Five steps to a Smarter City; and the philosophical imperative for taking them

(Photo of digital lights in “The Place” in Beijing by Trey Ratcliff)

This year more and more cities have started on the road to getting Smarter. In part that momentum has been catalysed in the UK by the Technology Strategy Board’s “Future Cities Demonstrator” competition, in which thirty cities have been awarded small grants to carry out feasibility studies for a £24 million demonstrator project; and across Europe it has been encouraged by continuing investment from the European Union.

Over the last few months I’ve written articles on many of the challenges and considerations faced by cities setting out on this journey. This week I thought it would be useful to look back and summarise how they fit together into an overall approach consisting of five steps; and then to revisit the reasons why it is so vitally important that we take those steps.

1. Define what a “Smarter City” means to you

Many urbanists and cities have grappled with how to define what a “Smart City”, a “Smarter City” or a “Future City” might be. It’s important for cities to agree to use an appropriate definition because it sets the scope and focus for what will be a complex collective journey of transformation.

In his article “The Top 10 Smart Cities On The Planet“, Boyd Cohen of Fast Company defined a Smart City as follows:

“Smart cities use information and communication technologies (ICT) to be more intelligent and efficient in the use of resources, resulting in cost and energy savings, improved service delivery and quality of life, and reduced environmental footprint–all supporting innovation and the low-carbon economy.”

This definition shares a useful distinction that was made to me by the Technology Strategy Board‘s Head of Sustainability, Richard Miller: a “Smart City” is one that transforms itself into a “Future City” by using technology. In IBM we use the phrase “Smarter City” to describe a city that is making progress on that path.

As is frequently quoted, more than half of the world’s population now lives in urban areas; and in the UK where I live, that’s true of more than 90% of us. So its not surprising that so many people have strong views on what Smart, Smarter and Future Cities should be.

Personally I think that a useful and holistic definition of a “Future City” needs to include the following concepts:

  • A Future City is in a position to make a success of the present: for example, it is economically active in high-value industry sectors and able to provide the workforce and infrastructure that companies in those sectors need.
  • A Future City is on course for a successful future: with an education system that provides the skills that will be needed by future industries as technology evolves.
  • A Future City creates sustainable, equitably distributed growth: where education and employment opportunities are widely available to all citizens and communities, and with a focus on delivering social and environmental outcomes as well as economic growth.
  • A Future City operates as efficiently & intelligently as possible: so that resources such as energy, transportation systems and water are used optimally, providing a low-cost, low-carbon basis for economic and social growth, and an attractive, healthy environment in which to live and work.
  • A Future City enables citizens, communities, entrepreneurs & businesses to do their best; because making infrastructures Smarter is an engineering challenge; but making cities Smarter is a societal challenge; and those best placed to understand how societies can change are those who can innovate within them.

If those objectives provide – an admittedly very generic – view of what a “Future City” is, then a “Smarter City” is one that uses technology to accomplish them.

Creating a more specific vision is a task for each city to undertake for itself, taking into account its unique character, strengths and challenges. This process usually entails a collaborative act of creativity by city stakeholders.

(The members of Birmingham’s Smart City Commission)

2. Convene a stakeholder group to create a specific Smarter City vision

For a city to agree a shared “Smarter City” vision involves bringing an unusual set of stakeholders together in a single forum: political leaders, community leaders, major employers, transport and utility providers, entrepreneurs and SMEs, universities and faith groups, for example. The task for these stakeholders is to agree a vision that is compelling, inclusive; and specific enough to drive the creation of a roadmap of individual projects and initiatives to move the city forward.

This is a process that I’m proud to be taking part in in Birmingham through the City’s Smart City Commission. I discussed how such processes can work, and some of the challenges and activities involved, back in July in an article entitled “How Smarter Cities Get Started“.

3. Populate a roadmap that can deliver the vision

In order to fulfill a vision for a Smarter City, a roadmap of specific projects and initiatives is needed, including both early “quick wins” and longer term strategic programmes.

Those projects and initiatives take many forms; and it can be worthwhile to concentrate initial effort on those that are simplest to execute because they are within the remit of a single organisation; or because they build on cross-organisational initiatives within cities that are already underway.

In my August article “Five roads to a Smarter City” I gave some ideas of what those initiatives might be, and the factors affecting their viability and timing, including:

  1. Top-down, strategic transformations across city systems;
  2. Optimisation of individual infrastructures such as energy, water and transportation;
  3. Applying “Smarter” approaches to “micro-city” environments such as industrial parks, transport hubs, university campuses or leisure complexes;
  4. Exploiting the technology platforms emerging from the cost-driven transformation to shared services in public sector;
  5. Supporting the “Open Data” movement.

A roadmap consisting of several such individual activities within the context of a set of cross-city goals, and co-ordinated by a forum of cross-city stakeholders, can form a powerful programme for making cities Smarter.

4. Put the financing in place

A crucial factor in assessing the viability of those activities, and then executing them, is putting in place the required financing. There are many ways in which that can be done, and I’ve described several of them in two articles over the last two weeks:

In “Ten ways to pay for a Smarter City (part one)“:

And in “Ten ways to pay for a Smarter City (part two):

I’m a technologist, not a financier or economist; so those articles are not intended to be exhaustive or definitive. But they do suggest a number of practical options that can be explored.

(Meeting with social entrepreneurs in Sunderland who create local innovations in the city)

5. Thinking beyond the future: how to make “Smarter” a self-sustaining process

Once a city has become “Smart”, is that the end of the story?

I don’t think so. The really Smart city is one that has put in place soft and hard infrastructures that can be used in a continuous process of reinvention and creativity.

In the same way that a well designed urban highway should connect rather than divide the city communities it passes through, the new technology platforms put in place to support Smarter City initiatives should be made open to communities and entrepreneurs to constantly innovate in their own local context. I described that process along with some examples of it in “The amazing heart of a Smarter City: the innovation boundary“.

When it works well, the result is the ongoing creation of new products, services or even marketplaces that enable city residents and visitors to make choices every day that reinforce local values and synergies. I described some of the ways in which technology could enable those markets to be designed to encourage transactions that support local outcomes in “From Christmas lights to bio-energy: how technology will change our sense of place“. And the money-flows within those markets can be used as the basis of financing their infrastructure, as I discussed in “Digital Platforms for Smarter City Market-Making“.

Birmingham’s Smart City Commission is due to meet again in two weeks’ time. Since it last met I’ve been discussing its work with entrepreneurs, academics and urbanists in the city. I hope that together we can successfully help the UK’s second city along this path.

(Artist’s impression of a vertical urban farm shared by Curbed SF)

A philosophical imperative

It’s worth at this point reminding ourselves why we’re compelled to make cities Smarter. I’ve often referred to the pressing economic and environmental pressures we’re all aware of as the reasons to act; but they are really only the acute symptoms of an underlying demographic trend and its effect on the behaviour of complex systems within cities.

The world’s population is expected to grow towards 10 billion in 2070; and most of that growth will be within cities. The physicist and biologist Geoffrey West’s work on cities as complex systems showed that larger, denser cities are more successful in creating wealth. That creation of wealth attracts more residents, causing further growth – and further consumption of resources. At some point it’s inevitable that this self-reinforcing growth triggers a crisis.

If this sounds alarmist, consider the level of civic unrest associated with the Eurozone crisis in Greece and Spain; or that in the 2000 strike by the drivers who deliver fuel to petrol stations in the UK, some city supermarkets came within hours of running out of food completely. Or simply look to the frightening global effects of recent grain shortages caused by drought in the US.

Concern over this combination of the cost of resources and uncertainty in their supply has lead to sustainability becoming a critical economic and social issue, not just a long-term environmental one. And it demands changes in the way that cities behave.

As an example of just how far-reaching this thinking has become, consider the supply of food to urban areas. Whilst definitions vary, urban areas are usually defined as continuously built-up areas with a population of at least a few thousand people, living at a density of at least a few hundred people per square kilometer. Actual population densities in large cities are much higher than this, typically a few tens of thousands per square kilometer in developed economies, and sometimes over one hundred thousand per square kilometer in the largest megacities in emerging economies.

In contrast, one square kilometer of intensively farmed land with fertile soil in a good climate can feed approximately 1000 people according to Kate Cooper of the New Optimists forum, which is considering scenarios for Birmingham’s food future in 2050. Those numbers tell us that, then unless some radical new method of growing food appears, cities will never feed themselves, and will continue to rely on importing food from ever larger areas of farmland to support their rising populations.

(Photo by TEDxBrainport of Dr Mark Post explaining how meat can be grown artificially)

As I’ve noted before, such radical new methods are already appearing: artificial meat has been grown in laboratories; and the idea of creating “vertical farms” in skyscrapers is being seriously explored.

But these are surely scientific and engineering challenges; so why do I refer to a philosophical imperative?

I’ve previously referred to artificial meat and vertical farming as examples of “extreme urbanism“. They certainly push the boundaries of our ability to manipulate the natural world. And that’s where the philosophical challenge lies.

Do we regard ourselves as creatures of nature, or as creatures who manipulate nature? To what extent do we want to change the character of the world from which we emerged? As the population of our planet and our cities continues to rise, we will have to confront these questions, and decide how to answer them.

Geoffrey West’s work clearly predicts what will happen if we continue our current course; and I think it is likely that scientists and engineers will rise to the challenge of supporting even larger, denser cities than those we currently have. But personally I don’t think the result will be a world that I will find attractive to live in.

Organisations such as Population Matters campaign carefully and reasonably for an alternative path; an agenda of education, access to opportunity and individual restraint in the size of our families as a means to slow the growth of global population, so that more orthodox solutions can be affective – such as increasing the efficiency of food distribution, reducing food wastage (including our personal food wastage) and changing dietary habits – for instance, to eat less meat.

I don’t claim to know the answer to these challenges, but I’m thankful that they are the subject of urgent research by serious thinkers. The challenge for cities is to understand and incorporate this thinking into their own strategies in ways that are realistic and practical, in order that their Smarter City programmes represent the first steps on the path to a sustainable future.

Four avatars of the metropolis: technologies that will change our cities

(Photo of Chicago by Trey Ratcliff)

Many cities I work with are encouraging clusters of innovative, high-value, technology-based businesses to grow at the heart of their economies. They are looking to their Universities and technology partners to assist those clusters in identifying the emerging sciences and technologies that will disrupt existing industries and provide opportunities to break into new markets.

In advising customers and partners on this subject, I’ve found myself drawn to four themes. Each has the potential to cause significant disruptions, and to create opportunities that innovative businesses can exploit. Each one will also cause enormouse changes in our lives, and in the cities where most of us live and work.

The intelligent web

(Diagram of internet tags associated with “Trafalgar” and their connections relevant to the perception of London by visitors to the city by unclesond)

My colleague and friend Dr Phil Tetlow characterises the world wide web as the biggest socio-technical information-computing space that has ever been created; and he is not alone (I’ve paraphrased his words slightly, but I hope he’ll agree I’ve kept the spirit of them intact).

The sheer size and interconnected complexity of the web is remarkable. At the peak of “web 2.0” in 2007 more new information was created in one year than in the preceding 5000 years. More important, though, are the number and speed of  transactions that are processed through the web as people and automated systems use it to exchange information, and to buy and sell products and services.

Larger-scale emergent phenomena are already resulting from this mass of interactions. They include universal patterns in the networks of links that form between webpages; and the fact that the informal collective activity of “tagging” links on social bookmarking sites tends to result in relatively stable vocabularies that describe the content of the pages that are linked to.

New such phenomena of increasing complexity and significance will emerge as the ability of computers to understand and process information in the forms in which it is used by humans grows; and as that ability is integrated into real-world systems. For example, the IBM “Watson” computer that competed successfully against the human champions of the television quiz show “Jeopardy” is now being used to help healthcare professionals identify candidate diagnoses based on massive volumes of research literature that they don’t have the time to read. Some investment funds now use automated engines to make investment decisions by analysing sentiments expressed on Twitter; and many people believe that self-driving cars will become the norm in the future following the award of a driving license to a Google computer by the State of Nevada.

As these astonishing advances become entwined with the growth in the volume and richness of information on the web, the effects will be profound and unpredictable. The new academic discipline of “Web Science” attempts to understand the emergent phenomena that might arise from a human-computer information processing system of such unprecedented scale. Many believe that our own intelligence emerges from complex information flows within the brain; some researchers in web science are considering the possibility that intelligence in some form might emerge from the web, or from systems like it.

That may seem a leap too far; and for now, it probably is. But as cities such as Birmingham, Sunderland and Dublin pursue the “open data” agenda and make progress towards the ideal of an “urban observatory“, the quantity, scope and richness of the data available on the web concerning city systems will increase many-fold. At the same time, the ability of intelligent agents such as Apple’s “Siri” smartphone technology, and social recommendation (or “decision support”) engines such as FourSquare will evolve too. Indeed, the domain of Smarter Cities is in large part concerned with the application of intelligent analytic software to data from city systems. Between the web of information and analytic technologies that are available now, and the possibilities for emergent artificial intelligence in the future, there lies a rich seam of opportunity for innovative individuals, businesses and communities to exploit the intelligent analysis of city data.

Things that make themselves

(Photo of a structure created by a superparamagnetic fluid containing magnetic nanoparticles in suspension, by Steve Jurvetson)

Can you imagine downloading designs for chocolate, training shoes and toys and then making them in your own home, whenever you like? What if you could do that for prosthetic limbs or even weapons?

3D printing makes all of this possible today. While 3D printers are still complex and expensive, they are rapidly becoming cheaper and easier to use. In time, more and more of us will own and use them. My one-time colleague Ian Hughes has long been an advocate; and Staffordshire University make their 3D printer available to businesses for prototyping and exploratory use.

Their spread will have profound consequences. Gun laws currently control weapons which are relatively large and need to be kept somewhere; and which leave a unique signature on each bullet they fire. But if guns can be “printed” from downloadable designs whenever they are required  – and thrown away afterwards because they are so easy to replace – then forensics will rarely in future have the opportunity to match a bullet to a gun that has been fired before. Enforcement of gun ownership will require the restriction of access to digital descriptions of gun designs. The existing widespread piracy of music and films shows how hard it will be to do that.

3D printers, combined with technologies such as social media, smart materials, nano- and bio-technology and mass customisation, will create dramatic changes in the way that physical products are designed and manufactured – or even grown. For example CocoWorks, a collaboration involving Warwick University, uses a combination of social media and 3D printing to allow groups of friends to collectively design confectionery that they can then “print out” and eat.

These changes will have significant implications for city economies. The reduction in wage differentials between developed and emerging economies already means that in some cases it is more profitable to manufacture locally in rapid response to market demand than to manufacture globally at lowest cost. In the near-future technology advances will accelerate a convergence between the advanced manufacturing, design, communication and information technology industries that means that city economic strategies cannot afford to focus on any of them separately. Instead, they should look for new value at the evolving intersections between them.

Of mice, men and cyborgs

(Professor Kevin Warwick, who in 2002 embedded a silicon chip with 100 spiked electrodes directly into his nervous system. Photo by M1K3Y)

If the previous theme represents the convergence of the information world and products and materials in the physical world; then we should also consider convergence between the information world and living beings.

The “mouse” that defined computer usage from the 1980s through to the 2000s was the first widely successful innovation in human/computer interaction for decades; more recently, the touchscreen has once again made computing devices accessible or acceptable to new communities. I have seen many people who would never choose to use a laptop become inseparable from their iPads; and two-year-old children understand them instinctively. The world will change as these people interact with information in new ways.

More exciting human-computer interfaces are already here – Apple’s intelligent agent for smartphones, “Siri”; Birmingham City University’s MotivPro motion-capture and vibration suit; the Emotiv headset that measures thoughts and can interpret them; and Google’s augmented reality glasses.

Even these innovations have been surpassed by yet more intimate connections between ourselves and the information world. Professor Kevin Warwick at Reading University has pioneered the embedding of technology into the human body (his own body, to be precise) since 2002; and in the effort to create ever-smaller pilotless drone aircraft, control technology has been implanted into insects. There are immense ethical and legal challenges associated with these developments, of course. But it is certain that boundaries will crumble between the information that is processed on a silicon substrate; information that is processed by DNA; and the actions taken by living people and animals.

Historically, growth in Internet coverage and bandwidth and the progress of digitisation technology led to the disintermediation of value chains in industries such as retail, publishing and music. As evolving human/computer interfaces make it possible to digitise new aspects of experience and expression, we will see a continuing impact on the media, communication and information industries. But we will also see unexpected impacts on industries that we have assumed so far to be relatively immune to such disruptions: surgery, construction, waste management, landscape gardening and arbitration are a few that spring to mind as possibilities. (Google futurist Thomas Frey speculated along similar lines in his excellent article “55 Jobs of the Future“).

Early examples are already here, such as Paul Jenning’s work at Warwick University on the engineering of the emotional responses of drivers to the cars they are driving. Looking ahead, there is enormous scope amidst this convergence for the academic, entrepreneurial and technology partners within city ecosystems to collaborate to create valuable new ideas and businesses.

Bartering 2.0

(Photo of the Brixton Pound by Matt Brown)

Civilisation has grown through the specialisation of trades and the diversification of economies. Urbanisation is defined in part by these concepts. They are made possible by the use of money, which provides an abstract quantification of the value of diverse goods and services.

However, we are increasingly questioning whether this quantification is complete and accurate, particularly in accounting for the impact of goods and services on the environments and societies in which they are made and delivered.

Historically, money replaced bartering,  a negotiation of the comparative value of goods and services within an immediate personal context, as the means of quantifying transactions. The abstraction inherent in money dilutes some of the values central to the bartering process. The growing availability of alternatives to traditional bartering and money is making us more conscious of those shortcomings and trade-offs.

Social media, which enables us to make new connections and perform new transactions, combined with new technology-based local currencies and trading systems, offer the opportunity to extend our personalised concepts of value in space and time when negotiating exchanges; and to encourage transactions that improve communities and their environments.

It is by no means clear what effect these grass-roots innovations will have on the vast system of global finance; nor on the social and environmental impact of our activities. But examples are appearing everywhere; from the local, “values-led” banks making an impact in America; to the widespread phenomenon of social enterprise; to the Brixton and Bristol local currencies; and to Droplet, who are aiming to make Birmingham the first city with a mobile currency.

These local currency mechanisms have the ability to support marketplaces trading goods and services such as food, energy, transport, expertise and many of the other commodities vital to the functioning of city economies; and those marketplaces can be designed to promote local social and environmental priorities. They have an ability that we are only just beginning to explore to augment and accelerate existing innovations such as the business-to-consumer and business-to-business markets in sustainable food production operated by Big Barn and Sustaination; or what are so far simply community self-help networks such as Growing Birmingham.

As Smarter City infrastructures expose increasingly powerful and important capabilities to such enterprises – including the “civic hacking” movement – there is great potential for their innovations to contribute in significant ways to the sustainable growth and evolution of cities.

Some things never change

Despite these incredible changes, some things will stay the same. We will still travel to meet in person. We like to interact face-to-face where body language is clear and naturally understood, and where it’s pleasant to share food and drink. And the world will not be wholly equal. Humans are competitive, and human ingenuity will create things that are worth competing for. We will do so, sometimes fairly, sometimes not.

It’s also the case that predictions are usually wrong and futurologists are usually mistaken; so you have good cause to disregard everything you’ve just read.

But whether or not I have the details right, these trends are real, significant, and closer to the mainstream than we might expect. Somewhere in a city near you, entrepreneurs are starting new businesses based on them. Who knows which ones will succeed, and how?

The amazing heart of a Smarter City: the innovation boundary

(Photo of a mouse by pure9)

Innovation has always been exciting, interesting and valuable; but recently it’s become essential.

The “mouse” that defined computer usage from the 1980s through to the 2000s was an amazing invention in its time. It was the first widely successful innovation in human/computer interaction since the typewriter keyboard and video display which came decades before it; and it made computers accessible to new communities of people for the first time.

But whilst the mouse, like the touchscreen more recently popularised by the iPhone and iPad, was a great innovation that increased the usability and productivity of personal computers, it wasn’t really necessary for a greater and pressing purpose. Its benefits came later as we explored its capabilities.

We now have a greater purpose that demands innovation: the need to make our cities and communities more sustainable, vibrant and equal in the face of the severe economic, environmental and demographic pressures that we face; and that are well described in the Royal Society’s “People and the Planet” report.

We have already seen those pressures create threats to food and energy security; and in recent months I’ve spoken to city leaders who are increasingly concerned with the difference in life expectancy between the most affluent and most deprived areas of their cities – it can be 10 years or more. There are much worse inequalities on a global scale, of course. But this is a striking local difference in the basic opportunity of people to live.

Barnett Council in North London famously predicted recently that within 20 years, unless significant changes in public services are made, they will be unable to afford to provide any services except social care. There will be no money left to collect waste, run parks and leisure facilities, clean streets or operate any of the other services that support and maintain cities and communities. I have spoken informally to other Councils who have come to similar conclusions.

All the evidence, including the scientific analysis of the behaviour and sustainability of city systems by the Physicist Geoffrey West, points to the need to create innovations that change the way that cities work.

But where will this innovation come from?

I think innovation of this sort takes place at an “innovation boundary”: the boundary between capability and need.

When a potentially transformative infrastructure such as a Smarter City technology platform is designed and deployed well, then the services it provides precisely embody that boundary.

This idea is fundamental to the concept of Smarter Cities, where we are concerned with the capability of technology to transform cities. Technology vendors – including, but not limited to, my employer IBM – are sometimes expected to use the Smarter City movement as a channel through which to sell generic technology platforms. As vendors, we do deliver technology platforms for cities, and they are part of the capability required to transform them. But they are not the only part – far from it. And they must not be generic.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times – and suggestions for alternative routes.)

As I hope regular readers of this blog will know, I often explore the role of people and communities in transforming how cities work. A city is the combined effect of the behaviour of all of the people in it – whether they are buying food in a supermarket, traveling to work, relaxing in a park, planning an urban development or teaching in a school. No infrastructure – whether it is a road, a building, a broadband network or an intelligent energy grid – will have a transformative effect on a city unless it engages with individuals in a way that results in a change of behaviour. Work by my colleagues in IBM on transportation in California (pictured, left) and on water and energy usage in Dubuque, Iowa provide examples of what can be achieved when technology solutions are designed in the context of individual and community behaviour.

The innovations that discover how technology can change behaviour are sometimes very localised. They can be specific to the nature, challenges and opportunities of local communities; and are often therefore created by individuals, entrepreneurs, businesses and social enterprises within them. The “civic hacking” and “open data” movements are great examples of this sort of creativity.

But this is not the only sort of innovation that is required to enable Smarter City transformations. The infrastructures that support cities literally provide life-support to hundreds of thousands or millions of individuals. They must be highly resilient, performant and secure – particularly as they become increasingly optimised to support larger and larger city populations sustainably.

The invention, design, deployment and operation of Smarter City infrastructures require the resources of large organisations such as technology vendors, infrastructure providers, local governments and Universities who are able to make significant investments in them.

The secret to successfully transforming cities lies at the boundary between local innovations and properly engineered platforms. “Smarter City” transformations are effective when new and resilient information infrastructures are designed and deployed to meet the specific needs of city communities. One size does not fit all.

A technology infrastructure is no different in this regard to a physical infrastructure such as a new urban highway. In each case, there are some requirements that are obvious and generic – getting traffic in and out of a city centre more efficiently; or  making superfast broadband connectivity universally accessible. But other crucially important requirements are more complex, subtle and varied. How can a new road be integrated into the existing environment of a city so that local communities benefit from it, and so that it does not divide them? What access points, support and funding assistance are needed so that communities can use superfast broadband networks; and what services and information can be delivered to them using those networks that will make a difference?

If we understand those requirements, we can design infrastructures that properly support the innovation boundary. Doing so demands that we address three challenges:

Firstly, we must identify the specific information and technology services that can be provided to individuals, communities, entrepreneurs, businesses and social enterprises to help them succeed and grow. I’ve referred many times to the Knight Foundation’s excellent work in this area; it has inspired my own work with entrepreneurs and social enterprises in Sunderland and elsewhere.

(Meeting with social entrepreneurs in Sunderland to understand how new technology can help them)

Secondly, we need to understand and then supply the heavily engineered capabilities that are beyond the means of local communities to deliver for themselves; but that which enable them to create innovations with real significance.

At the 3rd EU Summit on Future Internet, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project, addressed this topic and identified the specific challenges that local innovators need help to overcome, and that could by provided by city information infrastructures. His challenges included: real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust. As we continue to engage with communities of innovators in cities, we will discover other requirements of this sort.

Finally, the boundary needs to be defined by standards. Many cities will deploy many information infrastructures, and many different vendors will be involved in supplying them. In order that successful local innovations can spread and interact with each other, Smarter City infrastructures should support Open Standards and interoperability with Open Source technologies.

It will take work to achieve that, of course. It is very easy to underestimate the complexity of the standards required to achieve interoperability. For example, in order to make it possible to safely change something as simple as a lightbulb, standards for voltage, power, physical dimensions, brightness, socket shape and fastening type, fragility and heat output are required. Some standards for Smarter City infrastructures are already in place – for example, Web services and the Common Alerting Protocol – but many others will need to be invented and encouraged to spread. Fortunately, the process is already underway. As an example, IBM recently donated MQTT, a protocol for connecting information between small devices such as sensors and actuators in Smarter City systems to the Open Source community.

(The first “Local Gov Camp” unconference in 2009, attended by community innovators with an interest in transforming local services, held in Fazeley Studios in Birmingham. Photo by s_p_a_c_e_m_a_n)

In the meantime, the innovation boundary is an amazing place to work. It puts me in contact with the leading edge of technology development – with IBM Research, and with new products such as the Intelligent Operations Centre for Smarter Cities. And it offers me the chance to collaborate with the academic institutions and thought-leaders who are defining the innovation boundary through initiatives such as “disruptive business platforms” (see this work from Imperial college, or these thoughts from my colleague Pete Cripps).

But more importantly, my work puts me in touch with innovators who are creating exciting and inspiring new ways for cities to work; often in the communities that need the most help, such as Margaret Elliott in Sunderland; Mark Heskett-Saddington of Sustainable Enterprise Strategies; and the team at Droplet in Birmingham.

I count myself terrifically honoured and lucky to have the privilege of working with them.

Five roads to a Smarter City

(Photo of Daikoku junction by Ykanazawa1999

Recently, I discussed the ways in which cities are formulating  “Smarter City” visions and the programmes to deliver them. Such cross-city approaches are clearly what’s required in order to have a transformative effect across an entire city.

However, whilst some cities have undergone dramatic changes in this way – or have been built as “Smarter” cities in the first place as in the case of the famous Masdar project in Abu Dhabi – most cities are making progress one step at a time.

Four patterns have emerged in how they are doing so. Each pattern is potentially replicable by other cities; and each represents a proven approach that can be used as part of a wider cross-city plan.

I’ll start at the beginning, though, and describe why cross-city transformations can be hard to envision and deliver. Understanding why that can be the case will give us insight into which simpler, smaller-scale approaches can succeed more easily.

What’s so hard about a Smarter City?

Cities are complex ecosystems of people and organisations which need to work together to create and deliver Smarter City visions. Bringing them together to act in that way is difficult and time-consuming.

(Photo of Beijing by Trey Ratcliff)

Even where a city community has the time and willingness to do that, the fragmented nature of city systems makes it hard to agree a joint approach. Particularly in Europe and the UK, budgets and responsibilities are split between agenices; and services such as utilities and transport are contracted out and subject to performance measures that cannot easily be changed. Agreeing the objectives and priorities for a Smarter City vision in this context is hard enough; agreeing the financing mechanisms to fund programmes to deliver them is even more difficult.

Some of the cities that have made the most progress so far in Smarter City transformations have done so in part because they do not face these challenges – either because they are new-build cities like Masdar, or because they have more hierarchical systems of governance, such as Guangzhou in China. In other cases, critical challenges or unusual opportunities provide the impetus to act – for example in Rio, where an incredible cross-city operations centre has been implemented in preparation for the 2014 World cup and 2016 Olympics.

Elsewhere, cities must spend time and effort building a consensus. San Francisco, Dublin and Sunderland are amongst those who began that process some time ago; and many others are on the way.

But city-wide transformations are not the only approach to changing the way that cities work – they are just one of the five roads to a Smarter City. Four other approaches have been shown to work; and in many cases they are more straightforward as they are contained within individual domains of a city; or exploit changes that are taking place anyway.

Smarter infrastructure

Many cities in the UK and Europe are supported by transport and utility systems whose physical infrastructure is decades old. As urban populations rise and the pace of living increases, these systems are under increasing pressure. “Smarter” concepts and technologies can improve their efficiency and resilience whilst minimising the need to upgrade and expand them physically.

(Photo of a leaking tap by Vinoth Chandar. A project in Dubuque, Iowa showed that a community scheme involving smart meters and shared finances had a significant effect improving the repair of water leaks.)

In South Bend, Indiana, for example, an analytic system helps to predict and prevent wastewater overflows by more intelligently managing the existing infrastructure. The city estimates that they have avoided the need to invest in hundreds of millions of dollars of upgrades to the physical capacity of the infrastructure as a result. In Stockholm, a road-use charging system has significantly reduced congestion and improved environmental quality. In both cases, the systems have direct financial benefits that can be used to justify their cost.

These are just two examples of initiatives that offer a simplified approach to Smarter Cities; they deliver city-wide benefits but their implementation is within the sphere of a single organisation’s responsibility and finances.

Smarter micro-cities 

Environments such as sports stadiums, University campuses, business parks, ports and airports, shopping malls or retirement communities are cities in microcosm. Within them, operational authority and budgetary control across systems such as safety, transportation and communication usually reside with a single organisation. This can make it more straightforward to invest in a technology platform to provide insight into how those systems are operating together – as the Miami Dolphins have done in their Sun Life Stadium.

Other examples of such Smarter “micro-Cities” include the iPark industrial estate in Wuxi, China where a Cloud computing platform provides shared support services to small businesses; and the Louvre museum in Paris where “Intelligent Building” technology controls the performance of the environmental systems that protect the museum’s visitors and exhibits.

(Photo of the Louvre exhibition “‘The Golden Antiquity. Innovations and resistance in the 18th century” from the IBM press release for the Louvre project)

Improving the operation of such “micro-cities” can have a significant impact on the  cities and regions in which they are located – they are often major contributors to the economy and environment.

Shared Public Services

Across the world demographic and financial pressures are causing transformative change in public sector. City and regional leaders have said that their organisations are facing unprecedented challenges. In the UK it is estimated that nearly 900,000 public sector jobs will be lost over 5 years – approximately 3% of national employment.

In order to reduce costs whilst minimising impact to frontline services, many public sector agencies are making arrangements to share the delivery of common administrative services with each other, such as human resources, procurement, finance and customer relationship management.

Often these arrangements are being made locally between organisations that know and trust each other because they have a long history of working together. Sharing services means sharing business applications, IT platforms, and data; as town and village councils did in the Municipal Shared Services Cloud project.

As a result shared IT platforms with co-located information and applications are now deployed in many cities and regions. Smarter City systems depend on access to such information. Sunderland City Council are very aware of this; their CEO and CIO have both spoken about the opportunity for the City Cloud they are deploying to provide information to support public and private-sector innovation. Such platforms are an important enabler for the last trend I’d like to discuss: open data.

Open Data

(A visualisation created by Daniel X O Neil of data from Chicago’s open data portal showing the activities of paid political lobbyists and their customers in the city)

The open data movement lobbies for information from public systems to be made openly available and transparent, in order that citizens and entrepreneurial businesses can find new ways to use it.

In cities such as Chicago (pictured on the left) and Dublin, open data platforms have resulted in the creation of “Apps” that provide useful information and services to citizens; and in the formation of startup companies with new, data-based business models.

There are many challenges and costs involved in providing good quality, usable open data to city communities; but the shared service platforms I’ve described can help to overcome them, and provide the infrastructure for the market-based innovations in city systems that can lead to sustainable economic growth.

Let’s build Smarter Cities … together

All of these approaches can succeed as independent Smarter City initiatives, or as contributions to an overall city-wide plan. The last two in particular seem to be widely applicable. Demographics and economics are driving an inevitable transformation to shared services in public sector; and the open data movement and the phenomenon of “civic hacking” demonstrate the willingness and capability of communities to use technology to create innovations in city systems.

As a result, technology vendors, local authorities and city communities have an exciting opportunity to collaborate. The former have the ability to deliver the robust, scalable, secure infrastructures required to provide and protect information about cities and individual citizens; the latter have the ability to use those platforms to create local innovations in business and service delivery.

At the 3rd EU Summit on Future Internet in Helsinki earlier this year, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project and Chief Technologist for Telefonica,  addressed this topic and identified the specific challenges that civic hackers face that could be addressed by such city information infrastructures; he included real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust.

Cities such as Sunderland, Birmingham, Dublin, Chicago and San Francisco are amongst those investing in such platforms, and in programmes to engage with communities to stimulate innovation in city systems. Working together, they are taking impressive steps towards making cities smarter.

Can cities break Geoffrey West’s laws of urban scaling?

(Photo of Kowloon by Frank Müller)

As I mentioned a couple of weeks ago, I recently read Geoffrey West’s fascinating paper on urban scaling laws, “Growth, innovation, scaling and the pace of life in cities“.

The paper applies to cities techniques that I recall from my Doctoral studies in the Physics and Engineering of Superconducting Devices for studying the emergent properties of self-organising complex systems.

Cities, being composed of 100,000s or millions of human beings with free-will who interact with each other, are clearly examples of such complex systems; and their emergent properties of interest include economic output, levels of crime, and expenditure on maintaining and expanding physical infrastructures.

It’s a less intimidating read than it might sound, and draws fascinating conclusions about the relationship between the size of city populations; their ability to create wealth through innovation; sustainability; and what many of us experience as the increasing speed of modern life.

I’m going to summarise the conclusions the paper draws about the characteristics and behaviour of cities; and then I’d like to challenge us to change them.

Professor West’s paper (which is also summarised in his excellent TED talk) uses empirical techniques to present fascinating insights into how cities have performed in our experience so far; but as I’ve argued before, such conclusions drawn from historic data do not rule out the possibility of cities achieving different levels of performance in the future by undertaking transformations.

That potential to transform city performance is vitally important in the light of West’s most fundamental finding: that the largest, densest cities currently create the most wealth most efficiently. History shows that the most successful models spread, and in this case that could lead us towards the higher end of predictions for the future growth of world population in a society dominated by larger and larger megacities supported by the systems I’ve described in the past as “extreme urbanism“.

I personally don’t find that an appealing vision for our future so I’m keen to pursue alternatives. (Note that Professor West is not advocating limitless city growth either; he’s simply analysing and reporting insights from the available data about cities, and doing it in an innovative and important way. I am absolutely not criticising his work; quite the oppostite – I’m inspired by it).

So here’s an unfairly brief summary of his findings:

  • Quantitative measures of the creative performance of cities (such as wealth creation or the number of patents and inventions generated by city populations) – grow faster and faster the more that city size increases.
  • Quantitative measures of the cost of city infrastructures grow more slowly as city size increases, because bigger cities can exploit economies of scale to grow more cheaply than smaller cities.

West found that these trends were incredibly consistent across cities of very different sizes. To explain the consistency, he drew an analogy with biology: for almost all animals, characteristics such as metabolic rate and life expectancy vary in a very predictable way according to the size of the animal.

(Photo of Geoffery West describing the scaling laws that determine animal characteristics by Steve Jurvetson). Note that whilst the chart focusses on mammals, the scaling laws are more broadly applicable.

The reason for this is that the performance of the thermodynamic, cardio-vascular and metabolic systems that support most animals in the same way are affected by size. For example, geometry determines that the surface area of small animals is larger compared to their body mass than that of large animals. So smaller animals lose heat through their skin more rapidly than larger animals. They therefore need faster metabolic systems that convert food to replacement heat more rapidly to keep them warm. This puts more pressure on their cardio-vascular systems and in particular their heart muscles, which beat more quickly and wear out sooner. So mice don’t live as long as elephants.

Further, more complex mechanisms are also involved, but they don’t contradict the idea that the emergent properties of biological systems are determined by the relationship between the scale of those systems and the performance of the processes that support them.

Professor West hypothesised that city systems such as transportation and utilities, as well as characteristics of the way that humans interact with each other, would similarly provide the underlying reasons for the urban scaling laws he observed.

Those systems are exactly what we need to affect if we are to change the relationship between city size and performance in the future. Whilst the cardio-vascular systems of animals are not something that animals can change, we absolutely can change the way that city systems behave – in the same way that as human beings we’ve extended our life expectancy through ingenuity in medicine and improvements in standards of living. This is precisely the idea behind Smarter cities.

(A graph from my own PhD thesis showing real experimental data plotted against a theoretical prediction similar to a scaling law. Notice that whilst the theoretical prediction (the smooth line) is a good guide to the experimental data, that each actual data point lies above or below the line, not on it. In most circumstances, theory is only a rough guide to reality.)

The potential to do this is already apparent in West’s paper. In the graphs it presents that plot the performance of individual cities against the predictions of urban scaling laws, the performance of every city varies slightly from the law. Some cities outperform, and some underperform. That’s exactly what we should expect when comparing real data to an analysis of this sort. Whilst the importance of these variations in the context of West’s work is hotly contested, both in biology and in cities, personally I think they are crucial.

In my view, such variations suggest that the best way to interpret the urban scaling laws that Professor West discovered is as a challenge: they set the bar that cities should try to beat.

Cities everywhere are already exploring innovative, sustainable ways to create improvements in the performance of their social, economic and environmental systems. Examples include:

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

In all of those cases, cities have used technology effectively to disrupt and transform the behaviour of urban systems. They have all lifted at least some elements of performance above the bar set by urban scaling laws. There are many more examples in cities across the world. In fact, this process has been taking place continuously for as long as cities have existed – see, for example, the recent Centre for Cities report on the development and performance of cities in the UK throughout the 20th Century.

That report contains a specific challenge for Birmingham, my home city. It shows that in the first part of the 20th Century, Birmingham outperformed many UK cities and became prosperous and successful because of the diversity of its industries – famously expressed as the “city of a thousand trades”. In the latter part of the Century, however, as Birmingham became more dependent on an automotive industry that subsequently declined, the city lost a lot of ground. Birmingham is undertaking some exciting regenerative initiatives at present – such as the City Deal that increases it’s financial independence from Central Government; the launch of a Green Commission; and investments in ultra-fast broadband infrastructure. They are vitally important in order for the city to re-create a more vibrant, diverse, innovative and successful economy.

As cities everywhere emulate successful innovations, though, they will of course reset the bar of expected performance. Cities that wish to consistently outperform others will need to constantly generate new innovations.

This is where I’ll bring in another idea from physics – the concept of a phase change. A phase change occurs when a system passes a tipping point and suddenly switches from one type of behaviour to another. This is what happens when the temperature of water in a kettle rises from 98 to 99 to 100 degrees Centigrade and water – which is heavy and stays in the bottom of the kettle – changes to steam – which is light and rises out of the kettle’s spout. The “phase change” in this example is the transformation of a volume of water from a liquid to a gas through the process of boiling.

So the big question is: as we change the way that city systems behave, will we eventually encounter a phase change that breaks West’s fundamental finding that the largest cities create the most value most efficiently? For example, will we find new technologies for communication and collaboration that enable networks of people spread across thousands of miles of countryside or ocean to be as efficiently creative as the dense networks of people living in megacities?

I certainly hope so; because unless we can break the link between the size and the success of cities, I worry that the trend towards larger and larger cities and increasing global population will continue and eventually reach levels that will be difficult or impossible to maintain. West apparently agrees; in an interview with the New York Times, which provides an excellent review of his work, he stated that “The only thing that stops the superlinear equations is when we run out of something we need. And so the growth slows down. If nothing else changes, the system will eventually start to collapse.”

But I’m an optimist; so I look forward to the amazing innovations we’re all going to create that will break the laws of urban scaling and offer us a more attractive and sustainable future. It’s incredibly important that we find them.

(I’d like to think Dr. Pam Waddell, the Director of Birmingham Science City, for her helpful comments during my preparation of this post).

The simple idea behind Smarter Cities: take better-informed, more forward-looking decisions

(Photo by Tanakawho)

I’m sometimes staggered by the sheer breadth of topics that we concern ourselves with in working to make cities Smarter. We encompass technology, social systems, the individual motivation of citizens, financial models, and the really big challenges of demographics and sustainability in our thinking.

I’m also struck by the level of sophistication of some of that debate. This week, I finally read the great paper by Geoffrey West and colleagues on urban scaling laws, “Growth, innovation, scaling and the pace of life in cities“. The paper applies to cities techniques that I recall from my Doctoral studies in the Physics and Engineering of Superconducting Devices for studying the emergent properties of self-organising complex systems. (Translate that to “understanding the outcomes of the interactions between the 100,000s or millions of human beings with free will who inhabit cities” and I hope you can see the similarity).

The paper is a less intimidating read than it might sound, and draws fascinating conclusions about the relationship between the size of city populations; their ability to create wealth through innovation; sustainability; and what many of us experience as the increasing speed of modern life. It’s well worth reading, as are David Roberts’ recent thoughts on the same subject on the Birmingham Science City blog.

However, I like to keep my feet on the ground; and there’s a very simple way of thinking about what’s really important about Smarter Cities.

I’m not thinking of the challenges facing our cities and societies – I’ve touched on those in numerous other blog posts, especially here and here. Rather, I’m concerned with what I think is the straightforward elegance of the proposition that technology offers us to address them.

Technology has developed in recent years at an incredible rate in three ways that are relevant to this discussion. For a long time, IBM has termed them “Instrumented, Interconnected and Intelligent”.

“Instrumented” refers to our increasingly sophisticated ability to connect Information Technology systems with the physical world; whether that’s through sensors that measure the performance of environmental infrastructures; through integrating technology more closely with our own bodies; or through controlling the physical environment via technologies such as actuators and 3D printing.

“Interconnected” refers to the continued growth in the bandwidth and coverage of communication infrastructures, particularly the internet. Whilst very, very significant challenges remain – such as the lack of access to broadband connectivity of large swathes of the population, or the lack of cheap, low-power connectivity at ground level where the components of environmental infrastructures are located – in general, communication and connectivity have improved out of all recognition in recent years.

(IBM’s Watson computer challenges human opponents in the US TV quiz show Jeopardy)

“Intelligent” refers to our capability to make sense of the ever increasing volume of data made available by instrumented, interconnected systems. Computers can now process data to the extent that they can compete successfully against human beings in general knowledge TV game shows; predict the occurrence of crime; and help healthcare professionals make accurate diagnoses based on research literature they’ve never read. Throughout my life I’ve read a lot of science fiction that has predicted a lot of amazing things; but none of it foresaw anything as impressive as these achievements.

I can sum up all of this in a single sentance that encapsulates the value technology brings to Smarter Cities:

By making more complete and accurate information available to decision makers, we can enable them to take better-informed, more forward-looking decisions.

Simple common sense tells us that if we implemented that idea across city systems, we would improve any number of social, environmental and financial outcomes. Real examples of enacting that principle already exist in such diverse areas as preventative social care in Medway and enabling commuters to take better travel choices in California.

(The city operations centre in Rio de Janeiro provides the city’s management team with incredibly rich information on which to base decisions.)

A really exciting possibility for the future lies in the ability of local currencies and trading systems to enable consumers and citizens to take such choices more frequently throughout their everyday lives. Such systems can incorporate regional social and environmental impact in the apparent cost of goods and services. Whilst today that ability is limited to goods and services created within the scope of the trading system, in future the Open Data movement will increasingly make the social and environmental footprint of all goods and services transparent such that local trading schemes can incorporate them. For my money, that’s a truly exciting prospect for the future.

The challenge that prevents us from enacting this principle more frequently is implicit in my description of it. Providing more complete and accurate information has an upfront cost; but the financial returns that follow from “more forward-looking” decisions by definition are realised after some period of time. Worse; the organisational and budgetary structure of cities imply that the organisations responsible for those upfront costs are rarely the ones that are able to realise the consequent financial benefits.

In the last couple of points, my focus shifted from “social, environmental and financial” outcomes to “financial benefits”. The former might be the ultimate objectives of cities considering Smarter City initiatives; but they will only win investment funding where they can demonstrate short term financial returns for investors.

So in arguing that there’s a simple way to describe the core idea that underpins Smarter Cities, I’m not arguing that it’s a simple matter to secure the funding to implement it. However, securing such funding from decision makers and investors who are short of time and who are not from a technical background could certainly be made easier by communicating to them a simple idea that’s rooted in common sense.

And that’s exactly how I think we can and should describe Smarter Cities; so I’ll do it again for completeness: use more complete and accurate information to take better-informed, more forward-looking decisions.

Sounds simple, doesn’t it?

Could the future of money be city currencies?

(Photo of a halfpenny minted by Matthew Boulton in Birmingham; from Smabs Sputzer)

It’s just possible that this week marks a tipping point in the events that have engulfed the UK banking industry since the economic crisis that began in 2008.

Around that time, I questioned whether there was a need to think differently about how we measure the exchange of value, and cited a special edition of the New Scientist magazine as supporting evidence. My last couple of blog posts have raised similar questions supported first by a publication from the UK Royal Society, then by a speech by Christine Lagarde, Managing Director of the International Monetary Fund.

This week the sources calling for change became much harder to ignore, because – in the context of UK banking – they came much closer to home.

An editorial of the London Financial Times stated that the evidence of a culture of corruption in banking was now so clear that there was no alternative but to properly separate investment banks who take speculative risks to generate profit from retail banks who look after our personal financial livelihoods and nurture the growth of small businesses (read the article here, it requires free registration).

Simon Walker, the Head of the UK’s Institute of Directors, made a blunt call for a clear-out of senior figures in the industry, as reported by the Guardian newspaper; and Mervyn King, Governor of the Bank of England, was similarly uncompromising, eventually leading to the resignation of Barclays’ CEO, Bob Diamond.

These people and organisations are at the heart of the UK’s business and financial community; Barclay’s CEO could not ignore them. Their combined weight might just mark an overall tipping point and lead to serious reform of the industry.

But why should I be concerned with this in a blog that focuses on the exploitation of emerging technology in city ecosystems?

To answer that, I need to look back to the 1780’s and the birth of the Industrial Revolution. At the time, the UK’s Royal Mint was using hand-powered presses to make coins; and they were struggling badly to keep pace with the demand for coinage caused by a growing economy. The country was experiencing a “coin famine”.

(Photo of machines from the industrial revolution in Birmingham’s Science Museum by Chris Moore)

Enter Matthew Boulton and James Watt. James Watt invented the world’s most efficient steam engine; and Boulton commercialised it to power the Industrial Revolution. In particular, Boulton realised that by combining steam power with intricate machinery, it was possible to mass-manufacture sophisticated, designed objects such as enamelled badges, engraved brooches and complex metal fastenings. This innovation marked the fist appearance of mid-market “designed goods” in the space between functional commodities and one-off pieces of art. Some of the original machines that produced these goods can still be seen in Birmingham’s Science Museum and they make Heath Robinson’s imaginary contraptions look like penny toys.

Boulton realised that using such machines, he could literally print money, and produce coins faster and at much lower cost than the Royal Mint. He never formally won the right to do that from the national Government, but he did print coinage and “trade tokens” for employers in cities all over the country who quite simply needed something to pay their workers with. In many of those cities, Boulton’s coins replaced the national currency for a considerable time until the Royal Mint transformed its operations and provided sufficient national coinage again. Some of this history can be found on wikipedia, but for the full story Jenny Uglow’s wonderful book “The Lunar Men” can’t be beaten.

If the steam engine was the disruptive technology of the Industrial Revolution, I’m increasingly convinced that the digital marketplace platform is the equivalent for city systems today.

(Photo of the Brixton Pound by Matt Brown)

Marketplaces need currencies, of course; and sure enough, new currencies are starting to emerge. The Brixton Pound was set up by a social enterprise in 2009; and the scheme was adopted in Bristol this year. Startups such as Workstars are developing innovative new models for hyperlocal reward schemes involving employers and retailers that are an uncanny modern echo of Boulton’s 18th century trade tokens. And entrepreneurs in Birmingham have launched the local smartphone payment app “Droplet”.

The interesting thing about these schemes is that they have a more localised sense of value than the global monetary system; and they can reinforce the local economic synergies that are the key to sustainable growth in cities and regions.

In this context, it’s interesting to note the remarks of Romeo Pascual, Los Angeles Deputy Mayor of the Environment, at the Base Cities London conference recently. Deputy Mayor Pascual had just returned from the Rio+C40 Cities meeting. In contrast to what many believe to be the relatively weak agreement signed by national leaders at the Rio+20 meeting, he said that he and his colleagues had been united in their resolve to take strong action to lead cities towards sustainable growth.

Technology can now offer cities very interesting possibilities for creating local systems of exchange, whether we call them local currencies, reward schemes or virtual money. There’s no reason why they should behave in the same way as the currencies we know well today; and every reason to be optimistic that new types of organisation such as social enterprises will find ways to use them to create social and environmental, as well as financial, value.

Of course these innovations are on a relatively small scale for now. But they are emerging at the same time that city leaders are determined to make changes; and at a time that – in the UK at least – traditional systems of banking are under serious scrutiny. The future of money could hold some very interesting – and important – surprises for us.

Digital Platforms for Smarter City Market-Making

Local delicacies for sale in Phnom Penh’s central market

There’s been a distinct change recently in how we describe what a “Smarter City” is. Whereas in the past we’ve focused on the capabilities of technology to make city systems more intelligent, we’re now looking to marketplace economics to describe the defining characteristics of Smarter City behaviour.

The link between the two views is the ability of emerging technology platforms to enable the formation of new marketplaces which make possible new exchanges of resources, information and value. Historically, growth in Internet coverage and bandwidth led to the disintermediation of value chains in industries such as retail, publishing and music. Soon we will see technologies that connect information with the physical world in more intimate ways cause disruptions in industries such as food supply, manufacturing and healthcare.

There are two reasons we’ve switched focus from a technology to an economic perspective of Smarter Cities. The first is that these new marketplaces are the way to make both public service delivery and economic growth within cities sustainable. The second is that it’s only by examining the money flows within them that we can identify the revenue streams that will fund the construction and operation of their supporting technology platforms.

The importance of driving sustainable, equitably distributed recovery to economic growth from the current financial crisis was championed by Christine Lagarde, the Managing Director of the International Monetary Fund, in her speech ahead of the Rio +20 Summit. She emphasised the role of stability in enabling such a recovery. Instability is change, and managing change consumes resources. So stable systems – or stable cities – consume less resources than unstable ones. And they’re much more comfortable places to live.

(Photo of a Portuguese call centre by Vitor Lima)

This concept explains a shift in the economic strategy of some cities and nations. In recent decades cities have used Foreign Direct Investment (FDI) tools such as tax breaks to incent existing businesses to relocate to their economies. When cities such as Sunderland and Birmingham lost 10%-25% of their jobs in less than two decades in the 1980’s and 1990’s, FDI provided the emergency fix that brought in new jobs in call centres, financial services and manufacturing.

But businesses that find it possible and cost-effective to relocate for these reasons can and do relocate again when more attractive incentives are offered elsewhere. So they tend to integrate relatively shallowly in local economies – retaining their existing globalised supply chains, for example. When they move on, they cause expensive, socially damaging instabilities in the cities they leave behind.

(Photo of the Clock Tower in Birmingham’s Jewellery Quarter by Roland Turner)

The new focus is on sustainable, organic economic growth driven by SMEs in locally re-inforcing clusters. By building clusters of companies providing related products and services with strong input/output linkages, cities can create economies that are more deeply rooted in their locality. Examples include the cluster of wireless technology companies in Cambridge with strong ties to the local university; or Birmingham’s Jewellery Quarter, an incredibly dense cluster of designers, manufacturers and retailers who work with Birmingham City University’s School of Jewellery and Horology and their Jewellery Innovation Centre. Many cities I work with are focussing their economic development resources on clusters in the specific industry sectors where they can demonstrate unique strength.

In order to succeed, such clusters need access to transactional marketplaces for trading with each other; and for winning business in local, national and international markets. The disruptive, disintermediating capabilities of Smarter City technologies could help such marketplaces to work more quickly, at lower cost; to extend the market reach of their members; to find new innovations through discovering synergies across traditional industry sectors; or to support the formation of innovative business models that recognise and capitalise social and environmental value. These marketplaces are also exactly what’s needed to support the transformation to open public services.

(Photo of cattle market in Kashgar, China by By Ben Paarmann)


Marketplaces need infrastructure. In traditional terms, that infrastructure might have consisted – in the case of my local cattle market in Kidderminster say – of a physical building; a hinterland connected by transport routes; a governing authority; a system of payments; and a means of determining the quality and value of goods and services to be exchanged. Smarter City markets are no different. They may be based on technology platforms rather than in buildings; but they need governance, identity and reputation management, payment systems and other supporting services. The implementation and operation of those infrastructure capabilities has a significant cost.

This is where large and small organisations need to partner to deliver meaningful innovation in Smarter Cities. The resources of larger organisations – whether they are national governments, local councils, transport providers, employers or technology vendors – are required to underwrite infrastructure investments on the basis of future financial returns in the form of commercial revenues or tax receipts. But innovations in the delivery of value to local communities are likely to be created by small, agile organisations deeply embedded in those communities. An example where this is already happening is in Dublin, where entrepreneurial organisations are using the city’s open data portal to develop new business models that are winning venture capital backing.

(Photo of the “Container City” incubation hub for social enterprises operated by Sustainable Enterprise Strategies in Sunderland)


In order to replicate at scale what’s happening in Dublin and Sunderland, we need to define the open standards through which agile “Apps” developed by local innovators can access the capabilities of new marketplace infrastructures. Those standards need to be associated with financial models that balance affordability for citizens, communities and entrepreneurial businesses with the cost of operating resilient infrastructures.

If we can get that balance right, then stakeholders across city systems everywhere could work more effectively together to deliver Smarter City solutions that really address the big survival challenges facing us: reliable systems that everyone can use across the rich diversity of our cities, communities and citizens.

Will we reach our food future through evolution or catastrophe?

(Photo of Oregon Chai Tea and a vitamin pill by Sam Reckweg)

The food that we eat in 2050 will be dramatically different to what’s on our plates today; and it will reach our tables through an unrecognisable supply chain. We have some big choices to take – or more accurately a lot of small ones – in determining what that food future will look like; and whether we reach it through a deliberately chosen process of change, or by allowing a catastrophe to overtake us.

If that sounds alarmist, consider the level of civic unrest associated with the Eurozone crisis in Greece and Spain; or that in the 2000 strike by the drivers who deliver fuel to petrol stations in the UK some city supermarkets came within hours of running out of food completely. Or simply look to the frightening effects of last year’s grain shortage.

The economic and social systems under pressure today are connected globally, and connected to food supply; and whilst the current crises were precipitated by short term circumstances, their severity is determined by longer term forces that are here to stay.

Three such forces are at work. The first and fundamental force is the expected growth in the world’s population towards 10 billion in 2070. Second is our expectation that we can continue to enjoy the resource-intensive lifestyles of today’s developed economies, and specifically to continue to eat a lot of cheap meat. This expectation will become unsustainable as growth in developing economies rightly corrects inbalances in the distribution of wealth and provides a better quality of life globally. Finally as global economic growth increases the demand for energy, and as fossil fuels become scarcer and harder to extract, the cost of the energy required to grow and transport food will increase (this article in The Economist magazine describes the complex issues around future energy availability).

Ahead of the the Rio+20 Sustainable Development Summit, Christine Lagarde, Managing Director of the International Monetary Fund, has described in a stark but very grounded way the threats to life, wellbeing and the economy that these forces are already creating, particularly in some of the poorest regions on the planet. Her speech is a call to action to world leaders to drive a sustainable and fairly distributed economic recovery from today’s situation. The evidence and expert testimony asserting the critical importance of choosing to do that now is growing – see for example these publications from the Royal Society in the UK and the prestigious scientific journal, Nature.

Part of that journey has to be a more sustainable approach to food production, distribution and consumption. Some amazing new technology-enabled businesses are making it easier to buy locally produced, seasonal food, for instance. Sustaination and Big Barn connect local food producers and consumers directly, using social media to disintermediate the traditional supply chain; whilst Growing Birmingham and Landshare encourage the use of more urban land and private gardens to grow food.

However, cities – the environments in which more than 90% of the UK’s population, and more than 50% of the world’s population live – will never feed themselves through these means alone. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency. Unless we accept food sources from “Extreme Urbanism” such as vertical farming or lab-grown artificial meat, cities will always import the majority of their food.

(An example of local food processing: my own homemade chorizo.)

Many of the good reasons to choose local food, though, are really to do with reducing the industrialisation of food production. The simple act of transporting food from one place to another isn’t necessarily bad, within reason; and only constitutes 4% of its environmental footprint, even in today’s supply chain. The other 96% is simply the energy required to grow and process food; and that’s what we need to reduce.

One of our main opportunities to do that is to choose to eat different food. As Wendy Coch at Business Insider says, “It typically takes a long time and lots of grain to raise cattle. That’s why red meat has 18 times the carbon footprint as an equal amount of pasta.”

The other opportunity is to reduce food wastage. We produce more food, and catch more fish, than we need; and we throw too much of it away because it doesn’t meet quota restrictions, or because of inefficiencies in distribution. Those are big political challenges that world governments are wrestling with in the lead-up to the Rio summit. Whilst many are pessimistic that they will find and agree solutions, there was good news on this front from the European Union today with an agreement to ban fishing ships from throwing away their excess catch.

(Photo by Nick Saltmarsh)

But we as consumers are responsible for food waste too. Just one UK supplier of readymade sandwiches throws away 13,000 slices of bread every day because we don’t want to eat sandwiches made with crusts. We plan our meals and food-buying so poorly that much of the food we buy goes rotten before we use it. And few of us are familiar with the recipes and food processing techniques that make use of leftover food, or the tougher cuts of meat such as chuck steak and pork shoulder – homemade jams, soups, stews, sausages and pâtés, for example.

So at one level, the solution to our food challenge is simple. As a delegate at the New Optimists Food Forum (part of the EU Smart Agri Food programme) told me this week, if we choose to eat meat 2-3 times a week rather than 2-3 times a day, we would go a long way towards a sustainable food system. Choosing to be more organised in our domestic lives and learning some new kitchen skills would help too.

Of course the real challenge is persuading billions of human beings to make such new choices about buying, preparing and eating food every day. So whilst the ability of technology to continue to disintermediate new industries such as food is a marvellous adventure for our times; perhaps its real role in this context is much simpler: to spread awareness of the impact of our food consumption; to popularise meat-free dishes as a choice for all of us, not just for vegetarians; and to re-educate us about traditional techniques and recipes for using leftover food.

In summary: to promote and enable informed, responsible decisions about food. I hope I’ve done just a little bit of that today.

How cities can exploit the Information Revolution

(This post was first published as part of the “Growth Factory” report from the thinktank TLG Lab).

(Graphic of New York’s ethnic diversity from Eric Fischer)

Cities and regions in the UK face ever-increasing economic, social and environmental challenges. They compete for investment in what is now a single global economy. Demographics are changing with more than 90% of the population now living in urban areas, and where the number of people aged over 65 will double to 19 million by 2050. The resources we consume are becoming more expensive, with cities especially vulnerable to disruptions in supply.

The concept of “Smarter systems” has captured the imagination of experts as an approach to turn these challenges into opportunities for more sustainable economic and social growth; particularly in cities, where most of us live and work. Smarter systems – in cities, transportation, government and industry –can analyse the vast amounts of data being generated around us to help make more informed decisions, operate more efficiently or even predict the future.

These systems enable city planners around the world to design urban environments that promote safety, community vitality and economic growth. They can bring real-time information together from city transportation, social media, emergency services and leisure facilities to better enable cities, such as Rio de Janeiro, to manage major public events. They can enable transport systems to better manage traffic flow and reduce congestion, as in Singapore. They can stimulate economic growth by enabling small businesses to better compete for business in collaboration with regional trading partners, in systems such as that operated by the University of Warwick.

Government policies such as Open Data, personal care budgets and open public services will dramatically increase the information available to citizens to help them take well-informed decisions. This information will be rich, complex and associated with caveats and conditions. Making it usable by the broad population is an immense challenge which will not be addressed by technology alone. Data needs not only to be made available, but understandable so that it can inform better decision-making.

Where does Smarter city data come from?

Raw data for Smarter systems is derived from three sources: the city’s inhabitants, existing IT systems and readings from the physical environment.

Information from people has become more accessible with the continued spread of connected mobile devices, such as smartphones. Open Street Map, for example, provides a global mapping information service sourced from the activities of volunteers with portable satellite navigation devices. However, the quality and availability of crowd-sourced information depends on the availability and resources of volunteers, who cannot be held accountable for whether information is accurate, complete or up-to-date.

It is also important to understand data ownership and the associated privacy concerns. There is a difference between data freely and knowingly contributed by an individual for a specific purpose and information created as a side-effect of their activity – for example, the record of a person’s movements created by the GPS sensor in their smartphone.

The Open Data movement, supported by central government, will dramatically increase the availability of data from public systems. For example, efforts are underway to make NHS healthcare data available, with appropriate security measures, to Life Sciences organisations to reinforce the UK’s pre-eminent position in drug discovery research. However, the infrastructure required to make large volumes of data widely and rapidly available in a usable form will not be created for free. Until their cost is included in future government procurements – or until commercial systems of funding are created – then much data will likely only be made open on a more limited “best efforts” basis.

Furthermore, not all city data is held by public bodies. Many transportation and utility systems are owned and operated by the private sector, and it is not generally established what information they should make available, and how. Many Smarter city systems that use data from such sources are private partnerships rather than open systems.

Meanwhile, certain kinds of data are becoming far more accessible through the advancing ability of computer systems to understand human language. IBM’s Watson computer demonstrated this recently by competing and winning against world champions in the American television quiz show, Jeopardy! Wellpoint is using this kind of technology to draw insight from medical information held in similar forms. Its aim is to better tackle diseases such as cancer by empowering physicians to rapidly evaluate potential diagnoses and explore the latest supporting medical evidence. Similar technology can draw insight from case notes in social care systems, as Medway Youth Trust is doing, or from the reports of engineers maintaining roads, sewers, and other city systems.

An early “mashup” application using open data from Chicago’s police force

Information is also becoming more readily available from the physical environment. In Galway Bay, a network of underwater microphones is connected to a system that can identify and locate the sounds of dolphins and porpoises. Their location provides a dynamic indication of which parts of the Bay have the cleanest water. That information is made available to companies in the Bay to allow them to control their discharges of water; and to the fishing and leisure industries who are dependent on marine life. This Open Data approach is being used by cities across the world such as Dublin, Chicago and London as a resource for citizens and businesses.

Whilst advances in technology have lowered the cost of generating information from physical environments, challenges remain. From the perspective of a mobile telephone user, much of the UK has signal coverage. However, telephones are used one metre or more above ground level; at ground level, where many parts of our transport and utility infrastructures are located, coverage is much poorer. Additionally, mobile transmitters and receivers are relatively expensive and power-hungry. Cheaper, lower power technologies are needed to improve coverage, such as the “Weightless” standard being developed to use transmission bandwidth no-longer needed by analogue television.

Using and combining data appropriately

In order to make information from multiple sources available appropriately and usefully, several issues need to be tackled.

When computer systems are used to analyse information and take decisions, then the data formats and protocols used by those systems need to be matched. Information as simple as locations and dates may need to be converted between formats. At an engineering level, the protocols used to transmit data across cities using wired or wireless communications behave differently and require systems that integrate them.

The meaning of information from related sources also needs to be understood and adapted to context. Citizens who go shopping in wheelchairs need to know how to get between car-parks and shops with lifts, accessible public toilets and cash points. However, the computer systems of the organisations who own those facilities will encode the information separately, in ways that support their efficient management, not that support journey-planning between them.

The City of Portland in Oregon has gone further in a project to understand how information from systems across the city is related. They are now able to better predict the impact that key decisions will have on the entire city, years in advance.

Privacy and ownership of data may affect its subsequent use, often with terms and conditions in place for governing its access. Furthermore, safeguards are required to ensure that sensitive information cannot be inferred from a combination of sources. For example the location of a safe house or shelter being identified from building usage, building ownership and /or information concerning taxi journeys by the employees of particular council agencies.

The human dimension

Smarter systems will only succeed in improving cities if there is wide consumer engagement. To be of value, information will likely need to be timely and presented in a manner appropriate to consumer context. Individual behaviour will only change where personal value is derived as a result of new information being presented – a saving in time or money, or access to something of value to their family.

(Photo of traffic in Dhaka, Bangladesh, from Joisey Showa)

Many cities are experimenting with technologies that predict the future build up of traffic, by comparing real-time measurements to databases of past patterns of traffic flow. In Stockholm, this information is used by a road-use charging system that supports variable pricing. In California, commuters in a pilot project were given personalised predictions of their commuting time each day. Both systems encourage individuals to make choices based on new information.

Utility providers are exploring how information from smart meters can encourage water and energy users to change behaviour. A recent study in Dubuque, Iowa, showed that when householders were shown how their water usage compared to the average for their neighbours, they became better at conserving water – by fixing leaks, or using domestic appliances more efficiently. Skills across artistic and engineering disciplines are helping us understand how this type of information can be communicated more effectively. Many people will not want to study figures and charts on a smart meter or website; instead “ambient” information sources may be more effective – such as a glow-globe that changes colour from green to orange to red depending on household electricity use.

Systems that improve the sustainability of cities could also affect economic development. Lowering congestion through Smarter transportation schemes can improve productivity by reducing time lost by workers delayed by traffic. By making information and educational resources widely available, Smarter systems could improve access to opportunity across city communities. A city with vibrant communities of well-informed citizens may appear a more forward-looking and attractive place to live for educated professionals and, in turn, for businesses considering relocation. New York has improved its attractiveness since the 1970s by lowering the fear of crime. One of its tools is a “real-time crime centre” that brings information together from across the city in order to better react to crime and public order incidents. The system can even help to prevent crime by intelligently deploying police resources to the areas most likely to experience incidents based on past patterns of activity – on days with similar weather, transportation conditions or public events.

Success in delivering against these broader objectives is much more likely to be achieved where the cities themselves are more clearly accountable for them.

So where do we start?

Investments in Smarter systems often cut across organisations and budgets and many have objectives that are macro-economic, social and environmental, as well as financial. As such, they challenge existing accounting mechanisms. Whilst central government and the financial markets offer new investment solutions such as ethical funds, social impact bonds and city deals, so far these have not been used to fund the majority of Smarter solutions – many of which are supported by research programmes. The Technology Strategy Board’s investment in areas such as “Future Cities” and the “Connected Digital Economy” will provide a tremendous boost, but there is much to be done to assist cities in using new investment sources to fund Smarter initiatives – or to develop sustainable commercial or social-enterprise business models to deliver them.

Although progress can be driven by strong leadership, the issues of governance and fragmented budgets will need to be overcome if we are to take full advantage of the benefits technology can bring.

We live in an era of major global challenges – well described in the recent “People and the Planet” report by the Royal Society. At the same time, we have access to powerful new technologies and ideas to address them, such as those proposed by the 100 Academics who contributed essays to the book “The New Optimists”. When we focus those resources on cities, we focus on the structures in which we can have the greatest impact on the most people.

Already many forward-looking cities in the UK such as Sunderland and Birmingham are joining others around the world by investing in Smarter systems. If we can meet the technical, organisational and investment challenges, we will not only provide citizens, businesses and agencies with new choices and exciting opportunities; we’ll also position the UK economy to succeed as the Information Revolution gathers pace.