community vitality or public safety in cities. So candidate principle twenty-one is:

Principle 21: Any information system in a city development should provide a clear policy for the use of personal information. Any use of that information should be with the consent of the individual.

Transport

(Packages from Amazon delivered to Google’s San Francisco office. Photo by moppet65535)

There is a truth about social media, information marketplaces and related “Smarter City” technologies that is far too rarely explored, but that has serious implications. It is that rather than removing the need to travel and transport things, these technologies can dramatically increase our requirements to do so. Candidate principle twenty-two expresses the need for transport plans to take account of this potential:

Principle 22: Transport plans supporting new developments should demonstrate that they have not only provided for traditional transport demand, but also that which might be created by online business models and other social technologies.

Extensions

This article is an early attempt to express candidate design principles for Smarter Cities; and I have not attempted to systematically address all of the potential domains of city systems where technology may have a role to play. Such an exercise would undoubtably yield further candidate principles. In addition, many other efforts are underway to encode emerging knowledge about the successful use of technology in city systems through organisations such as the City Protocol Society and the British Standards Institute or research programmes such as Imperial College’s Digital Cities Exchange. And so a final candidate principle encourages continuous awareness of the progress of such initiatives:

Principle 23: New developments should demonstrate that their design takes account of the latest best and emerging practises and patterns from Smarter Cities, smart urbanism, digital urbanism and placemaking.

Conclusion

When I first began to extract candidate design principles from my workshop and meeting notes, I doubted whether I would identify more than a handful; I was certainly not expecting to identify more than twenty. I think that it is encouraging to observe that there is so much that can be stated positively about the potential of technology to create value in cities.

My sense, though, is that an overarching set of five to ten principles would be much more useful in defining an approach to Smarter Cities that could be broadly adopted. In order to identify what those principles should be, I will need to more clearly define their audience and purpose. Such an exercise will probably form the basis of a subsequent article for this blog.

But in the meantime, I hope that I have offered food for thought; and I look forward to hearing your views.

My thanks to those who have commented on the principles I shared on twitter ahead of posting this: Leo HollisTony SmithWe Make GoodIan OwenOsvaldoFred Bartels and Frederico Muñoz.

An address to the United Nations: science, technology and innovation for sustainable cities and peri-urban communities

I was honoured this week to be asked to address the 16th session of the United Nations’ Commission on Science and Technology for Development in Geneva on the topic of Smarter Cities. I was invited to speak following the Commission’s interest in my article “Open urbanism: why the information economy will lead to sustainable cities“, which was referenced in their report “Science, technology and innovation for sustainable cities and peri-urban communities“. I’ll write an article soon to describe what I learned from the other speakers and discussions at the Commission; but in the meantime, this is a reasonable representation of my spoken remarks.

(Photo of a street market in Dhaka, Bangladesh by Joisey Showa)

In the Industrial Revolution European cities were built upwards around lifts powered by the steam engine invented by James Watt and commercialised by Matthew Boulton in Birmingham. Over the last century we have expanded them outwards around private automobiles and roads.

We believed we could afford to base our cities and their economies on that model because its social and environmental costs were not included in its price. As our cities have become polluted and congested; as the world’s urban population grows dramatically; and as energy costs rise; that illusion is failing.

Professors Geoffrey West and Louis Bettencourt of Los Alamos Laboratory and the Sante Fe Institute said in their 2010 paper in the peer-reviewed scientific journal Nature that “At the start of the twenty-first century, cities emerged as the source of the greatest challenges that the planet has faced since humans became social.”

Technology offers powerful opportunities to address those challenges, and to support the lives of populations inside and around cities in new and more efficient ways, in both developed and developing markets. But technology will only deliver those benefits if we adapt governance and financial models to achieve broader social, economic and environmental outcomes; and if we use technology in a way that serves the genuine needs of local people, communities and businesses. A city that succeeds in transforming itself in this way is one that we call a Smarter City.

Those technologies are developing at an incredible rate. Two years ago, IBM’s “Watson”computer competed successfully against human beings in the television quiz show “Jeopardy”. Scientists at the University of California at Berkley have used a Magnetic Resonance Imaging facility to capture images from the thoughts of a person watching a film. And anything from prosthetic limbs to artificial food can be “printed” from digital designs.

The boundary between information systems, the physical world, and human minds, bodies and understanding is disappearing, and the world will be utterly transformed as a result.

But for who?

As digital and related technologies develop ever more rapidly, they will continue to change the way that value is created in local and global economies. Existing challenges in the acquisition of skills, digital exclusion and social mobility mean that life expectancy varies by 20 years or more even between areas within single cities in developed economies, let alone between the developed and developing world.

The challenge of digital exclusion is well known, of course; but the rapidity of these developments and the profound nature of their potential impact on city systems and economies imply a new sense of urgency in addressing it.

When my son was two years old I showed him a cartoon on an internet video site using the touchscreen tablet I’d just bought. When it finished, he instinctively reached out to touch the thumbnail image of the cartoon he wanted to watch next. The children of my son’s generation who grow up with that innate expectation that information across the world is literally at their fingertips will have an enormous advantage.

One of the things that we are exploring through Smarter City initiatives is how to make some of the power of these technologies more widely available to cities and communities.

(The multi-agency control centre in Rio de Janeiro built by Mayor Eduardo Paes to enable the city's agencies to manage the city effectively during the 2014 World Cup and 2016 Olympic Games)

(The multi-agency control centre in Rio de Janeiro built by Mayor Eduardo Paes to enable the city’s agencies to manage the city effectively during the 2014 World Cup and 2016 Olympic Games)

The city of Rio de Janeiro offers one example of what is possible when we successfully apply technology in cities. Under the leadership of Mayor Eduardo Paes a single operations centre for the city now coordinates the actions of 30 City services to manage the city safely and efficiently. Information feeds from the city’s road systems, CCTV cameras, public safety services and from an advanced weather forecasting solution that can predict the likelihood of life-threatening landslides are delivered to the centre in realtime, and used to trigger multi-agency responses, as well as alerts to the civilian population through channels such as social media .

But Rio is a large city in a rapidly growing Country; and it is preparing for a Football World Cup and Olympic Games within 2 years of each other. How can cities who are not in this position emulate Rio’s approach? And how can the power of this technology be made more broadly available to city communities as well as the agencies and institutions that serve them?

In Dublin, Ireland, the “Dublinked” information sharing partnership between the City and surrounding County Councils, the National University of Ireland, businesses and entrepreneurs is now sharing three thousand city datasets; using increasingly sophisticated, realtime tools to draw value from them; identifying new ways for the city’s transport, energy and water systems to work; and enabling the formation of new,  information-based businesses. It is putting the power of technology and of city information not only at the disposal of the city authority and its agencies, but also into the hands of communities and innovators.

But Dublin is the capital city of a developed country, with an internationally-recognised university, and which hosts large development and research facilities for multi-national technology companies such as IBM. How can cities without those advantages emulate Dublin’s successes?

One way is to re-use the results of research and “first-of-a-kind” projects whose cost has been borne in the developed world or in rapidly growing economies to pilot solutions in the developing world.

For example, my colleagues recently used knowledge gained through research in Dublin to suggest improvements to public transport in Abidjan, Cote d’Ivoire.

The project analysed anonymised movement data from the GPS sensors in the mobile telephones of bus passengers in order to identify clusters of start, end and intermediate points in their end-to-end journeys. By comparing existing bus routes to those points, the project identified four new bus routes and led to changes in many others.

As a result, 22 routes now show increased ridership. And by providing bus routes that better match the journeys that people really want to undertake, the need for them to travel to and from bus stops – often using unregulated and relatively unsafe “informal” travel services – is reduced to the extent that citywide travel time has decreased by 10%.

But we are not just seeking to replicate what works in a handful of high-profile cities as if the same solutions apply everywhere. It’s not always the case that they do, especially without local adaptation. And it’s vital to also enable new initiatives that arise from specific local contexts in cities everywhere, whatever their resources.

Consequently, in Sunderland, we were asked by the City Council: how do you make Hendon Smarter?

Sunderland is typical of the many post-industrial cities in Europe that are rebuilding economies following the decline of industries such as coalmining, bulk manufacturing and shipbuilding in the late 20th Century. Hendon in Sunderland’s East End is one of the areas that suffered most from that decline, and it still has low levels of employment, skills and social mobility.

What we have learned in Sunderland and elsewhere is that it is often private sector entrepreneurs and community innovators who have the widest set of ideas about how technology can be used cleverly to achieve the outcomes that are important to their cities, particularly in an environment with limited access to finance, skills and technology resources.

The large institutions of a city can assist those innovators by acting as an aggregator for their common needs for such resources, making them easier to acquire and use. They can also introduce external partners with research and development capability to those aggregate needs, which for them can represent a new market opportunity worthy of investment.

It’s rare that these connections work directly: government bodies and their large-scale suppliers have very different business models and cultures to small-scale innovators; and often there is little history of interaction, cooperation and trust. The role of “bridging organisations” and networks between individuals is extremely important.

(The SES "Container City" incubation facility for social enterprise in Sunderland)

(The “Container City” incubation facility for social enterprises operated by Sustainable Enterprise Strategies in Sunderland)

In Sunderland, Sustainable Enterprise Strategies, who provide business support to small businesses and social enterprises in Hendon, provided the bridge between the City Council and IBM; and community innovators, such as Lydia’s House who train vulnerable adults in skills such as furniture-making, and Play Fitness, who engage children from deprived backgrounds in physical exercise and education by using digital technology to connect exercise equipment to computer games. Sunderland Software City, the city’s technology business incubator, plays a similar role within the local community of entrepreneurial technology businesses.

This approach is not specific to Sunderland, the UK or the developed world. Our work in Sunderland was inspired by a previous project in Wuxi, China; and in turn it has informed our approaches in cities as far afield as the United States, the Middle East, Africa and Asia.

In many countries in many geographies, new organisational models are emerging from these co-operative ecosystems. For example:

  • Community Interest Companies for managing shared assets such as land, natural resources, or locally-produced food or energy, such as the Eco-Island initiative on the Isle of Wight; or similar models internationally such as Waste Concern in Bangladesh.
  • Social Enterprises such as Lydia’s House and Play Fitness, which develop financially sustainable business models, but which are optimised to deliver social, environmental or long-term economic benefits, rather than the maximum short-term financial return.
  • New partnerships between public sector agencies; educational institutions; service and technology providers; communities; and individuals – such as the Dubuque 2.0 sustainability partnership in where the city authority, residents and utility providers have agreed to share in the cost of fixing leaks in water supply identified by smart meters.

Often such organisations create innovative business models in the form of marketplaces in industries in which money-flows already exist. The changes to those money-flows created by smarter systems form the basis of the potential for returns upon which a business case for investment can be made.

(The SMS for Life project uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa. Photo by Novartis AG)

Arguably, the widespread use of mobile phone technology in the developing world, and in particular the ubiquity of mobile payments systems in Africa, is more advanced in its ability to create such marketplaces using very low cost infrastructure than in communities in the developed world . Both financial services institutions and technology entrepreneurs in the West are watching these innovations closely and learning from them.

Examples include SMS for Life, which uses a text messaging system to implement a dynamic, distributed supply chain for medicines between collaborating pharmacies in several African countries. And Kilimo Salama provides affordable insurance for small-scale farmers by using remote weather monitoring to trigger payouts via mobile phones, rather than undertaking expensive site visits to assess claims. This is a good example of a private-sector aggregator – in this case an insurer – investing in a technology – remote weather monitoring – to serve a large number of end-users – the farmers – who can’t afford it directly.

In cities, we are starting to see these ideas applied to the creation of food distribution schemes; sustainable transport systems that share the use of resources such as cars and vans and perform dynamic matching between networks of independent consumers and providers of transport services; and many other systems that reinforce local trading opportunities and create social and economic growth.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times – and suggestions for alternative routes.)

But the role of technology in these markets is not just to introduce consumers and providers of services to each other; but to do so in a way that informs consumers about the impact of the choices they are about to make.

In Singapore, algorithms are used by the city’s traffic managers to predict traffic flow and congestion in the city up to one hour ahead with 85% accuracy. This allows them to take measures to prevent the predicted congestion occurring.

In a later project in California, those predictions made by those algorithms were provided to individual commuters in San Francisco’s Bay Area. Each commuter was told, in advance, the likely duration of their journey to the city each day, including the impact of any congestion that would develop whilst their journey was underway. This allowed them to make new choices: to travel at a different time; by a different route or mode of transport; or not to travel at all.

And we can appeal not only to individual motivations, but to our sense of community and place. In a smart water meter project in Dubuque, households were given information that told them whether their domestic appliances were being used efficiently, and alerted to any leaks in their supply of water. To a certain extent, households acted on this information to improve the efficiency of their water usage.

However a control group were also given a “green points” score telling them how their water conservation compared to that of their near neighbours. The households given that information were twice as likely to take action to improve their efficiency.

Maslow’s hierarchy of needs tells us that once the immediate physical needs and safety of ourselves and our family are secured, that our motivations are next dictated by our relationships with the people around us – our families, communities and peers. Our ability to relate information to community contexts allows information-based services to appeal to those values.

(The Dubuque water and energy portal, showing an individual household insight into it's conservation performance; but also a ranking comparing their performance to their near neighbours)

(The Dubuque water and energy portal, showing an individual household insight into it’s conservation performance; but also a ranking comparing their performance to their near neighbours)

A new style of personal leadership can be found in many of the situations in which these ideas are successfully applied: people from a variety of backgrounds who have the ability to build new bridges; to bring together the resources of local communities and national and international institutions; to harness technology at appropriate cost for collective benefit; to step in and out of institutional and community behaviour and adapt to different cultures, conversations and approaches to business; and to create business models that balance financial health and sustainability with social and environmental outcomes.

The more that national and local governments can collaborate with the private sector, bridging organisations and communities to encourage this style of leadership and support and reward these new models of business, the more successfully we’ll put the power of technology into the hands of the people, businesses and communities most able to design, use and operate the new services that will make their cities better.

Large organisations have resources; small organisations have the ability to create valuable innovations in true sympathy with the detail of their local context. Private sector has the expertise to invest in assets that create future value; public sector has the responsibility to govern for the good of all. It is only by working together across all of these boundaries at once that we will really succeed in making cities Smarter in a way that is sustainable and equitably distributed. And that must be the only definition of “Smarter” that makes sense.

Death, life and place in great digital cities

("Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(“Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

At the recent Base Birmingham Conference, Scott Cain of the UK Technology Strategy Board (TSB) explained some of the reasons why Glasgow was awarded the TSB’s £24m Future Cities Demonstrator project this year.

Among them all, including the arrival of the Commonwealth Games in 2014 and the strength of the proposed delivery partnership, one stood out for me: the challenge of addressing the difference in life expectancy of 28 years between the wealthiest and poorest areas of the city.

That’s a deeply serious problem, and it’s inarguably worth supporting the city’s attempts to tackle it. Glasgow’s demonstrator project includes a variety of proposals to tackle life expectancy and other issues correlated with it – such as fuel poverty, public safety and health – using technology- and information-enabled approaches.

But whilst Glasgow has the widest variation in life expectancy in the UK, it is far from alone in having a significant one. The variation in life expectancy in London is about 20 years, and has been mapped against its tube network. Life expectancy in Birmingham ranges from 75 to 84 and has similarly been mapped against the local rail network; and in Plymouth it varies by 12.6 years across the city. Life expectancy in many cities varies by as much as 10 years, and is widely viewed as an unacceptable inequality between the opportunities for life offered to children born in different places.

Glasgow, Plymouth, London and Birmingham are just a few examples of cities with active strategies to address this inequality; but all of them are crafting and executing those strategies in an incredibly tough environment.

Many nations in the developed world are facing times of budget cuts and austerity as they tackle high levels of public, commercial and domestic debt built up in the decades leading to the 2008 financial crisis. At the same time, growth in the population, economies and middle classes of the emerging world are creating new wealth, and new demand for resources, across the world. So the cities of the developed world are seeking to rebalance inequalities in their own communities at a time when the resources available to them to do so are shrinking as a consequence of a rebalancing of inequalities that is, to an extent, taking place on a global scale (and quite rightly).

(Photo of Geoffery West describing the scaling laws that determine animal characteristics by Steve Jurvetson. Note that whilst the chart focusses on mammals, the scaling laws are more broadly applicable.)

The physicist Geoffrey West has analysed in detail the performance of city systems, and one interpretation of his work is that it demonstrates that this challenge is inevitable. He showed that larger cities create more wealth, more efficiently, than smaller cities. In doing so, they attract residents, grow bigger still, and accelerate wealth creation further. This self-reinforcing process results in an ever-increasing demand for resources. It powered the growth of cities in the developed world through the Industrial Revolution; and it is powering the growth of cities in emerging markets today.

In an interview with the New York Times, West described two possible ends to this process: a catastrophe caused by a failure in the supply of resources; or an intervention to alter the relationship between value creation and resource consumption.

Many would argue that we are already experiencing failures in supply – for example, the frightening effects of recent grain shortages caused by droughts that are probably attributable to climate change; or predictions that the UK will face regular blackouts by about 2015 due to a shortfall in power generation.

At the heart of the Smarter Cities movement is the belief that the use of engineering and IT technologies, including social media and information marketplaces, can create more efficient and resilient city systems. Might that idea offer a way to address the challenges of supporting wealth creation in cities at a sustainable rate of resource usage; and of providing city services to enable wellbeing, social mobility and economic growth at a reduced level of cost?

Many examples demonstrate that – in principle – Smarter Cities concepts can do that. Analytics technologies have been used to speed up convergence and innovation across sectors in city economies; individuals, communities and utility providers have engaged in the collective, sustainable use of energy and water resources, as has happened in Dubuque; local trading and currency systems are being used to encourage the growth of economic activity with local social and environmental benefits; information technology enables more efficient transportation systems such as California’s Smarter Traveller scheme or the local transport marketplaces created by Shutl and Carbon Voyage; and business-to-business and business-to-consumer marketplaces such as Big Barn and Sustaination are supporting local food initiatives.

But there are two problems with broadly applying these approaches to improve cities everywhere.

(The Dubuque water and energy portal, showing an individual household insight into it's conservation performance; but also a ranking comparing their performance to their near neighbours)

(The Dubuque water and energy portal, showing an individual household insight into it’s conservation performance; but also a ranking comparing their performance to their near neighbours)

Firstly, they do not always translate in a straightforward way from one place and system to another. For example, a neighbourhood in Dubuque achieved an overall reduction in water and energy usage when each household was given information comparing their own resource consumption to an anonymised average for those around them. Households with higher-than-average resource use were motivated to become better neighbours.

But a recycling scheme in London that adopted a similar approach found instead that it lowered recycling rates across the community: households who learned that they were putting more effort into recycling than their neighbours asked themselves “if my neighbours aren’t contributing to this initiative, then why should I?”

These are good examples of “Smarter City” initiatives that are enabled by technology; but that are more importantly dependent on changes in the behaviour of individuals and communities. The reasons that those changes take place cannot always be copied from one context to another. They are a crucial part of a design process that should be carried out within individual communities in order to co-create useful solutions for them.

Secondly, there is a truth about social media, information marketplaces and related “Smarter City” technologies that is far too rarely explored, but that has serious implications. It is that:

Rather than removing the need to travel and transport things, these technologies can dramatically increase our requirements to do so.

For example, since I began writing this blog about 18 months ago, I have added several hundred connections to my social media network. That’s hundreds of new people who I now know it’s worth my while to travel to meet in person. And sure enough, as my network has grown in social media, so have the demands of my traveling schedule.

Similarly, e-Bay CEO John Donahoe recently described the environmental benefits created by the online second-hand marketplace extending the life of over $100 billion of goods since it began, representing a significant reduction in the impact of manufacturing and disposing of goods. But such benefits of online marketplaces are offset by the carbon impact of the need to transport goods between the buyers and sellers who use them; and by the social and economic impact in cities that are too often dominated by road traffic rather than human life.

Increasing the demand for transport in cities could be very damaging. Some urbanists such as the architect and town planner Tim Stonor and Enrique Peñalosa, former mayor of Bogotá, assert that the single biggest cause of poorly functioning city environments today is the technology around which most of them have been built for the last century: the automobile. And whilst recent trends have started to address those challenges – “human scale” approaches to town planning and architecture; the cycling and walkability movements; and, in some cases, improvements in public transport – most cities still have congested transport systems that make cities more dangerous and unpleasant than we would like.

(Photo of pedestrian barriers in Hackney, London by mpromber, showing how they impede the movement of people engaging in local transactions at the expense of road traffic passing through the area)

We are opening Pandora’s box. These tremendously powerful technologies could indeed create more efficient, resilient city systems. But unless they are applied with real care, they could exacerbate our challenges. If they act simply to speed up transactions and the consumption of resources in city systems, then they will add to the damage that has already been done to urban environments, and that is one of the causes of the social inequality and differences in life expectancy that cities are seeking to address.

And as serious as these issues are today, they will be even more important in the future:

At this week’s Academy of Urbanism Congress in Bradford, economist Michael Ward, Chair of the Centre for Local Economic Strategies, expressed most succinctly a point that many speakers touched on:

“The key task facing civic leaders in the 21st Century is this: how, in a period of profound and continuing economic changes, will our citizens earn a living and prosper?”

For cities to provide jobs, they need successful businesses; and technology will have a dramatic effect on what it means to be a successful business in the 21st Century.

Over the last two decades, the internet, mobile phone and social media have redefined the boundaries of the communications, technology, media, publishing and technology industries. The companies that thrived through those changes were those who best understood how to use technology to merge capabilities from across those industries into new business models. In the coming decade as digitisation extends to industries such as manufacturing through technologies such as 3D printing and smart materials, more and more industry sectors will be redefined by similar levels of disruption and convergence.

So how are the economies of our cities placed to be successful in that world of change?

My home city Birmingham has many of the economic capabilities required to exploit those imminent changes successfully. It has a manufacturing base that includes advanced digital capability; it has a growing technology industry and a strong creative sector. Professional services companies offer financial and legal support, and local Universities have world-class research capability in disciplines such as healthcare and medical technology.

But as in many cities, those capabilities are concentrated in separate areas of the city. The collage of photographs below depicts some of Birmingham’s value-creating districts, placed in relation to some of the spatial characteristics of the city that divide them.

(A collage of photographs of some of Birmingham's value-creating districts, placed in relation to some of the spatial characteristics of the city that divide them).

(A collage of photographs of some of Birmingham’s value-creating districts, placed in relation to some of the spatial characteristics of the city that divide them. See the end of this article for attributions).

In the top left of the collage, the Jewellery Quarter, a centre of advanced manufacturing to the North of the City Centre, is separated from the digital technology incubation capability of Innovation Birmingham on the Aston University Campus, and from financial and legal expertise in the Colmore Row business district, by the four-lane Great Charles Street Queensway, part of the city-centre ringroad.

The Aston Campus is separated from the Eastside learning quarter, home to Millennium Point and Birmingham City University, by the Jennens Road dual carriageway. Eastside itself is separated from the creative media cluster around the Custard Factory and Fazeley Studios in Digbeth in the South East by the East Coast mainline from Birmingham to London; and by the semi-dereliction of some parts of the Digbeth manufacturing district.

To the South West, the enormous medical research capability around the University Hospital of Birmingham and University of Birmingham and it’s Research Park are three miles from the City Centre. And whilst the retail core of the city was dramatically transformed by the Bullring redevelopment over a decade ago, it lacks the independent shops, cafe and culture that might naturally attract those who work in the surrounding creative districts to congregate together.

The city’s Big City Plan and independent initiatives such as Coffee Birmingham are doing much to address these issues – and in particular, the city centre now boasts a number of fine cafes and delicatessens such as the Urban Coffee Company and York’s Bakery Cafe. But nevertheless these examples illustrate challenges many cities face in adapting their spatial structure to the needs of the new economy to bring their collective capabilities together to create new ideas and innovations.

(Visitors to Birmingham's new Eastside city park which connects the city centre and train stations to the Eastside learning district)

(Visitors to Birmingham’s new Eastside city park which connects the city centre and train stations to the Eastside learning district)

I took my family to Birmingham’s new Eastside City Park recently; the park is intended to address some of the challenges I have just described by better connecting the learning quarter to the city centre and train stations by providing a walking and cycling route between them, as well as an open space with value in its own right.

By coincidence, I had just read the chapter in Jane Jacobs’ seminal “Death and Life of Great American Cities” which addresses the factors which determine whether city parks and spaces work or fail; and describes how difficult it can be to make them successful. I was therefore delighted to see the Eastside park full of people – families with children playing; couples relaxing in the sun; students and workers stopping for food and coffee. This vibrancy, created by the proximity of mixed business, learning and leisure facilities, did not happen by accident. It is a product both of the careful design of the park; and of the context of the park’s creation within a multi-decade strategy for regenerating the surrounding district, which incorporates the expansion and re-location of two colleges and two universities in the area.

Birmingham’s Eastside park – like Bradford’s new City Park, winner of the Academy of Urbanism’s “Great Place 2013″ award – is a great example of reclaiming for people an important area that had previously been shaped by the requirements of cars, trucks and lorries.

But as a new generation of technology, digital technology, starts to shape our cities, how can we direct the deployment of that technology to be sympathetic to the needs of people and communities, rather than hostile to them, as too much of our urban transport infrastructure has been?

This is an urgent and vital issue. For example, privacy and security are perhaps the greatest current challenges of the digital age – as epitomised by the challenge issued to Google this week by United States politicians concerning the privacy implications of their latest innovation, “Google Glass”. But these concerns are not limited to the online world. Jane Jacobs based her understanding of city systems on privacy and safety. Google Glass epitomises the way that innovations in consumer technology are changing the relationship between physical and digital environments; with the consequence that a failure in privacy or security digital systems could affect community vitality or public safety in cities.

A particularly stark example is the 3D-printed gun, which I first mentioned last August. A reliable process for producing these is now being disseminated by the pro-firearms movement in the United States. As half a century of widespread sharing of music demonstrates, we cannot rely on Digital Rights Management technology for gun control. Other developments that I think need a similar level of consideration are the ability to create artificial meat in laboratories, which has been suggested as one way to feed a growing world population; and the increasing ability of information systems to interact directly with our own minds and bodies. To my mind these technologies challenge our fundamental assumptions about what it means to be human, and our relationship with nature.

(Google’s wearable computer, Google Glass. Photograph by Apostolos)

So how are we to resolve the dilemma that emerging technologies offer both the best chance to address our challenges and great potential to exacerbate them?

The first step is for us to collectively recognise what is at stake: the safety and resilience of our communities; and the nature of our relationship with the environment. Digital technology is not just supporting our world, it is beginning to transform it.

The second step is for the designers of cities and city services – architects, town planners, transport officers, community groups and social innovators –  to take control of the technology agenda in their cities and communities, rather than allow technologists to define it by default.

My role as a technologist is to create visions for what is possible; and to communicate those visions clearly to stakeholders in cities. In doing so it is important to communicate the whole story – the risks and uncertainties inherent in it, not just the great gadgets that make it possible. If I do that, I’m enabling the potential consumers of technology to make informed choices – for example, choosing whether or not to use certain online services or digital devices based on an understanding of their approaches to the use of personal information.

The truth, though, is that we are in the very earliest stages of considering these technologies in that way in the overall design, planning and governance of cities. A huge number of the initiatives that are currently exploring their use are individual projects focussed on their own goals; they are not city-wide strategic initiatives. And whilst some are led by city authorities, many more are community initiatives, such as the Social Media Surgeries which began in Birmingham but which now run internationally; or are led by business – technology corporations like IBM and Google, the developers of buildings such as the Greenhouse in Leeds, or small start-ups like Shutl.

In contrast, it is the role of policy-makers, town planners, and architects to understand how technology can help cities achieve their overall objectives such as economic growth, improvements in social mobility and reductions in the disparity in life expectancy. It is also their role to put in place any necessary constraints and governance to manage the impact of those technologies – for example, policies that oblige the developers of new buildings to make data from those buildings openly available as part of an overall “open data” strategy for a city.

As well as technologists, three crucial groups of advisers to that process are social scientists, design thinkers and placemakers. They have the creativity and insight to understand how digital technologies can meet the needs of people and communities in a way that contributes to the creation of great places, and great cities – places like the Eastside city park that are full of life.

Tina Saaby, Copenhagen’s City Architect, expressed a beautiful principle of placemaking in her address to the Academy of Urbanism Congress:

“Consider urban life before urban space; consider urban space before buildings”

In my view, we should apply a similar principle to technology:

 “Consider urban life before urban place; consider urban place before technology

(Tina Saaby, Copenhagen's City Architect, addressing the Academy of Urbanism Congress in Bradford)

(Tina Saaby, Copenhagen’s City Architect, addressing the Academy of Urbanism Congress in Bradford)

Without this perspective, I don’t personally believe that we’ll create the great digital places that we need.

That’s why I spent last week exploring this topic with placemakers, town planners and policy-makers in a “digital urbanism” workshop at the Academy of Urbanism Congress; and it’s why I’ll be exploring it in June with social scientists and researchers of city systems at the University of Durham. I’ll be writing again soon on this blog about what I’m learning from those meetings.

Not everything promised by technology will transpire or succeed, and it is often right to be sceptical of individual ideas until they’re proven. But there should be no question of the magnitude and impact of the changes that technology will create in the near future. And it’s down to us to take charge of those changes for our benefit as individuals and communities.

(The photographic collage of Birmingham involves some of my own photographs, but also the following images:

A design pattern for a Smarter City: City-Centre Enterprise Incubation

(The Custard Factory in Birmingham, at the heart of the city’s creative media sector in the central district of Digbeth)

(In “Do we need a Pattern Language for Smarter Cities” I suggested that “design patterns“, a tool for capturing re-usable experience invented by the town-planner Christopher Alexander, might offer a useful way to organise our knowledge of successful approaches to “Smarter Cities”. I’m now writing a set of design patterns to describe ideas that I’ve seen work more than once. The collection is described and indexed in “Design Patterns for Smarter Cities” which can be found from the link in the navigation bar of this blog).  

Design Pattern: City-Centre Enterprise Incubation

Summary of the pattern:

This pattern describes the provision of mixed facilities to incubate technology, creative and social enterprises in an urban environment.

The intention is to foster growth across the high-value sectors of a city economy in a way that maximises the potential for cross-sectoral interaction and innovation. Locating incubation facilities in a city centre rather than on an out-of-town campus encourages such cross-fertilisation between existing and new businesses. The city environment – its transport systems, retailers, businesses, residents and visitors – can also serve as a “living lab” in which to test new products and services.

Such incubation facilities are often operated through hybrid public/private models so that they are financially sustainable, but act so as to promote the success of enterprises which contribute to the host city’s strategic objectives – for example, promoting growth in key sectors of the economy or creating jobs or skills in specific areas or communities.

City systems, communities and infrastructures affected:

(This description is based on the elements of Smarter City ecosystems presented in ”The new Architecture of Smart Cities“).

  • Goals: Any.
  • People: Primarily innovators. Citizens, employees and visitors play a secondary role as the potential consumers of new services created through innovation.
  • Ecosystem: All.
  • Soft infrastructures: Innovation forums; networks and community organisations.
  • City systems: Any.
  • Hard infrastructures: Information and communications technology, spaces and buildings.

Commercial operating model:

City-centre incubation facilities are often operated by “Special Purpose Vehicles” (SPVs) jointly owned by city institutions such as local authorities; universities; and organisations providing incubation services to businesses and social enterprises. Alternatively, some are established through collaborative business models such as Co-Operatives, Social Enterprises or Community Interest Companies. This enables them to offer the revenue-generating services that enable financial self-sufficiency; but also to focus on incubating those enterprises that contribute most significantly to the city’s overall strategic objectives, rather than simply generated the highest revenue income.

Some investment is often made in shared technology or services for use by tenant enterprises: for example, access to Cloud computing resources; collaboration tools; video conferencing services; 3D-printing or 3D-cutting facilities. Such services may be procured through the creation of partnerships with technology vendors or service providers who are seeking to build their own ecosystem of entrepreneurial business partners.

Long-term financial sustainability is dependent on the generation of commercial revenues from services offered to successfully operating businesses and social enterprises.

Soft infrastructures, hard infrastructures and assets required:

(The collaborative working space of Hub Westminster which is constantly refactored to support new uses, exploiting furniture and spatial technology laser-cut from digital designs)

(The collaborative working space of Hub Westminster which is constantly refactored to support new uses, exploiting furniture and spatial technology laser-cut from digital designs)

An active incubation programme depends on a complex ecosystem of relationships and capabilities, including: the generation of new entrepreneurial talent through the education system; the attraction of external entrepreneurs and businesses to re-locate; access to market insight and development capability, mentoring and finance; the provision of business support and growth services such as office space, computing capability, legal and financial advice; and access to business partners and market opportunities.

Unless they are of significant size and diversity, cities and regions will be most successful if they focus their business development capacity on the stimulation of growth in specific sectors that maximise the value of their existing regional economic, social, geographic and infrastructural capability.

Such focus may lead to some supporting capabilities, including technology, being common to many businesses in a locality. For example, 3D printing is an increasingly useful tool for prototyping manufactured objects; but the cost of highly capable 3D printers may be beyond the capability of individual small businesses to afford. Similarly a Cloud Computing platform dedicated to supporting small, entrepreneurial businesses may enable the cost of some technology capabilities to be shared by a regional cluster.

Driving forces:

An economy of sustainable, profitable businesses is at the heart of the long term vitality of cities and the regions surrounding them. As economic growth in emerging markets combines with increasingly rapid advances in science and technology, maintaining such an economy requires constant innovation by businesses; and it is in the interests of cities to stimulate and support such innovation.

Michael Porter’s analysis of economic clusters shows that this innovation is created when businesses adopt new technology; or when they adopt existing technologies from outside their current market sector. Whereas many science parks have been based on or near to University campuses to enable access to new technology, an increasing number of more broadly focussed incubation facilities are based in city centres in order to facilitate cross-sectorial interaction and innovation. Some of these can additionally exploit their proximity to city-centre Universities.

City centre locations also provide the opportunity to create businesses with unique capabilities or value. New technologies that emerge from University-based science are often the result of a global research agenda; but innovations that are created through cross-sectorial interaction in a city economy are shaped by the specific characteristics of that economy, and of the city’s geography and demographics. They may thereby create unique products and services that it is harder to replicate elsewhere, providing a competitive advantage in the global economy.

Benefits:

  • Enable local organic economic growth and job creation through small and entrepreneurial businesses.
  • Enable local businesses to exchange ideas across sectors to maintain the value of existing products and services; and to create new ones.
  • Provide access to leading edge technology and market insight to local economic clusters through the attraction of technology and service providers seeking partnerships with clusters of entrepreneurial businesses.
  • Coordinate regional investment and incubation capacity in support of business growth in areas of strategic local importance.
  • Create an offer that is attractive to talented people and businesses to locate in a place.

(Technology entrepreneurs in Birmingham Science Park Aston exploring how their skills can contribute to innovative services in the city, photographed by Sebastian Lenton)

Implications and risks:

  • There are very many factors that affect the success of initiatives intended to provide business incubation and stimulate economic growth, including the availability of affordable housing, the attractiveness of the urban environment and the availability of skills. Some of those factors are difficult to influence, and some take considerable time and investment to affect.
  • It is difficult to “pre-let” incubation capacity, so initial investments are usually speculative.
  • Rental revenues for incubation space provide relatively short term financial returns, but job creation, economic growth and other intended outcomes are long-term.
  • Genuinely constructive partnerships rely on effective engagement between city institutions, businesses and communities that can take time to achieve.

Alternatives and variations:

Collaborative working spaces exist in many cities to offer small businesses, entrepreneurs and mobile workers convenient, attractive, flexible and vibrant places to work. Whilst they are not always explicitly intended to incubate new businesses, or businesses in specific sectors, they clearly represent an incubation capacity; and most also invest in shared resources such as office space and digital connectivity.

Cutting edge examples also use technologies such as 3D-cutting to constantly re-fashion furniture and interior structures to adapt the shared space to changing requirements to support presentations, workshops, prototyping, conferences and events. Many collaborative working spaces attractive creative and media rather than technology businesses; but these sectors now overlap to such a significant extent that the distinction between them is increasingly slight.

Examples and stories:

Examples of collaborative working spaces include:

Sources of information:

Some of the articles on this blog refer to this topic and provide further links to information sources:

Refactoring, nucleation and incubation: three tools for digital urban adaptability

(This year's Ecobuild conference, which showcases technologies for sustainable cities)

(This year’s Ecobuild conference in London, which showcases technologies for sustainable cities)

When I am at my most productive as a computer programmer, I don’t write code; I sculpt virtual objects from it.

Any computer system exists to fulfill a purpose in the real world. To do so it recreates in code those aspects of the world that are relevant to its purpose. What transformed the creation of that model from the laborious, procedural task of writing instructions into the seamless creative flow that I liken to sculpting was Martin Fowler‘s conception of “refactoring”.

In Martin’s words:

“Refactoring is a disciplined technique for restructuring an existing body of code, altering its internal structure without changing its external behavior. Its heart is a series of small behavior preserving transformations. Each transformation (called a ‘refactoring’) does little, but a sequence of transformations can produce a significant restructuring. Since each refactoring is small, it’s less likely to go wrong. The system is also kept fully working after each small refactoring, reducing the chances that a system can get seriously broken during the restructuring.”

(quoted from the Refactoring homepage).

Refactoring is at the heart of what we now know as the “Agile Development” of software. Agile approaches embrace the fact that when we start to create a new system, we don’t know exactly what the final result should be. Traditional approaches to software development attempted to address that challenge through the lengthy analysis of stakeholder requirements. In contrast, agile approaches address it by quickly presenting a first working solution to stakeholders for feedback, and asking them what should be changed. The final solution is co-created by developers and stakeholders through many iterations of that process.

Refactoring codified the tools and techniques for performing the adaptations to computer systems required by that evolutionary process whilst preserving their operability. With practise, a good programmer internalises those tools so that they are used almost unconsciously – just as any good artisan or artist creates their work through the expert application of technique.

We need similar tools and techniques to support the evolution of our cities in the 21st Century.

Those cities will exist in a world that is ever more changeable, and ever less certain. Geoffrey West’s analysis of city systems, for example, showed that as the cities of the world grow, the rate of social, technological and economic change within them will increase. At the same time, climate change is causing not just an increase in temperature, but an increase in the variability of temperature, and of other environmental conditions. That variability reduces the stability of supply of grain and other natural resources that underpin the systems that support life. In order to provide social stability in this context, cities need to be adaptable and resilient in the face of change and uncertainty.

But it is already the case that the urban, economic and social systems of cities can’t keep up with the rate of change we are experiencing today.

(Image by TurkleTom)

Take the ability of education to support the economy. Google’s Chairman Eric Schmidt criticised the British Education system recently for producing insufficient computer programming skills to meet the needs of businesses.

But our current need for those skills is based on the computing technologies that are broadly adopted by business today. By and large those technologies are at least five years behind the leading edge; consider that whilst the first generation Apple iPad was launched in 2010, most businesses do not yet routinely provide their employees with a touchscreen tablet for use as a business tool.

As the rate of change in science and technology increases, the skills required by business will also change more rapidly. Consequently, it will become even more challenging to design and operate an education system that prepares children for productive careers in an economy that evolves for at least a decade after their education begins.

We won’t design those education systems successfully by considering our current requirements for skills; or by attempting to predict the skills that will be required ten years from now. If we make such predictions, they will be wrong. Instead we need to equip the education system with refactoring tools that allow it to continually adapt to the changing needs of the present.

The same challenges apply to the strategic planning of physical infrastructure in cities. As cities pursue “Smarter City” strategies, and as their economies evolve to exploit new technologies, what are the impacts on power requirements? On the need to provide connectivity to residential, retail and business space? On the physical space required by retail and business as online commerce and mobile working continue to grow? And on the movement of people and goods as information marketplaces change the physical supply chains of industries?

The only thing we can be sure of is the need for flexibility: the city of the future will need to be more responsive and adaptable to change than the cities that we know today.

(The collaborative working space of Hub Westminster which is constantly refactored to support new uses, exploiting furniture and spatial technology laser-cut from digital designs)

(The collaborative working space of Hub Westminster which is constantly refactored to support new uses, exploiting furniture and spatial technology laser-cut from digital designs)

Techniques to provide flexibility in the physical environment are already emerging. Kelvin Campbell’s theory of Smart Urbanism encourages the use of a spatial grid, party walls and building shells as a substrate upon which the fine detail of a city can grow.

A high quality, detailed physical environment can first be constructed on such a substrate according to customisable “design patterns” such as town houses and mews studios; and then refactored through interventions such as the reconfiguration of internal walls; the conversion of lofts to living or working space; or straightforward extensions to the physical size of buildings. Recently developed technologies such as 3D printing and 3D cutting provide additional opportunities for the physical refactoring of buildings and cities that would have been unimaginable relatively recently.

In materials science, sophisticated materials such as semi-conductors and super-conductors grow when large numbers of individual atomic particles are attracted to appropriately designed substrates; and when those particles form clusters together which eventually grow and combine into continuous materials. The process by which those initial clusters form is nucleation.

By analogy, if we can design urban substrates which encourage the nucleation of small-scale, productive, sustainable social and economic activity; and the subsequent agglomeration of that activity into larger-scale systems; then we will have created an environment in which smarter 21st century cities can grow.

We need to evolve similar concepts to support the development of information infrastructures for smarter cities. Broadband, wi-fi and mobile communications provide the equivalent substrate to the grid-based spatial framework of a city; but what are the equivalents of the party wall, building shell, design pattern and nucleation?

Open data“, for example, is clearly an important component of a Smarter City information infrastructure; but we do not yet fully understand how to exploit it sustainably. Doing so will likely involve structures such as city information partnerships; sustainable commercial models; standards for the interchange of datamodels of the meaning of data; and planning and procurement policies that embed the openness and interoperability of data into the development process.

Finally, the same challenges appear in economic development.

Michael Porter’s theory of economic clusters states that in order to protect profit margins from commoditisation over time, businesses need to constantly adopt new capabilities into their products and services. As science and technology develop more rapidly, cities and regions will need to drive that process of innovation more intensively in order to remain competitive in the global economy.

(The Old Street roundabout, around which London's "Tech City" cluster of technology companies has evolved)

(The Old Street roundabout, around which London’s “Tech City” cluster of technology companies has evolved)

This thinking is behind the technology innovation and business incubation partnership programme I’m putting together for IBM with Sunderland Software City, following our recent agreement to provide support for their new urban technology incubation campus at Tavistock Place.

Sunderland Software City- like Bristols’ Watershed media incubation centre and Birmingham’s Science Park Aston and Custard Factory – are exploring a form of urban technology incubation that is very different from that enabled by the more common out-of-town, campus-based science parks. They are not only concerned with supporting  new businesses that exploit the latest developments in science and technology; but with doing so in a way that creates synergies between local businesses, and that contributes to the  economic and industrial strategy of the cities where they are located.

Refactoring, nucleation and incubation are concepts drawn independently from domains as diverse as software engineering, the physical sciences and economics. There is no guarantee that they are mutually compatible; or even relevant to urban systems in any more direct way than by loose analogy.

But they share important characteristics that are also observed in successful urbanism and the research of resilient systems. For example: a preference for emergent growth rather than planned development;  and the need to enable widespread changes that are adaptable to highly specific local contexts.

So whilst I can’t be sure that these concepts are universally applicable, I am convinced that their potential value is so great that we are compelled to explore them.

Little/big; producer/consumer; and the story of the Smarter City

(Photo of me wearing the Emotiv headset)

(Photo of me wearing the Emotiv headset)

I have a four year old son. By the time I die he’ll be about my age if I’m lucky.

If I could see him now as he will be then; I would struggle to recognise his interactions with the world as human behaviour in the terms I am used to understanding it.

When he was two years old, I showed him a cartoon on the touchscreen tablet I’d just bought. When it finished, he pressed the thumbnail of the cartoon he wanted to watch next.

The implications of that instinctive and correct action are profound, and mark the start of the disappearance of the boundary between information and the physical world.

Just as the way that we communicate with each other has changed increasingly rapidly from the telephone to e-mail to social media; so the way that we interact with information systems will transform out of all recognition as technology evolves beyond the keyboard, mouse and touchscreen.

The Emotiv headset I’m wearing in the photo above can interpret patterns in the magnetic waves created by my thoughts as simple commands that can be understood by computers. My thoughts can influence the world of information; and they can even be captured as images, as shown in this recent work using Magnetic Resonance Imaging (MRI).

And information can influence the physical world. From control technology implanted in the muscles of insects; to prosthetic limbs and living tissues that are created from digital designs by general-purpose 3D printers. As the way we interact with information systems and use them to affect the world around us becomes so natural that we’re barely conscious of it, the Information Revolution will change our world in ways that we are only beginning to imagine.

These technologies offer striking possibilities; and we face striking challenges. The two will come together where the activity of the world is most concentrated: in cities.

In the last revolution, the Industrial Revolution, we built the centres of cities upwards around lifts powered by the steam engine invented by James Watt and commercialised by Matthew Boulton in Birmingham. In the last century we expanded them outwards around the car as we became used to driving to work, shops, parks and schools.

(Photo of 3D printer by Media Lab Prado)

We believe we can afford a lifestyle based on driving cars because its long-term social and environmental costs are not included in its financial price. But as the world’s population grows towards 9 billion by 2050, mostly in cities that are becoming more affluent in what it’s increasingly inaccurate to call “emerging economies”; that illusion will be shattered.

We’re already paying more for our food and energy as a proportion of income. That’s not because we’re experiencing a “double-dip recession”; it’s because the structure of the economy is changing. There is more competition for grain to feed the world’s fuel and food needs; and droughts caused by climate change are increasing uncertainty in it’s supply.

We have choices to make. Do we consume less? Can we use technology to address the inefficiencies of supply chains which waste almost half the food they produce whilst transporting it thousands of miles around the world, without disrupting them and endangering the billions of lives they support? Or do we disintermediate the natural stages of food supply by growing artificial meat in laboratories?

These choices go to the heart of our relationship with the natural world; what it means to be human; and to live in an ethical society. I think of a Smarter City as one which is taking those choices successfully; and using technology to address its challenges in a way that is both sustainable, and sympathetic to us as human beings and as communities.

Three trends are appearing across technology, urbanism, and the research of resilient systems to show us how to do that. The first is for little things and big things to work constructively together.

The attraction of opposites part 1: little and big

(Photo of Masshouse Circus, Birmingham, before its redevelopment, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, before its redevelopment, by Birmingham City Council)

Some physical interventions in cities have been “blunt”. Birmingham’s post-war economy needed traffic to be able to circulate around the city centre; but the resulting ringroad strangled it, until it was knocked down a decade ago. It didn’t meet the needs of individuals and communities within the city to live and interact.

By contrast, Exhibition road in London – a free-for-all where anyone can walk, drive, sit, park or catch a bus, anywhere they like – knits the city together. Elevated pedestrian roundabouts and city parks similarly provide infrastructures that support fluid movement by people cycling and walking; modes of transport in which it is easy to stop and interact with the city.

These big infrastructures are compatible with the life of the little people who inhabit the city around them; and who are the reason for its existence.

The same concepts apply to technology infrastructures.

Technology offers great promise in cities. We can collect data from people and infrastructures – the movement of cars, or the concentration of carbon dioxide. We can aggregate that data to provide information about city systems – how fast traffic is moving, or the level of carbon emissions of buildings. And we can draw insight from that information into the performance of cities – the impacts of congestion on GDP, and of environmental quality on life expectancy.

Cities are deploying mobile and broadband infrastructures to enable the flow of this data; and “open data” platforms to make it available to developers and entrepreneurs for them to explore new business opportunities and develop novel urban services.

But how does deploying broadband infrastructure in a poor neighbourhood create growth if the people who live there can’t afford subscriptions to it? Or if businesses there don’t have access to computer programming skills?

Connectivity and open data are the “big infrastructures” of the information age; how do we ensure that they are properly adapted to the “little” needs of individual citizens, businesses and communities?

We will do that by concerning ourselves with people and places, rather than information and infrastructures.

(Delay times at traffic junctions visualised by the Dublinked city information partnership.)

(Delay times at traffic junctions visualised by the Dublinked city information partnership)

Where civic information infrastructures are successful in creating economic and social growth, they are not deployed; they are co-created in a process of listening and learning between city institutions; businesses; communities; and individuals.

This process requires us to visit new places, such as the “Container City” incubation facility for social enterprise in Sunderland; to learn new languages; and understand different systems of value, such as the “triple bottom line” of social, environmental and financial capital.

If we design infrastructures by listening to and then enabling ideas, then we put the resources of big institutions and companies into the hands of people and businesses in a way that makes it less difficult to create many, more effective “little” innovations in hyper-local contexts – the “Massive Small” change first described by Kelvin Campbell.

By following this process, Dublin’s “Dublinked” partnership between the City and surrounding County Councils; the National University of Ireland, businesses and entrepreneurs is now sharing 3,000 city datasets; using increasingly sophisticated tools to draw value from them; identifying new ways for the city’s transport, energy and water systems to work; and starting new, viable, information-based businesses.

As a sustained process, these conversations and the trust they create form a “soft infrastructure” for a city, connecting it’s little and big inhabitants.

This soft infrastructure is what turns civic information into services that can become part of the fabric of life of cities and communities; and that can enable sustainable growth by weaving information into that fabric that describes the impact of choices that are about to be made.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times – and suggestions for alternative routes.)

For example, a project in San Francisco used algorithms that are capable of predicting traffic speeds and volume in the city one hour into the future with 85% accuracy. These algorithms were developed in a project in Singapore, where the resulting predictions were made available to traffic managers, so that they could set lane priorities and traffic light sequences to attempt to prevent any predicted congestion.

But in California, the predictions were made available instead to individual commuters who where told in advance the likely duration of their journey each day, including the impact of any congestion that would develop whilst the journey was underway. This gave them a new opportunity to take an informed choice: to travel at a different time; by a different route or mode; or not to travel at all.

The California project shows that it’s far more powerful to use the information resulting from city data and predictive algorithms not to influence a handful of traffic managers who respond to congestion; but to influence the hundreds or thousands of individual travellers who create it; and who have the power to choose not to create it.

And in designing information systems such as this, we can appeal not just to selfish interests, but to our sense of community and place.

A project in Dubuque, Iowa uses Smart water meters to tell householders whether they are using domestic appliances efficiently; and can detect weak underlying signals that indicate leaks. People who are given this information can choose to act on it; and to a certain extent, they do.

But something remarkable happened in a control group who were also given a “green points” score comparing their water efficiency to that of their neighbours. They were literally twice as likely to improve their water efficiency as people who were only told about their own water use.

Maslow’s hierarchy of needs tells us that once the immediate physical needs of our families are secured, our motivations are next driven by our relationships with the people around us. Technology gives us the ability to design new information-based services that appeal directly to those values, rather than to more distant general environmental concerns.

The attraction of opposites part 2: producer and consumer

(Photo of 3D-printed objects by Shapeways)

This information is at our fingertips; we are its producers and consumers. For the last decade, we have used and created it when we share photos in social media or buy and sell in online marketplaces.

But the disappearance of the boundaries between information systems, the physical world and our own biology means that it is not just information that we will be producing and consuming in the next decade, but physical goods and services too.

As a result, new peer-to-peer markets can already be seen in food production; parking spaces; car journeys; the manufacture of custom objects; and the production of energy from sources such as bio-matter and domestic solar panels.

Of course, we have all been producers and consumers since humans first began to farm and create societies with diversified economies. What’s new is the ability of technology to dramatically improve the flexibility, timeliness and efficiency of interactions between producers and consumers; creating interactions that are more sustainable than those enabled by conventional supply chains.

Even more tantalising is the possibility of using new rates of exchange in those transactions.

In Switzerland, a complementary currency, the Wir, has contributed to economic stability over the last century by allowing some debt repayments to be bartered locally when they cannot be repaid in universal currency. And last year, Bristol became the 5th UK town or city to operate its own currency.

These currencies are increasingly using advanced technologies, such as the “Droplet” smartphone payment scheme now operating in Birmingham and London. This combination of information technology and local currencies could be used to calculate rates of exchange that compare the complete social, environmental and economic cost of goods and services to their immediate, contextual value to the participants in the transaction.

That really could create a market infrastructure to support Smarter, sustainable, and more equitable city systems; and it sounds like a great idea to me.

But if it’s such a good idea, why aren’t markets based on it ubiquitous already?

Collaborative governance; and better stories for Smarter Cities

(Stories of Mumbai: an exploration of Mumbai’s history of urban development, and its prospects for the future, using storytelling and puppetshows, by the BMW Guggenheim Lab)

If we are going to use the technologies and ideas I’ve described to transform cities, then technologists like me need to learn from the best of urbanism.

Jan Gehl taught us to design liveable cities not by considering the buildings in them; but how people use the spaces between buildings.

In Smarter Cities our analogous challenge is to concentrate not only on information infrastructures and the financial efficiencies that they provide; not least because “Smart” ideas cut across city systems, and so gains in efficiency don’t always reward those who invest in infrastructure.

Our objective instead is to create the harder to quantify personal, social and environmental value that results when those infrastructures enable people to afford to eat better food or to heat their homes properly in winter; to access affordable transport to places of employment; and to live longer, independent lives as productive contributors to their communities.

These are the stories we need to tell about Smarter Cities.

These stories are of vital importance because the third trend we observe is that cities only really get smarter when their leaders and communities coordinate the use of public and private assets to achieve a collective vision of the future, and to secure external investment in it.

Doing so needs the commitment not just of the owners and managers of those assets, but of the shareholders, voters, employees and other stakeholders that they are accountable to.

To win the commitment of such a broad array of people we need to appeal to common instincts: our understanding of narrative, and our ability to empathise. Ultimately we will need the formal languages of finance and technology, but they are not where we should start.

DDespommier

(Dickson Despommier, inventor of the vertical farm, speaking at TEDxWarwick 2013)

It’s imperative that we tell these stories to inspire the evolution of our cities. The changes in coming decades will be so fast and so profound that cities that do not embrace them successfully will suffer severe decline.

Luckily, our ability to respond successfully to those changes depends on a technology that is freely available: language, used face to face in conversations. I can’t think of a more essential challenge than to use it to tell stories about how our world can be come smarter, fairer, and more sustainable.

And there’s no limit to what any one of us can achieve by doing this. Because it is collaborative governance rather than institutional authority that enables Smarter Cities, then there are no rules defining where the leadership to establish that governance will come from.

Whether you are a politician, academic, technologist, business person, community activist or simply a passionate individual; and whether your aim is to create a new partnership across a city, or simply to start an independent social enterprise within it; that leadership could come from you.

(This article is based on the script I wrote in preparation for my TEDxWarwick presentation on 13th March 2013).

Do we need a Pattern Language for Smarter Cities?

(Photo of the Athens Olympic Sports Complex from Space by the NASA Goddard Space Flight Center)

The UK Department of Business, Innovation and Skills held a workshop recently to determine how to create guidance for cities considering their approach to Smarter Cities.

A robust part of the debate centred on the challenge of providing “delivery guidance” for cities embarking on Smarter Cities initiatives: whilst there are many visions for smart and future cities; and many examples of projects that have been carried out; there is little prescriptive guidance to assist cities in defining and delivering their own strategy (although I’ve provided my own humble contribution in “Six steps to a smarter city” on this blog; an article which organises a broad set of resources into an admittedly very high level framework).

In setting out a transformative smarter city vision and then taking the steps to achieve it, a great deal of change is involved. Large, formal organisations tend to approach change with prescriptive , process-driven techniques – for all that the objective of change might be defined disruptively by individual insight and leadership or through the application of techniques such as “design thinking“; the execution of the changes required to achieve that objective is usually driven by a controlled process with well defined roles, scope, milestones, risks and performance indicators.

My own employer, IBM, is a vast organisation with over 400,000 employees; a similar number of people to the population of a city of modest size. It was the subject of one of the most famous transformations in corporate history when Lou Gerstner saved it from near-failure in the 1990s. The transformation was achieved by brilliant personal leadership; trial and error; and a variety of techniques and ideas from different sources – there was no “off-the-shelf” process to follow at this scale of organisational change.

But transforming a city is not the same thing as changing an organisation, however big. A city is a complex system of systems, and we have comparatively little knowledge about how to drive change in such an environment. Arguably,we should not even think about “driving change” in city ecosystems, but rather consider how to influence the speed and direction of the changes that will emerge from them anyway.

Some very different approaches to process-driven change have emerged from thinking in policy, economics, planning and architecture: the Collective Research Initiatives Trust‘s study of Mumbai, “Being Nicely Messy“; Colin Rowe and Fred Koetter’s “Collage City“; Manu Fernandez’s “Human Scale Cities” project; the “Massive / Small” concept and associated “Urban Operating System” from Kelvin Campbell and Urban Initiatives; and CHORA’s Taiwan Strait Atlas, for example have all suggested an approach that involves a “toolkit” of ideas for individuals and organisations to apply in their local context.

(In this light, it’s interesting to observe that in order to steer the ongoing growth of IBM following the transformation led by Lou Gerstner, his successor as CEO, Sam Palmisano, took the organic approach of seeking to inspire a consistent evolution of business behaviour across all 400,000 individual IBMers by co-creating and adopting a common and explicit set of “values”).

(Stories of Mumbai: an exploration of Mumbai’s history of urban development, and its prospects for the future, using storytelling and puppetshows, by the BMW Guggenheim Lab)

In “Resilience: Why Things Bounce Back“, Andrew Zolli and Ann Marie Healy, give a fascinating description of the incredible impact such approaches can achieve through the example of the response to the earthquake near Port-au-Prince in Haiti on January 10, 2010 that was led by Patrick Meier, the Ushahidi information crowd-sourcing platform and the Tufts Fletcher School of Law and Diplomacy in Massachusetts. Meier catalysed an incredible multi-national response to the earthquake that included the resources of organisations such as Thomson Reuters, Digicel (the largest mobile phone company in Haiti), and MedicMobile; and just as importantly hundreds of individuals literally spread across the world, with nothing more in common than a desire to do what they could to contribute:

“I told people, ‘We’re going to let this be emergent,’” Meier explained. “There are so many things that need to happen every single hour and so many things that need to keep evolving in such a short amount of time. I have to just let it flourish and deal with what happens when it starts getting inefficient.” The open nature of the platform – both the code that powers Ushahidi and the collaborative nature of the mapping – meant that people could easily be recruited to perform discrete, useful tasks with a minimum of formal authority.”

(Patrick Meier, quoted in “Resilience: Why Things Bounce Back“, p179, by Andrew Zolli and Ann Marie Healy)

In my own work, I’ve tried to follow a similar course, inspired first by the Knight Foundation’s report on the Information Needs of Communities. The Knight Foundation counsel a process of engagement and understanding between institutions and communities, in order to identify the specific information and resources that can be most usefully made available by city institutions to individual citizens, businesses and social organisations. As I described in “The Amazing Heart of a Smarter City: the Innovation Boundary“, the resulting portfolio provides a toolkit customised to the needs of a city, and that can be used to shape a collective case for investment in the development of that city.

The idea of a toolkit recognises both that no one approach, philosophy or framework is applicable to every city, or to every context within a single city; and that an idea that works in one place might work in many others.

For example, in the UK, the regions around the cities of Birmingham and Manchester are of similar size in terms of population and economic activity; but they are very different in the structure of their political administrations and economies. The approach that one of these cities adopts as its Smarter City strategy will not necessarily transfer to the other.

In contrast, however, specific ideas concerning economic development and the attraction of talented young people that I’ve found useful in Sunderland in the UK have been inspired by past experience in Wuxi, China and New York State; and in turn have informed initiatives in Spain, Singapore and Nairobi; in other words they have transcended contexts of vastly different size, culture and economics.

A tool that emerged from town planning in the 1970s and that was then adopted across the information technology industry in the 1980s and 1990s might just provide the approach we need to harness this information. And it’s perhaps not surprising that a tool with such provenance should become relevant at at time when the architects of information technology systems, buildings and cities are finding that they are working within a common context.

That tool is the “Design Pattern”.

A Pattern Language for Smarter Cities

(A pattern language for social software features, image by Amber Case)

The town planner Christopher Alexander invented “design patterns” in the 1970s. He addressed the challenge that many problems in planning were (and are) too large and complex for one person to consider them in their entirety at one time; and that it is hence necessary to break them down into sub-problems.

The difficulty is that it is not at all straightforward to break a problem into sub-problems that can be solved effectively in isolation from each other.

Consider city transport systems: in many cases, road management, bus operations and the rail network are the responsibility of different organisations. It “makes sense” to break up transport systems in this way because each is different; and so different organisations are better at running them effectively.

But from the perspective of the users of transport systems, it doesn’t make sense to do this. Bus and rail timetables don’t work together; cars, buses, freight vehicles, bicycles and pedestrians have conflicting requirements of road space; and the overall system does not behave as though it is designed to serve travellers consistently.

In “Notes on the Synthesis of Form” in 1969, Alexander described a mathematical technique that could be used to manage the complexity of large problems and to break them down into sub-problems in a way that accommodated interdependencies between them. As a result, those sub-problems could be solved separately from each other, then integrated to form an overall solution.

This process of decomposition, solution and integration is fundamental to process-driven approaches to the design and delivery of complex solutions. It is not possible, for example, to assign responsibilities to individuals and teams without going through it. Many projects that fail do so because the  problem that they are addressing is not decomposed effectively so that individual teams find that they have overlapping areas of responsibility and therefore experience duplication and conflict.

However, in developing his technique for decomposing problems, Alexander concluded that it was overly complex, rigid and impractical; and he recommended that it should never be used. Instead, he suggested that it was more useful to focus not on how we deal with problems; but on how we re-use successful solutions.

By identifying and characterising the components of solutions that have been proven to work, we enable them to be reused elsewhere. Christopher Alexander’s particular insight was to recognise that to do so successfully, it is vitally important to precisely describe the context in which a solution is applicable. He called the resulting description of reusable solutions a “design pattern”; and a collection of such descriptions, a “pattern language“.

Design patterns and pattern languages offer a useful combination of formal and informal approaches. They are formal in that each pattern is described in a consistent way, using a structured framework of characteristics. And they are informal in that the description isn’t constrained to that framework of characteristics; and because design patterns do not assert that they should be used: they are simply there to be used by anyone who chooses to do so.

Christopher Alexander’s patterns for town planning and architecture can be found in his books, or online at the “Pattern Language” community; in information technology, Martin Fowler’s “Enterprise Application Architecture Patterns” provide a similar example.

To my knowledge, no-one is yet curating a similar set of Smarter Cities patterns; I believe that there would be great value in doing so; and that in order to do so skills and expertise across domains such as planning, architecture, technology, social science and many others would be required.

In the final part of this article, I’d like to suggest some examples of Smarter City initiatives and ideas that I think can be usefully described as patterns; and to give one example of such a description. Please do share your views on whether this approach is useful by commenting on this blog, or through one of the Linked-In discussion groups where I’ve posted links to this article.

Design Patterns for Smarter Cities

Here are just a few of the ideas I’ve seen applied successfully in more than one place, either as part of a Smarter City strategy, or simply as valuable initiatives in their own right. It is certainly not an exhaustive list – a quick survey of Linked-In discussion Groups such as “Smart Cities and City 2.0“, “Smarter Cities” and “Smart Urbanism” will reveal many other examples that could be described in this way.

  • Information Partnerships – collaborations between city institutions, communities, service providers and research institutions to share and exploit city data in a socially and financially sustainable system. (I’ve provided a more detailed description of this example below).
  • Incubation Clouds – the use of Cloud Computing platforms and hybrid public/private commercial models to enable co-operative investment in technology capabilities that can lower the barriers to successful innovations in city services. Examples: Sunderland’s “City Cloud” and the Wuxi iPark.
  • Community Energy Initiatives – the formation of local energy companies to exploit “smart grid” technology, local energy generation (such as solar panels, wind power, wave power, geo-thermal power and bio-energy) and collaborative energy consumption to reduce carbon emissions and reliance on external energy sources. Examples: Eco-island and Birmingham Energy Savers.
  • Social Enterprises – a collective term for models of business that audit themselves against social and environmental outcomes, as well as financial sustainability and returns. Examples: co-operatives, credit unions and organisations using “triple-bottom-line” accounting.

(The components of a Smart City architecture I described in “The new architecture of Smart Cities“)

In order to describe these concepts more completely as re-usable patterns; and in a way that allows them to be compared, selected in comparison to each other, or used together; it is important that they are described consistently, and in a way that accurately identifies the context in which they are applicable.

To do so requires that we describe the same aspects of each pattern; and that we describe each aspect using a common language. For example:

  • The city systems, communities and infrastructures affected; using a framework such as the “The new architecture of Smart Cities” that I described last year, shown in the diagram above.
  • The commercial operating model that makes the pattern financially sustainable.
  • The driving forces that make the pattern applicable, such as traffic congestion; persistent localised economic inactivity; the availability of local energy sources; or the need to reduce public sector spending.
  • The benefits of using the pattern; including financial, social, environmental and long-term economic benefits.
  • The implications and risks of implementing the pattern – such as the risk that consumers will not chose to change their behaviour to adopt more sustainable modes of transport; or the increasing long-term costs of healthcare implied by initiatives that raise life-expectancy by creating a healthier environment.
  • The alternatives and variations that describe how the pattern can be adapted to particular local contexts.
  • Examples of where the pattern has been applied; what was involved in making it work; and the outcomes that were achieved as a result.
  • Sources of information that provide further explanation, examples of use and guidance for implementation.

I’ll finish this article by given an example of a Smarter City pattern described in that way – the “City Information Partnership”.

(Coders at work exploiting city information at the Birmingham “Smart Hack”, photographed by Sebastian Lenton)

An Example Pattern: City Information Partnership

(Note: the following description is not intended to be written in the fluent style that I usually hope to achieve in my blog articles; instead, it is meant to illustrate the value in bringing together a set of concisely expressed ideas in a structured format).

Summary of the pattern: a collaboration between city institutions, communities, service providers and research institutions to share and exploit city data in a socially and financially sustainable system.

City systems, communities and infrastructures affected:

(This description is based on the elements of Smarter City ecosystems presented in “The new Architecture of Smart Cities“).

  • Goals: Any.
  • People: Citizens; innovators.
  • Ecosystem: All.
  • Soft infrastructures: Innovation forums; networks and community organisations.
  • City systems: Any.
  • Hard infrastructures: Information and communications technology.

Commercial operating model:

City information partnerships are often incorporated as “Special Purpose Vehicles” (SPVs) jointly owned by city institutions such as local authorities; universities; other public sector organisations such as schools, healthcare providers and emergency services; services providers such as transportation authorities and utilities; asset owners and operators such as property developers and facility managers; local employers; and private sector providers such as technology companies.

A shared initial investment in technology infrastructure is often required; and in order to address legal issues such as intellectual property rights and liability agreements.

Long-term financial sustainability is dependent on the generation of commercial revenues by licensing the use of data by commercial operations. In cases where such initiatives have been supported only by public sector or research funding, that funding has eventually been reduced or terminated leading to the stagnation or cessation of the initiative.

Soft infrastructures, hard infrastructures and assets required:

Information partnerships only succeed where they are a component of a co-creative dialogue between individuals and organisations in city institutions such as entrepreneurs, community associations, local authorities and social enterprises.

Institutional support is required to provide the models of legal liability and intellectual property ownership that create a trusted and transparent context for collaborative innovation.

Technologies such as Cloud Computing platforms; information management; security; analytics, reporting; visualisation; and data catalogues are required to manage city information and make it available and useful to end users.

Information partnerships require the participation of organisations which between them own and are prepared to make available a sufficiently broad and rich collection of datasets.

Driving forces:

Information is transforming the world’s economy; it provides new insight to support business model creation and operation; makes new products and services possible; and creates new markets.

At the same time global and local demographic trends mean that the cost-base and resource usage of city systems must change.

Information partnerships expose city information to public, private, social and academic research and innovation to discover, create and operate new models for city services; with the potential for resale elsewhere; leading in turn to economic and social growth.

(A visualisation created by Daniel X O Neil of data from Chicago’s open data portal showing the activities of paid political lobbyists and their customers in the city)

Benefits:

Community hacktivism can usually be engaged by information partnerships to create useful community “apps” such as local transport information and accessibility advice.

The creation of new information-based businesses creates local employment opportunities, and economic export potential.

Information partnerships can provide information resources for technology education in schools, colleges and universities.

New city services developed as a result of the information partnership may provide lower-carbon alternatives to existing city systems such as transportation.

Implications and risks:

If participating organisations such as local authorities include the requirement to contribute data to the information partnership in procurement criteria, then tendering organisations will include any associated costs in their proposals.

For information partnerships to be sustainable, the operating entity needs to be able to accrue and reinvest profits from licenses to exploit data commercially.

The financial returns and economic growth created by information partnerships can take time to develop.

Genuinely constructive partnerships rely on effective engagement between city institutions, businesses and communities.

Existing contracts between local authorities and service providers are unlikely to require that data is contributed to the partnership; and the costs associated with making the data associated with those services available will need to be negotiated.

Alternatives and variations:

Some organisations have provided single-party open data platforms. These can be effective – for example, the APIs offered by e-Bay and Amazon; but individual organisations within cities will rarely have a critical mass of valuable data; or the resources required to operate effective and sustained programmes of engagement with the local community.

Many advocates of open data argue that such data should be freely available. However, the majority of platforms that have made data available freely have struggled to make data available in a form that is usable; to expand the data available; to offer data at a reliable level of service; or to sustain their operations over time. Making good quality data available reliably requires effort, and that effort needs to be paid for.

Examples:

Sources of information:

The UK Open Data Institute is championing open data in the UK – http://www.theodi.org/

O’Reilly Media have published many informative articles on their “Radar” website – http://search.oreilly.com/?q=open+data&x=0&y=0&tmpl=radar

The report “Information Marketplaces: The new economics of cities” published by Arup, The Climate Group, Accenture and Horizon, University of Nottingham – http://www.arup.com/Publications/Information_Marketplaces_the_new_economics_of_cities.aspx

Finally, I have written a series of articles on this blog that explore the benefits and challenges associated with the collaborative exploitation of city information:

What next?

It has been an interesting exercise for me to write this article. Many of the ideas and examples that I have included will not be new to regular readers of this blog. But in describing the idea of an “Information Partnership” as a formal design pattern I have brought them together in a particularly focussed and organised manner. There are many, many more ideas and examples of initiatives within the Smarter Cities domain that could be described in this way; and I personally believe that it would be valuable to do so.

But my opinion on that subject is less valuable than yours. I would really appreciate your thoughts on whether the “Smarter City Design Patterns” I’ve suggested and explored in this article would be a valuable contribution to our collective knowledge.

I look forward to hearing from you.

Better stories for Smarter Cities: three trends in urbanism that will reshape our world

(Stories of Mumbai: an exploration of Mumbai’s history of urban development, and its prospects for the future, using storytelling and puppetshows, by the BMW Guggenheim Lab)

Towards the end of last year, it became clearer how cities could take practical steps to position themselves to transform to meet the increasing economic, environmental and social challenges facing them; and to seek investment to support those transformations, as I described in “Smart Ideas for Everyday Cities“.

Equally important as those practical approaches to organisation, though, are the conceptual tools that will shape those transformations. Across fields as diverse as psychology, town planning, mathematics, construction, service-design and technology, some striking common themes have emerged that are shaping those tools.

Those themes imply that we will need to take radically different approaches to city systems driven by the astonishing, exciting and sometimes disturbing changes that we’re likely to see taking place increasingly rapidly in our world over the next decade.

To adopt the terminology of Irene Ng, a Researcher in new economic models and service science at the University of Warwick, these changes will create both “needs-led” and “capability-led” drivers to do things differently.

“Needs-led” changes will be driven by the massive growth taking place in the global middle class as economies across the world modernise. The impacts will be varied and widespread, including increasing business competition in a single, integrated economy; increasing competition for resources such as food, water and energy; and increasing fragility in the systems that supply those resources to a population that is ever more concentrated in cities. We are already seeing these effects in our everyday lives: many of us are paying more for our food as a proportion of our income than a few years ago.

At a recent lecture on behalf of the International Federation for Housing and Planning and the Association of European Schools of Planning, Sir Peter Hall, Professor of Planning and Regeneration at the Bartlett School of Planning, spoke of the importance of making the growth of cities sustainable through the careful design of the transport systems that support them. In the industrial revolution, as Edward Glaeser described in Triumph of the City, cities grew up around lifts powered by steam engines; Sir Peter described how more recently they have grown outwards into suburbs populated with middle-class car-owners who habitually drive to work, schools, shops, gyms and parks.

This lifestyle simply cannot be sustained – in the developed world or in emerging economies – across such an explosively growing number of people who have the immediate wealth to afford it, but who are not paying the full price of the resources it consumes. According to the exhibition in Siemens’ “Crystal” building, where Sir Peter’s lecture was held, today’s middle class is consuming resources at one-and-a-half times the rate the world creates them; unless something changes, the rate of growth of that lifestyle will hurl us towards a global catastrophe.

So, as the Collective Research Initiatives Trust (CRIT) observed in their study of the ongoing evolution of Mumbai, “Being Nicely Messy“, the structure of movement and the economy will have to change.

(Siemens’ Crystal building in London, a show case for sustainable technology in cities, photographed by Martin Deutsch)

Meanwhile, the evolution of technology is creating incredible new opportunities for “capability-led” change.

In the last two decades, we have seen the world revolutionised by information and communication technologies such as the internet and SmartPhones; but this is only the very start of a transformation that is still gathering pace. Whilst so far these technologies have created an explosion in the availability of information, recent advances in touch-screen technology and speech recognition are just starting to demonstrate that the boundary between the information world and physical, biological and neural systems is starting to disappear.

For example, a paralysed woman recently controlled a robotic arm by thought; and prosthetic limbs, a working gun and living biological structures such as muscle fibre and skin are just some of the things that can be 3D printed on demand from raw materials and digital designs.

What changes to our urban systems will these developments – and the ones that follow them – lead to?

Following the decline of industries such as manufacturing, resource-mining and ship-building,  many post-industrial cities in the developed world are rebuilding their economies around sectors with growth potential, such as environmental technology and creative media. They are also working with the education system to provide their citizens with access to the skills those sectors require.

Supplying the skills that today’s economy needs can be a challenge. Google’s Chairman Eric Schmidt lambasted the British Education system last year for producing insufficient computer programming skills; and a cross-industry report, “Engineering the Future“, laid out the need for increased focus on environmental, manufacturing, technology and engineering skills to support future economic growth in the UK. As the rate of change in science and technology increases, the skills required in a consequently changing economy will also change more rapidly; providing those skills will be an even bigger challenge.

Or will it? How much of a leap forward is required from the technologies I’ve just described, to imagining that by 2030, people will respond to the need for changing skills in the market by downloading expertise Matrix-style to exploit new employment opportunities?

Most predictions of the future turn out to be wrong, and I’m sure that this one will be, in part or in whole. But as an indication of the magnitude of changes we can expect across technology, business, society and our own physical and mental behaviour I expect it will be representative.

Our challenge is to understand how these needs-led and capability-led transformations can collectively create a world that is sustainable; and that is sympathetic to us as human beings and communities. That challenge will be most acute where both needs and capabilities are most concentrated – in cities. And across economics, architecture, technology and human behaviour, three trends in urban thinking have emerged – or, at least, become more prominent – in recent years that provide guiding principles for how we might meet that challenge.

The attraction of opposites, part 1: producer and consumer

20120605-005134.jpg

(Photograph of 3D printers by Rob Boudon)

In the Web 2.0 era (roughly 2003-2009), the middle classes of the developed world became connected by “always-on” broadband connections, turning these hundreds of millions of information-consumers into information-producers. That is why in 2007 (and every year since) more new information was created than in all of the previous 5 millenia. Industries such as publishing, music and telecommunications have been utterly transformed as a result.

The disappearance of the boundary between  information, physical and biological systems, and the explosive growth in the population with access to the technologies responsible for that disappearance, will transform every economic and social structure we can imagine through the same producer / consumer revolution.

We can already produce as well as consume transport resources by participating in car-sharing schemes; and energy by exploiting domestic solar power and bio-energy. The falling cost and increasing sophistication of 3D printers are just starting to make it feasible to manufacture some products in the home, particularly in specialist areas such as railway modelling; and platforms such as the Amazon Turk and Slivers of Time can quickly connect producers and consumers in the service industries.

Business-to-business and business-to-consumer marketplaces such as Big Barn and Sustaination provide the same service in local food systems. And the transport industry is evolving to serve these new markets: for instance, Shutl provide a marketplace for home delivery services through a community of independent couriers; and a handful of cities are deploying or planning recycling systems in which individual items of waste are distributed to processing centres through pneumatically powered underground transport networks.

Of course, from the earliest development of farming in human culture, we have all been both producers and consumers in a diversified economy. What’s new is the opportunity for technology to dramatically improve the flexibility, timeliness and efficiency of the value-chains that connect those two roles. Car-sharing not only reduces the amount of fuel used by our journeys; it could reduce the resources consumed by manufacturing vehicles that spend the majority of their lives stationary on drives or in car parks. Markets that more efficiently connect food production, processing and consumption could reduce the thousands of miles that food currently travels between farm and fork, often crossing its own path several times; they could create employment opportunities in small-scale food processing; not to mention reducing the vast quantity of food that is produced but not eaten, and goes to waste.

Irene Ng explores these themes wonderfully in her new book, “Value and Worth: Creating New Markets in the Digital Economy“; they offer us exciting opportunities for economic and social growth, and an evolution towards a more sustainable urban future – if we can harness them in that way.

The attraction of opposites, part 2: little and big

Some infrastructures can be “blunt” instruments: from roads and railway lines which connect their destinations but which cut apart the communities they pass through; to open data platforms which provide vast quantities of data “as-is” but little in the way of information and services customised to the needs of local individuals and communities.

Architects such as Jan Gehl have argued that the design process for cities should concentrate on the life between buildings, rather than on the structure of buildings; and that cities should be constructed at a “human-scale” – medium-sized buildings, not tower-blocks and sky-scrapers; and streets that are walkable and cycle-able, not dominated by cars. In transport, elevated cycleways and pedestrian roundabouts have appeared in Europe and Asia. These structures prevent road traffic infrastructures form impeding the fluid movement of cycling and walking – transport modes which allow people to stop and interact in a city more easily and often than driving.

At a meeting held in London last year to establish the UK’s chapter to the City Protocol Society, Keith Coleman of Capgemini offered a different view by comparing the growth in size of cities to the structure of the world’s largest biological organisms. In particular, Keith contrasted the need to provide infrastructure – such as the Pando forest in Utah, a single, long-lived and vastly extensive root system supporting millions of individual trees that live, grow and die independently – with the need to provide capabilities – such as those encoded in the genes of the Neptune sea grass, which is not a single organism, but rather a genetically identical colony which collectively covers 5% of the Mediterranean sea floor.

The Collective Research Initiatives Trust‘s study of Mumbai, “Being Nicely Messy“, Colin Rowe and Fred Koetter’s “Collage City“, Manu Fernandez’s “Human Scale Cities” project and CHORA’s Taiwan Strait Atlas project have all suggested an approach to urban systems that is more like the Neptune sea grass than the Pando forest: the provision of a “toolkit” for individuals and organisations to apply in their local context

My own work, initially in Sunderland, was similarly informed by the Knight Foundation’s report on the Information Needs of Communities, to which I was introduced by Conn Crawford of Sunderland City Council. It counsels for a process of engagement and understanding between city institutions and communities, in order that the resources of large organisations can be focused on providing the information and services that can be most effectively used by individual citizens, businesses and social organisations.

(The Bristol Pound, a local currency intended to encourage and reinforce local trading synergies.)

Kelvin Campbell of Urban Initiatives has perhaps taken this thinking furthest in the urban context in his concept of “Massive Small” and the “urban operating system”. Similar thinking appears throughout research on resilience in systems such as cities, coral reefs, terrorist networks and financial systems, as described by Andrew Zolli and Ann Marie Healy in “Resilience: Why Things Bounce Back“. And it is reflected in the work that many researchers and professionals across fields as diverse as city planning, economics and technology are doing to understand how institutional city systems can engage effectively with “informal” activity in the economy.

In IBM we have adapted our approach too. To take one example, a few years ago we launched our “Global Entrepreneur” programme, through which we engage directly with small, startup businesses using technology to develop what we call “Smarter Planet” and “Smarter Cities” solutions. These businesses are innovating in specific markets that they understand much better than we do; using operating models that IBM does not have. In turn, IBM’s resources can help them build more resilient solutions more quickly and cost-effectively, and reach a wider set of potential customers across the world.

A civic infrastructure that combines economics and technology and that, whilst it has a long history,  is starting to evolve rapidly, is the local currency. Last year Bristol became the fifth place in the UK to launch its own currency; whilst in Switzerland an alternative currency, the Wir, is thought to have contributed to the stability of the Swiss economy for the last century by providing an alternative, more flexible basis for debt, by allowing repayments to made in kind through bartering, as well as in currency.

Such systems can promote local economic synergy, and enable the benefits of capital fluidity to be adapted to the needs of local contexts. And from innovations in mobile banking in Africa to Birmingham’s DropletPay SmartPhone payment system, they are rapidly exploiting new technologies. They are a clear example of a service that city and economic institutions can support; and that can be harnessed and used by individuals and organisations anywhere in a city ecosystem for the purposes that are most important and valuable to them.

IMG-20121104-00606

(The Co-operative Society building at Avoncroft Museum of Historic Buildings)

Co-operative Governance

It’s increasingly obvious that on their own, traditional businesses and public and civic institutions won’t deliver the transformations that our cities, and our planet, need. The restructuring of our economy, cities and society to address the environmental and demographic challenges we face requires that social, environmental and long term economic goals drive our decisions, rather than short term financial returns alone.

Alternatives have been called for and proposed. In her speech ahead of the Rio +20 Summit, Christine Lagarde, Managing Director of the International Monetary Fund, said that one of the challenges for achieving a sustainable, equitably distributed return to growth following the recent economic challenges was that “externalities” such as social and environmental impacts are not currently included in the prices of goods and services.

I participated last year in a panel discussion at the World Bank’s “Rethinking Cities” conference which asked whether including those costs would incent consumers to chose to purchase sustainably provided goods and services. We examined several ways to create positive and negative incentives through pricing; but also examples of simply “removing the barriers” to making such choices. Our conclusion was that a combination of approaches was needed, including new ideas from game theory and technology, such as “open data”; and that evidence exists from a variety of examples to prove that consumer behaviour can and does adapt in response to well designed systems.

In “Co-op Capitalism“, Noreena Hertz proposed an alternative approach to enterprise based on social principles, where the objectives of collective endeavours are to return broad value to all of their stakeholders rather than to pay dividends to financial investors. This approach has a vital role in enabling communities across the entirety of city ecosystems to harness and benefit from technology in a sustainable way, and is exemplified by innovations such as MyDex in personal information management, Carbon Voyage in transport, and Eco-Island in energy.

New forms of cooperation have also emerged from resilience research, such as “constellations” and “articulations”. All of these approaches have important roles to play in specific city systems, community initiatives and new businesses, where they successfully create synergies between the financial, social and economic capabilities and needs of the participants involved.

But none of them directly address the need for cities to create a sustainable, cohesive drive towards a sustainable, equitable, successful future.

(Photo by Greg Marshall of the rocks known as “The Needles” just off the coast of the Isle of Wight; illustrating the potential for the island to exploit wave and tidal energy sources through the Eco-Island initiative)

In “Smart Ideas for Everyday Cities“, I described an approach that seems to be emerging from the cities that have made the most progress so far. It involves bringing together stakeholders across city systems – representatives of communities; city institutions; owners and operators of city systems and assets such as buildings, transportation and utilities; Universities and schools; and so on – into a group that can not only agree a vision and priorities for the city’s future; but that is empowered to take collective decisions accordingly.

The initiatives agreed by such a group will require individual “special purpose vehicles” (SPVs) to be created according to the specific set of stakeholder interests involved in each case – such as public/private partnerships to build infrastructure or Community Interest Companies and Energy Service Companies to operate local energy schemes. (There are some negative connotations associated with SPVs, which have been used in some cases by private organisations seeking to hide their debt or ownership; but in the Smarter Cities context they are frequently associated with more positive purposes).

Most importantly, though: where a series of such schemes and commercial ventures are initiated by a stable collaboration within a city, investors will see a reliable decision-making process and a mature understanding of shared risk and its management; making each individual initiative more likely to attract investment.

In his analysis of societal responses to critical environmental threats, Jared Diamond noted in his 2005 book “Collapse” that successful responses often emerge when choices are taken by leaders with long-term vested interests, working closely with their communities. In a modern economy, the interests of stakeholders are driven by many timescales – electoral cycles, business cycles, the presence of commuters, travellers and the transient and long-term residents of the city, for example. Bringing those stakeholders together can create a forum that transcends individual timescales, creating stability and the opportunity for a long-term outlook.

A challenge for 2013: better stories for Smarter Cities

Some cities are seizing the agenda for change that I have described in this article; and the very many of us across countries, professions and disciplines who are exploring that agenda are passionate about helping them to do so successfully.

In their report “Cities Outlook 1901“, Centre for Cities explored the previous century of urban development in the UK, examining why at various times some cities thrived and some did not. They concluded that actions taken by cities in areas such as planning, policy, skills development and economic strategy could have significant effects on their economic and social prosperity relative to others.

The need for cities to respond to the challenges and opportunities of the future using the old, new and evolving tools at their disposal is urgent. In the 20th Century, some cities suffered a gradual decline as they failed to respond successfully to the changes of their age. In the 21st Century those changes will be so striking, and take place so quickly, that failing to meet them could result in a decline that is catastrophic.

But there is a real impediment to our ability to apply these ideas in cities today: a lack of common understanding.

(Matthew Boulton, James Watt and William Murdoch, Birmingham’s three fathers of the Industrial Revolution, photographed by Neil Howard)

As the industrial and information revolutions have led our world to develop at a faster and faster pace, human knowledge has not just grown dramatically; it has fragmented to an extraordinary extent.

Consequently, across disciplines such as architecture, economics, social science, psychology, technology and all the many other fields important to the behaviour of cities, a vast and confusing array of language and terminology is used – a Tower of Babel, no less. The leaders of many city institutions and businesses are understandably not familiar with what they can easily perceive as jargon; and new ideas that appear to be presented in jargon are unlikely to be trusted.

To address the challenge, those of us who believe in these new approaches to city systems need to tell better stories about them; stories about individuals and their lives in the places where they live and work; how they will be more healthy, better equiped to support themselves, and able to move around freely in a pleasant urban environment.

Professor Miles Tight at the University of Birmingham and his colleagues in the “Visions 2030” project have applied this idea to the description of future scenarios for transportation in cities. They have created a series of visually appealing animated depictions of everyday scenes in city streets and places that could be the result of the various forces affecting the development of transport over the next 20 years. Malcolm Allan, a colleague in the Academy of Urbanism, helps cities to tell “stories about place” as a tool for envisaging their future development in a way that people can understand and identify with. And my colleagues in IBM Research have been exploring more generally how storytelling can enable the exchange of knowledge in situations where collaborative creativity is required across multiple domains of specialisation.

If we can bring our knowledge of emerging technologies and new approaches to urbanism into conversations about specific places in the form of stories, we will build trust and understanding in those places, as well as envisioning their possible futures. And that will give us a real chance of achieving the visions we create. This is what I’ll be concentrating on doing in 2013; and it looks like being an exciting year.

(It’s been much longer than usual since I last wrote an article for this blog; following an extended break over Christmas and the New Year, I’ve had a very busy start to 2013. I hope to resume my usual frequency of writing for the rest of the year.

And finally, an apology: in my remarks on the panel discussion following Sir Peter Hall’s lecture at the Crystal, I gave a very brief summary of some of the ideas described in this article. In particular, I used the term “Massive / Small” without attributing it to Kelvin Campbell and Urban Initiatives. My apologies to Kelvin, whose work and influence on my thinking I hope I have now acknowledged properly).

The six steps to a Smarter City; and the philosophical imperative for taking them (updated 9th January 2013)

Eastside City Park

(Birmingham’s new Eastside City Park, opened late last year as a public space and walking route, adjacent to Millennium Point and the new Birmingham City University campus)

(This article originally appeared in September 2012 as “Five steps to a Smarter City: and the philosophical imperative for taking them“. Because it contains an overall framework for approaching Smart City transformations, I’ll keep it updated to reflect the latest content on this blog, and ongoing developments in the industry. It can also be accessed through the page link “Six steps to a Smarter City” in the navigation bar above). 

In recent weeks I have valued open and frank discussions between city leaders, financiers and developers, policy makers, academics, architects, planners – and even some technologists. They have revealed simple ideas that are common to those cities that are successfully implementing transformations across city systems to achieve city-wide outcomes.

I have also explored, in more philosophical articles that are largely categorised in the “Urbanism” section of this blog, the need for cities to encourage “messy”, “informal”, “organic” and “bottom-up” forms of innovation in hyperlocal contexts within cities. To do so requires a new openness and willingness to engage between city institutions and communities.

I’ve updated this article to accommodate those topics; I believe they are vital to creating and sustaining the meaningful changes that we increasingly recognise our cities need.

  1. Define what a “Smarter City” means to you
  2. Convene a stakeholder group to create a specific Smarter City vision; and establish governance and a credible decision-making process (Updated)
  3. Structure your approach to a Smart City by drawing on the available resources of expertise (Updated)
  4. Populate a roadmap that can deliver the vision (Updated)
  5. Put the financing in place (Updated)
  6. Think beyond the future and engage with informality: how to make “Smarter” a self-sustaining process (Updated) … and a philosophical imperative for doing so

1. Define what a “Smarter City” means to you

Many urbanists and cities have grappled with how to define what a “Smart City”, a “Smarter City” or a “Future City” might be. It’s important for cities to agree to use an appropriate definition because it sets the scope and focus for what will be a complex collective journey of transformation.

In his article “The Top 10 Smart Cities On The Planet“, Boyd Cohen of Fast Company defined a Smart City as follows:

“Smart cities use information and communication technologies (ICT) to be more intelligent and efficient in the use of resources, resulting in cost and energy savings, improved service delivery and quality of life, and reduced environmental footprint–all supporting innovation and the low-carbon economy.”

This definition shares a useful distinction that was made to me by the Technology Strategy Board‘s Head of Sustainability, Richard Miller: a “Smart City” is one that transforms itself into a “Future City” by using technology. In IBM we use the phrase “Smarter City” to describe a city that is making progress on that path.

As is frequently quoted, more than half of the world’s population now lives in urban areas; and in the UK where I live, that’s true of more than 90% of us. So its not surprising that so many people have strong views on what Smart, Smarter and Future Cities should be.

Personally I think that a useful and holistic definition of a “Future City” needs to include the following concepts:

  • A Future City is in a position to make a success of the present: for example, it is economically active in high-value industry sectors and able to provide the workforce and infrastructure that companies in those sectors need.
  • A Future City is on course for a successful future: with an education system that provides the skills that will be needed by future industries as technology evolves.
  • A Future City creates sustainable, equitably distributed growth: where education and employment opportunities are widely available to all citizens and communities, and with a focus on delivering social and environmental outcomes as well as economic growth.
  • A Future City operates as efficiently & intelligently as possible: so that resources such as energy, transportation systems and water are used optimally, providing a low-cost, low-carbon basis for economic and social growth, and an attractive, healthy environment in which to live and work.
  • A Future City enables citizens, communities, entrepreneurs & businesses to do their best; because making infrastructures Smarter is an engineering challenge; but making cities Smarter is a societal challenge; and those best placed to understand how societies can change are those who can innovate within them.

If those objectives provide – an admittedly very generic – view of what a “Future City” is, then a “Smarter City” is one that uses technology to accomplish them.

Creating a more specific vision is a task for each city to undertake for itself, taking into account its unique character, strengths and challenges. This process usually entails a collaborative act of creativity by city stakeholders.

2. Convene a stakeholder group to create a specific Smarter City vision

For a city to agree a shared “Smarter City” vision involves bringing an unusual set of stakeholders together in a single forum: political leaders, community leaders, major employers, transport and utility providers, entrepreneurs and SMEs, universities and faith groups, for example. The task for these stakeholders is to agree a vision that is compelling, inclusive; and specific enough to drive the creation of a roadmap of individual projects and initiatives to move the city forward.

This is a process that I’m proud to be taking part in in Birmingham through the City’s Smart City Commission, whose vision for the city was published in December. I discussed how such processes can work, and some of the challenges and activities involved, in July 2012 in an article entitled “How Smarter Cities Get Started“.

To attract the various forms of investment that are required to support a programme of “Smart” initiatives, these stakeholder groups need to be decision-making entities, such as Manchester’s “New Economy” Commission, not discussion forums.  They need to take investment decisions together in the interest of shared objectives; and they need a mature understanding and agreement of how risk is shared and managed across those investments.

Whatever specific form a local partnership takes, it needs to demonstrate transparency and consistency in its decision-making and risk management, in order that its initiatives and proposals are attractive to investors. These characteristics are straightforward in themselves; but take time to establish amongst a new group of stakeholders taking a new, collaborative approach to the management of a programme of transformation.

The article “Smart ideas for everyday cities” from December 2012 discusses these challenges, and examples of groups that have addressed them, in more detail.

3. Structure your approach to a Smart City by drawing on the available resources of expertise

Any holistic approach to a Smarter City needs to recognise the immensely complex context that a city represents: a rich “system of systems” comprising the physical environment, economy, transport and utility systems, communities, education and many other services, systems and human activities.

In “The new architecture of Smart Cities” in September 2012 I laid out a framework  for thinking about that context; in particular highlighting the need to focus on the “soft infrastructure” of conversations, trust, relationships and engagement between people, communities, enterprises and institutions that is fundamental to establishing a consensual view of the future of a city.

In that article  I also asserted that whilst in Smarter Cities we are often concerned with the application of technology to city systems, the context in which we do so – i.e. our understanding of the city as a whole – is the same context as that in which other urban professionals operate: architects, town planners and policy-makers, for example. An implication is that when looking for expertise to inform an approach to “Smarter Cities”, we should look broadly across the field of urbanism, and not restrict ourselves to that material which pertains specifically to the application of technology to cities.

So whilst  “City Protocol” seems to be the strongest emerging initiative to determine frameworks and standards for approaching Smarter Cities – and certainly should be considered by any city starting on that path – there are other resources that can be drawn on. The UK is establishing one of three local charters to the society.

UN-HABITAT, the United Nations agency for human settlements, recently published its “State of the World’s Cities 2012/2013” report. UNHABITAT promote socially and environmentally sustainable towns and cities, and their reports and statistics on urbanisation are frequently cited as authoritative. Their 2012/2013 report includes extensive consultation with cities around the world, and proposes a number of new mechanisms intended to assist decision-makers. It focuses extensively on South America, Africa, Asia and the Middle East; but also considers a number of European and North American examples.

(The components of a Smart City architecture I described in “The new architecture of Smart Cities“)

The World Bank’s Urban Development page contains a number of reports covering many aspects of urbanisation relevant to Smarter Cities, such as “Transforming Cities with Transit”, “Urban Risk Assessments: Towards a Common Approach” and a forthcoming report in December to promote “sustainable urban development through cross-sector integration by focusing on the careful coordination of transit and land development”. At the Bank’s “Rethinking Cities” symposium in Barcelona in October, they also announced that they would be publishing a book of the same title containing a set of viewpoints on similar themes.

The Academy of Urbanism, a UK-based not-for-profit association of several hundred urbanists including policy-makers, architects, planners and academics, publishes the “Friebrug Charter for Sustainable Urbanism” in collaboration with the city of Frieburg, Germany. Frieburg won the Academy’s European City of the Year award in 2010 but its history of recognition as a sustainable city goes back further. The charter contains a number of useful principles and ideas for achieving consensual sustainability that can be applied to Smarter Cities.

A number of current research programmes are seeking to define more technical standards for achieving the interoperability between city systems that underpins many Smarter City ideas. Imperial College in the UK have established the Digital City Exchange initiative; Imperial have a depth of expertise across urban systems such as transport and energy, and are working with a number of academic and industry partners.

The European Union Platform for Intelligent Cities (EPIC) project is similarly researching  architectures and standards for Smart Cities technology infrastructure – my colleagues in IBM and at Birmingham City University are amongst the participants. And the “FI-WARE” project, also funded by the European Union, is researching architectures and standards for a “future internet platform”: one of its focusses is the integration of city systems, and particularly how cities can provide technology infrastructures on which SMEs and entrepreneurs can base innovative new city services.

With the UK Technology Strategy Board continuing to invest through it’s “Future Cities” programme (link requires registration) and the EU announcing new investments in Smart Cities recently, research activity in this area will surely grow.

Consultancies, technology and service providers also offer useful views. IBM’s own perspectives and case studies can be found at http://www.ibm.com/smartercities/Arup have published a number of viewpoints, including “Information Marketplaces: the new economics of cities“; and McKinsey’s recent report “Government designed for new times: a global conversation” contains a number of sections dedicated to technology and Smarter Cities.

The large number of “Smart Cities” and “Future Cities” communities on the web can also be good sources of emerging new knowledge, such as UBM’s “Future Cities” site; the Sustainable Cities Collective; and Linked-In discussion Groups such as “Smart Cities and City 2.0“, “Smarter Cities” and “Smart Urbanism“.

Finally, I published an extensive article on this blog in December 2012 which provided a framework for identifying the technology components required to support Smart City initiatives of different kinds – “Pens, paper and conversations. And the other technologies that will make cities smarter“; and I specifically discussed the challenges and technologies associated with the city information and “open data” platforms that underlie many of those initiatives in “Why open city data is the brownfield regeneration challenge of the information age” in October 2012.

(The discussion group at #SmartHack in Birmingham, described in “Tea, trust and hacking – how Birmingham is getting Smarter“, photographed by Sebastian Lenton)

4. Populate a roadmap that can deliver the vision

In order to fulfill a vision for a Smarter City, a roadmap of specific projects and initiatives is needed, including both early “quick wins” and longer term strategic programmes.

Those projects and initiatives take many forms; and it can be worthwhile to concentrate initial effort on those that are simplest to execute because they are within the remit of a single organisation; or because they build on cross-organisational initiatives within cities that are already underway.

In my August 2012 article “Five roads to a Smarter City” I gave some ideas of what those initiatives might be, and the factors affecting their viability and timing, including:

  1. Top-down, strategic transformations across city systems;
  2. Optimisation of individual infrastructures such as energy, water and transportation;
  3. Applying “Smarter” approaches to “micro-city” environments such as industrial parks, transport hubs, university campuses or leisure complexes;
  4. Exploiting the technology platforms emerging from the cost-driven transformation to shared services in public sector;
  5. Supporting the “Open Data” movement.

In “Pens, paper and conversations. And the other technologies that will make cities smarter” in December 2012, I described a framework for identifying the technology components required to support Smart City initiatives of different kinds, such as:

  1. Re-engineering the physical components of city systems (to improve their efficiency)
  2. Using information  to optimise the operation of city systems
  3. Co-ordinating the behaviour of multiple systems to contribute to city-wide outcomes
  4. Creating new marketplaces to encourage sustainable choices, and attract investment

It is also worthwhile to engage with service and technology providers in the Smart City space; they have knowledge of projects and initiatives with which they have been involved elsewhere. Many are also seeking suitable locations in which to invest in pilot schemes to develop or prove new offerings which, if successful, can generate follow-on sales elsewhere. The “First of a Kind” programme in IBM’s Research division is one example or a formal programme that is operated for this purpose.

A roadmap consisting of several such individual activities within the context of a set of cross-city goals, and co-ordinated by a forum of cross-city stakeholders, can form a powerful programme for making cities Smarter.

5. Put the financing in place

A crucial factor in assessing the viability of those activities, and then executing them, is putting in place the required financing. In many cases, that will involve cities approaching investors or funding agencies. In “Smart ideas for everyday cities” in December 2012 I described some of the organisations from whom funds could be secured; and some of the characteristics they are looking for when considering which cities and initiatives to invest in.

There are very many individual ways in which funds can be secured for Smart City initiatives, of course; I described some more in “No-one is going to pay cities to become Smarter” in November 2012, and several others in two articles in September 2012:

In “Ten ways to pay for a Smarter City (part one)“:

And in “Ten ways to pay for a Smarter City (part two):

I’m a technologist, not a financier or economist; so those articles are not intended to be exhaustive or definitive. But they do suggest a number of practical options that can be explored.

(Meeting with social entrepreneurs in Sunderland who create local innovations in the city)

6. Think beyond the future and engage with informality: how to make “Smarter” a self-sustaining process

Once a city has become “Smart”, is that the end of the story?

I don’t think so. The really Smart city is one that has put in place soft and hard infrastructures that can be used in a continuous process of reinvention and creativity.

In the same way that a well designed urban highway should connect rather than divide the city communities it passes through, the new technology platforms put in place to support Smarter City initiatives should be made open to communities and entrepreneurs to constantly innovate in their own local context.

I described that process along with some examples of it in “The amazing heart of a Smarter City: the innovation boundary” in August 2012. In October 2012, I described some of the ways in which Birmingham’s communities are exploring that boundary in “Tea, trust and hacking: how Birmingham is getting smarter“; and in November I emphasised in “Zen and the art of messy urbanism” the importance of recognising the organic, informal nature of some of the innovation and activity within cities that creates value.

When it works well, the result is the ongoing creation of new products, services or even marketplaces that enable city residents and visitors to make choices every day that reinforce local values and synergies. I described some of the ways in which technology could enable those markets to be designed to encourage transactions that support local outcomes in “Open urbanism: why the information economy will lead to sustainable cities” in October 2012 and “From Christmas lights to bio-energy: how technology will change our sense of place” in August 2012. The money-flows within those markets can be used as the basis of financing their infrastructure, as I discussed in “Digital Platforms for Smarter City Market-Making” in June 2o12 and in several other articles described in “5. Put the financing in place” above.

(Artist’s impression of a vertical urban farm shared by Curbed SF)

A philosophical imperative

It’s worth at this point reminding ourselves why we’re compelled to make cities Smarter. I’ve often referred to the pressing economic and environmental pressures we’re all aware of as the reasons to act; but they are really only the acute symptoms of an underlying demographic trend and its effect on the behaviour of complex systems within cities.

The world’s population is expected to grow towards 10 billion in 2070; and most of that growth will be within cities. The physicist and biologist Geoffrey West’s work on cities as complex systems showed that larger, denser cities are more successful in creating wealth. That creation of wealth attracts more residents, causing further growth – and further consumption of resources. At some point it’s inevitable that this self-reinforcing growth triggers a crisis.

If this sounds alarmist, consider the level of civic unrest associated with the Eurozone crisis in Greece and Spain; or that in the 2000 strike by the drivers who deliver fuel to petrol stations in the UK, some city supermarkets came within hours of running out of food completely. Or simply look to the frightening global effects of recent grain shortages caused by drought in the US.

Concern over this combination of the cost of resources and uncertainty in their supply has lead to sustainability becoming a critical economic and social issue, not just a long-term environmental one. The concept of “resilience” has emerged to unify these concepts; and it demands changes in the way that cities behave.

As an example of just how far-reaching this thinking has become, consider the supply of food to urban areas. Whilst definitions vary, urban areas are usually defined as continuously built-up areas with a population of at least a few thousand people, living at a density of at least a few hundred people per square kilometer. Actual population densities in large cities are much higher than this, typically a few tens of thousands per square kilometer in developed economies, and sometimes over one hundred thousand per square kilometer in the largest megacities in emerging economies.

In contrast, one square kilometer of intensively farmed land with fertile soil in a good climate can feed approximately 1000 people according to Kate Cooper of the New Optimists forum, which is considering scenarios for Birmingham’s food future in 2050. Those numbers tell us that, then unless some radical new method of growing food appears, cities will never feed themselves, and will continue to rely on importing food from ever larger areas of farmland to support their rising populations.

(Photo by TEDxBrainport of Dr Mark Post explaining how meat can be grown artificially)

As I’ve noted before, such radical new methods are already appearing: artificial meat has been grown in laboratories; and the idea of creating “vertical farms” in skyscrapers is being seriously explored.

But these are surely scientific and engineering challenges; so why do I refer to a philosophical imperative?

I’ve previously referred to artificial meat and vertical farming as examples of “extreme urbanism“. They certainly push the boundaries of our ability to manipulate the natural world. And that’s where the philosophical challenge lies.

Do we regard ourselves as creatures of nature, or as creatures who manipulate nature? To what extent do we want to change the character of the world from which we emerged? As the population of our planet and our cities continues to rise, we will have to confront these questions, and decide how to answer them.

Geoffrey West’s work clearly predicts what will happen if we continue our current course; and I think it is likely that scientists and engineers will rise to the challenge of supporting even larger, denser cities than those we currently have. But personally I don’t think the result will be a world that I will find attractive to live in.

Organisations such as Population Matters campaign carefully and reasonably for an alternative path; an agenda of education, access to opportunity and individual restraint in the size of our families as a means to slow the growth of global population, so that more orthodox solutions can be affective – such as increasing the efficiency of food distribution, reducing food wastage (including our personal food wastage) and changing dietary habits – for instance, to eat less meat.

I don’t claim to know the answer to these challenges, but I’m thankful that they are the subject of urgent research by serious thinkers. The challenge for cities is to understand and incorporate this thinking into their own strategies in ways that are realistic and practical, in order that their Smarter City programmes represent the first steps on the path to a sustainable future.