The amazing heart of a Smarter City: the innovation boundary

(Photo of a mouse by pure9)

Innovation has always been exciting, interesting and valuable; but recently it’s become essential.

The “mouse” that defined computer usage from the 1980s through to the 2000s was an amazing invention in its time. It was the first widely successful innovation in human/computer interaction since the typewriter keyboard and video display which came decades before it; and it made computers accessible to new communities of people for the first time.

But whilst the mouse, like the touchscreen more recently popularised by the iPhone and iPad, was a great innovation that increased the usability and productivity of personal computers, it wasn’t really necessary for a greater and pressing purpose. Its benefits came later as we explored its capabilities.

We now have a greater purpose that demands innovation: the need to make our cities and communities more sustainable, vibrant and equal in the face of the severe economic, environmental and demographic pressures that we face; and that are well described in the Royal Society’s “People and the Planet” report.

We have already seen those pressures create threats to food and energy security; and in recent months I’ve spoken to city leaders who are increasingly concerned with the difference in life expectancy between the most affluent and most deprived areas of their cities – it can be 10 years or more. There are much worse inequalities on a global scale, of course. But this is a striking local difference in the basic opportunity of people to live.

Barnett Council in North London famously predicted recently that within 20 years, unless significant changes in public services are made, they will be unable to afford to provide any services except social care. There will be no money left to collect waste, run parks and leisure facilities, clean streets or operate any of the other services that support and maintain cities and communities. I have spoken informally to other Councils who have come to similar conclusions.

All the evidence, including the scientific analysis of the behaviour and sustainability of city systems by the Physicist Geoffrey West, points to the need to create innovations that change the way that cities work.

But where will this innovation come from?

I think innovation of this sort takes place at an “innovation boundary”: the boundary between capability and need.

When a potentially transformative infrastructure such as a Smarter City technology platform is designed and deployed well, then the services it provides precisely embody that boundary.

This idea is fundamental to the concept of Smarter Cities, where we are concerned with the capability of technology to transform cities. Technology vendors – including, but not limited to, my employer IBM – are sometimes expected to use the Smarter City movement as a channel through which to sell generic technology platforms. As vendors, we do deliver technology platforms for cities, and they are part of the capability required to transform them. But they are not the only part – far from it. And they must not be generic.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times – and suggestions for alternative routes.)

As I hope regular readers of this blog will know, I often explore the role of people and communities in transforming how cities work. A city is the combined effect of the behaviour of all of the people in it – whether they are buying food in a supermarket, traveling to work, relaxing in a park, planning an urban development or teaching in a school. No infrastructure – whether it is a road, a building, a broadband network or an intelligent energy grid – will have a transformative effect on a city unless it engages with individuals in a way that results in a change of behaviour. Work by my colleagues in IBM on transportation in California (pictured, left) and on water and energy usage in Dubuque, Iowa provide examples of what can be achieved when technology solutions are designed in the context of individual and community behaviour.

The innovations that discover how technology can change behaviour are sometimes very localised. They can be specific to the nature, challenges and opportunities of local communities; and are often therefore created by individuals, entrepreneurs, businesses and social enterprises within them. The “civic hacking” and “open data” movements are great examples of this sort of creativity.

But this is not the only sort of innovation that is required to enable Smarter City transformations. The infrastructures that support cities literally provide life-support to hundreds of thousands or millions of individuals. They must be highly resilient, performant and secure – particularly as they become increasingly optimised to support larger and larger city populations sustainably.

The invention, design, deployment and operation of Smarter City infrastructures require the resources of large organisations such as technology vendors, infrastructure providers, local governments and Universities who are able to make significant investments in them.

The secret to successfully transforming cities lies at the boundary between local innovations and properly engineered platforms. “Smarter City” transformations are effective when new and resilient information infrastructures are designed and deployed to meet the specific needs of city communities. One size does not fit all.

A technology infrastructure is no different in this regard to a physical infrastructure such as a new urban highway. In each case, there are some requirements that are obvious and generic – getting traffic in and out of a city centre more efficiently; or  making superfast broadband connectivity universally accessible. But other crucially important requirements are more complex, subtle and varied. How can a new road be integrated into the existing environment of a city so that local communities benefit from it, and so that it does not divide them? What access points, support and funding assistance are needed so that communities can use superfast broadband networks; and what services and information can be delivered to them using those networks that will make a difference?

If we understand those requirements, we can design infrastructures that properly support the innovation boundary. Doing so demands that we address three challenges:

Firstly, we must identify the specific information and technology services that can be provided to individuals, communities, entrepreneurs, businesses and social enterprises to help them succeed and grow. I’ve referred many times to the Knight Foundation’s excellent work in this area; it has inspired my own work with entrepreneurs and social enterprises in Sunderland and elsewhere.

(Meeting with social entrepreneurs in Sunderland to understand how new technology can help them)

Secondly, we need to understand and then supply the heavily engineered capabilities that are beyond the means of local communities to deliver for themselves; but that which enable them to create innovations with real significance.

At the 3rd EU Summit on Future Internet, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project, addressed this topic and identified the specific challenges that local innovators need help to overcome, and that could by provided by city information infrastructures. His challenges included: real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust. As we continue to engage with communities of innovators in cities, we will discover other requirements of this sort.

Finally, the boundary needs to be defined by standards. Many cities will deploy many information infrastructures, and many different vendors will be involved in supplying them. In order that successful local innovations can spread and interact with each other, Smarter City infrastructures should support Open Standards and interoperability with Open Source technologies.

It will take work to achieve that, of course. It is very easy to underestimate the complexity of the standards required to achieve interoperability. For example, in order to make it possible to safely change something as simple as a lightbulb, standards for voltage, power, physical dimensions, brightness, socket shape and fastening type, fragility and heat output are required. Some standards for Smarter City infrastructures are already in place – for example, Web services and the Common Alerting Protocol – but many others will need to be invented and encouraged to spread. Fortunately, the process is already underway. As an example, IBM recently donated MQTT, a protocol for connecting information between small devices such as sensors and actuators in Smarter City systems to the Open Source community.

(The first “Local Gov Camp” unconference in 2009, attended by community innovators with an interest in transforming local services, held in Fazeley Studios in Birmingham. Photo by s_p_a_c_e_m_a_n)

In the meantime, the innovation boundary is an amazing place to work. It puts me in contact with the leading edge of technology development – with IBM Research, and with new products such as the Intelligent Operations Centre for Smarter Cities. And it offers me the chance to collaborate with the academic institutions and thought-leaders who are defining the innovation boundary through initiatives such as “disruptive business platforms” (see this work from Imperial college, or these thoughts from my colleague Pete Cripps).

But more importantly, my work puts me in touch with innovators who are creating exciting and inspiring new ways for cities to work; often in the communities that need the most help, such as Margaret Elliott in Sunderland; Mark Heskett-Saddington of Sustainable Enterprise Strategies; and the team at Droplet in Birmingham.

I count myself terrifically honoured and lucky to have the privilege of working with them.

Five roads to a Smarter City

(Photo of Daikoku junction by Ykanazawa1999

Recently, I discussed the ways in which cities are formulating  “Smarter City” visions and the programmes to deliver them. Such cross-city approaches are clearly what’s required in order to have a transformative effect across an entire city.

However, whilst some cities have undergone dramatic changes in this way – or have been built as “Smarter” cities in the first place as in the case of the famous Masdar project in Abu Dhabi – most cities are making progress one step at a time.

Four patterns have emerged in how they are doing so. Each pattern is potentially replicable by other cities; and each represents a proven approach that can be used as part of a wider cross-city plan.

I’ll start at the beginning, though, and describe why cross-city transformations can be hard to envision and deliver. Understanding why that can be the case will give us insight into which simpler, smaller-scale approaches can succeed more easily.

What’s so hard about a Smarter City?

Cities are complex ecosystems of people and organisations which need to work together to create and deliver Smarter City visions. Bringing them together to act in that way is difficult and time-consuming.

(Photo of Beijing by Trey Ratcliff)

Even where a city community has the time and willingness to do that, the fragmented nature of city systems makes it hard to agree a joint approach. Particularly in Europe and the UK, budgets and responsibilities are split between agenices; and services such as utilities and transport are contracted out and subject to performance measures that cannot easily be changed. Agreeing the objectives and priorities for a Smarter City vision in this context is hard enough; agreeing the financing mechanisms to fund programmes to deliver them is even more difficult.

Some of the cities that have made the most progress so far in Smarter City transformations have done so in part because they do not face these challenges – either because they are new-build cities like Masdar, or because they have more hierarchical systems of governance, such as Guangzhou in China. In other cases, critical challenges or unusual opportunities provide the impetus to act – for example in Rio, where an incredible cross-city operations centre has been implemented in preparation for the 2014 World cup and 2016 Olympics.

Elsewhere, cities must spend time and effort building a consensus. San Francisco, Dublin and Sunderland are amongst those who began that process some time ago; and many others are on the way.

But city-wide transformations are not the only approach to changing the way that cities work – they are just one of the five roads to a Smarter City. Four other approaches have been shown to work; and in many cases they are more straightforward as they are contained within individual domains of a city; or exploit changes that are taking place anyway.

Smarter infrastructure

Many cities in the UK and Europe are supported by transport and utility systems whose physical infrastructure is decades old. As urban populations rise and the pace of living increases, these systems are under increasing pressure. “Smarter” concepts and technologies can improve their efficiency and resilience whilst minimising the need to upgrade and expand them physically.

(Photo of a leaking tap by Vinoth Chandar. A project in Dubuque, Iowa showed that a community scheme involving smart meters and shared finances had a significant effect improving the repair of water leaks.)

In South Bend, Indiana, for example, an analytic system helps to predict and prevent wastewater overflows by more intelligently managing the existing infrastructure. The city estimates that they have avoided the need to invest in hundreds of millions of dollars of upgrades to the physical capacity of the infrastructure as a result. In Stockholm, a road-use charging system has significantly reduced congestion and improved environmental quality. In both cases, the systems have direct financial benefits that can be used to justify their cost.

These are just two examples of initiatives that offer a simplified approach to Smarter Cities; they deliver city-wide benefits but their implementation is within the sphere of a single organisation’s responsibility and finances.

Smarter micro-cities 

Environments such as sports stadiums, University campuses, business parks, ports and airports, shopping malls or retirement communities are cities in microcosm. Within them, operational authority and budgetary control across systems such as safety, transportation and communication usually reside with a single organisation. This can make it more straightforward to invest in a technology platform to provide insight into how those systems are operating together – as the Miami Dolphins have done in their Sun Life Stadium.

Other examples of such Smarter “micro-Cities” include the iPark industrial estate in Wuxi, China where a Cloud computing platform provides shared support services to small businesses; and the Louvre museum in Paris where “Intelligent Building” technology controls the performance of the environmental systems that protect the museum’s visitors and exhibits.

(Photo of the Louvre exhibition “‘The Golden Antiquity. Innovations and resistance in the 18th century” from the IBM press release for the Louvre project)

Improving the operation of such “micro-cities” can have a significant impact on the  cities and regions in which they are located – they are often major contributors to the economy and environment.

Shared Public Services

Across the world demographic and financial pressures are causing transformative change in public sector. City and regional leaders have said that their organisations are facing unprecedented challenges. In the UK it is estimated that nearly 900,000 public sector jobs will be lost over 5 years – approximately 3% of national employment.

In order to reduce costs whilst minimising impact to frontline services, many public sector agencies are making arrangements to share the delivery of common administrative services with each other, such as human resources, procurement, finance and customer relationship management.

Often these arrangements are being made locally between organisations that know and trust each other because they have a long history of working together. Sharing services means sharing business applications, IT platforms, and data; as town and village councils did in the Municipal Shared Services Cloud project.

As a result shared IT platforms with co-located information and applications are now deployed in many cities and regions. Smarter City systems depend on access to such information. Sunderland City Council are very aware of this; their CEO and CIO have both spoken about the opportunity for the City Cloud they are deploying to provide information to support public and private-sector innovation. Such platforms are an important enabler for the last trend I’d like to discuss: open data.

Open Data

(A visualisation created by Daniel X O Neil of data from Chicago’s open data portal showing the activities of paid political lobbyists and their customers in the city)

The open data movement lobbies for information from public systems to be made openly available and transparent, in order that citizens and entrepreneurial businesses can find new ways to use it.

In cities such as Chicago (pictured on the left) and Dublin, open data platforms have resulted in the creation of “Apps” that provide useful information and services to citizens; and in the formation of startup companies with new, data-based business models.

There are many challenges and costs involved in providing good quality, usable open data to city communities; but the shared service platforms I’ve described can help to overcome them, and provide the infrastructure for the market-based innovations in city systems that can lead to sustainable economic growth.

Let’s build Smarter Cities … together

All of these approaches can succeed as independent Smarter City initiatives, or as contributions to an overall city-wide plan. The last two in particular seem to be widely applicable. Demographics and economics are driving an inevitable transformation to shared services in public sector; and the open data movement and the phenomenon of “civic hacking” demonstrate the willingness and capability of communities to use technology to create innovations in city systems.

As a result, technology vendors, local authorities and city communities have an exciting opportunity to collaborate. The former have the ability to deliver the robust, scalable, secure infrastructures required to provide and protect information about cities and individual citizens; the latter have the ability to use those platforms to create local innovations in business and service delivery.

At the 3rd EU Summit on Future Internet in Helsinki earlier this year, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project and Chief Technologist for Telefonica,  addressed this topic and identified the specific challenges that civic hackers face that could be addressed by such city information infrastructures; he included real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust.

Cities such as Sunderland, Birmingham, Dublin, Chicago and San Francisco are amongst those investing in such platforms, and in programmes to engage with communities to stimulate innovation in city systems. Working together, they are taking impressive steps towards making cities smarter.

From Christmas lights to bio-energy: how technology will change our sense of place

(Photo of Vancouver from the waterfront in Kitsilano by James Wheeler)

Why do we care about cities?

Why are private sector companies, public sector authorities and organisations such as the European Union making such enormous investments in “Smarter Cities“, “Sustainable Cities” and “Future Cities”?

Usually we would say it’s because of a combination of social, environmental and economic challenges facing us all. But there’s a powerful personal force at work too: where we live matters to us.

The choices that the 7 billion of us who share the planet make that are affected by our relationship with the places where we live have an incredible impact, especially when they are concentrated in cities. For example, the combined carbon impact of those who commute into cities to work each day because they choose to live in the less densely populated areas outside them is immense.

If we’re going to succeed in facing the significant challenges facing us, we need to exploit the powerful connections between people and places to motivate us to choose and behave differently.

The super-rich own houses around the world and have the means to travel between them as they choose or as their business demands it; and some professionals or tradespeople choose or accept a life that involves constant travel in the interests of work and employment. But on the whole, these are the exceptions.

Humans are physical not virtual. Whilst we move or travel from time to time out of choice or necessity, most people work and live day-by-day within a place. Some people and communities face challenges of social and transport mobility, and simply have no choice about where they live. Others may have some choice of location, but are limited by means to investing in living in one place. To a greater or lesser degree we all want to make the most of that investment, and don’t want to relocate too often or travel too far or frequently away from home in order to work.

The value we perceive in our connections to places is determined by their physicality, economics and communities. Many cities and regions exploit this by publicising the attractive qualities of the environment that they can offer – to individuals looking for homes, or to businesses looking for locations to operate from. Whilst the qualities of natural geography are certainly an important contributor to the quality of those environments, many of the other factors are to do with the people within them.

The choices and actions of people can have unusual effects on their environment; for example, the residents of Broadwater Road in Southampton choose collectively to mount striking lighting displays on their houses every Christmas. Or local regulations can constrain the choices of residents to achieve sometimes impressive results, such as in the beautiful urban village of Bourneville in Birmingham.

(Photo of the beautifully maintained frontage of houses in Bournville, Birmingham, by C. Wess Daniels)

Place and economy have many and complex influences on each other. The “Silicon Roundabout” cluster of entrepreneurial technology businesses in London exists where it does because of a combination of proximity to London’s financial services sector – and its venture capitalisists – and the availability of cheap flats, pubs and food outlets. These latter make it an affordable, attractive place to live for the young people with technology skills that start-up companies need to hire.

In other cases, the influences are less constructive. London’s economy has succeeded through businesses that rely on higly educated, skilled people; who in turn are recompensed with some of the highest wages in the country. Accordingly, house prices are extremely high. This it turn makes it difficult or impossible for many people in careers with more modest salaries to afford housing – for example, teachers. If there’s one thing that educated, successful people can be pretty much guaranteed to care about, it’s providing a high quality education for their children. But their success and affluence makes it hard for teachers to live nearby and provide it.

Modern communication technologies provide new opportunities for communities to form and interact in ways that give them more insight into and control over the impact of their interactions. Somewhere between the inventions of the telegraph and virtual worlds, we passed a tipping point: the earliest technologies were simply means to pass messages between people who already knew each other; the ones we have now – especially social media – enable people to identify, contact and transact with complete strangers based on some common interest.

Some simple examples of these technologies allowing communities to behave in more sustainable ways are the recycling network Freecyle, the LandShare initiative that provides access to untended land to people who want to grow food but don’t have gardens, and Carbon Voyage, one of many platforms that promote the sharing of cars, taxis and other forms of transport.

These technologies gives us the opportunity to build new marketplaces and currencies which can be used to encourage transactions that create social, environmental and economic value for communities. For example, organisations such as Big Barn and Sustaination are building new business-to-consumer and business-to-business marketplaces to encourage more sustainable food production and consumption.

(Photo of a 3D printer at work by Media Lab Prado)

What’s even more interesting is to look ahead to emerging technologies that could make it possible for such community markets to create some very surprising disruptions in the way city systems and some industries work. Smart materials and 3D printers, combined with the reduction in cost differentials between emerging and mature markets, are bringing some striking changes to manufacturing; meaning that in some cases it is more important to be able to manufacture customised items locally in immediate response to individual demand than it is to globally source the lowest cost manufacturer of commodity items.

New innovations in user interfaces are also making it easier to connect people to digital information and services. Whilst significant challenges remain in making such services truly accessible to all, it’s already striking to see tablet computers and e-readers being widely used by people who would never choose to buy or use a laptop. And once you’ve seen how naturally very young toddlers interact with tablet computers in particular, you realise how significantly the world will change in future years.

(Photo of me wearing the Emotiv headset)

Technology has already advanced even further; Emotiv‘s headset, which measures brain activity, has already been used by my colleagues to drive a London Taxi around an airfield by using the headset to monitor their thoughts; and Professor Kevin Warwick of Reading University has pioneered the use of computing technology embedded in our bodies as a means of interacting with information systems in our environment. As such technologies mature and spread they’ll have impacts that are impossible to predict.

The New Optimists, a community of scientists and industry experts came together in Birmingham recently to explore the opportunities that new technologies offer for highly distributed energy production systems in communities. Domestic solar panels are an obvious means to do this; but geo-thermal energy, wind and tidal energy are other candidates. Southampton is already producing its own geo-thermal energy, for example, and Eco-Island are attempting to harness several such approaches to make the Isle of Wight not just self-sufficient in terms of energy, but a net exporter. The European Bio-Energy Research Institution (EBRI) at Aston University in Birmingham is developing new, more efficient means of producing energy from biological waste material such as discarded food. A prototype power-plant is already providing energy to 800 households in Shropshire. The New Optimists discussion looked ahead to the possibility that such technologies could be scaled-down even further for use in individual homes.

The systems exploiting these technologies in communities are winning investment because they are market-based: they create money-flows and revenue streams against which investments can be justified. Whilst their focus is local, it is not isolated: complete self-sufficiency will probably never be achieved, and is usually not the goal. Rather, it’s to maximise the benefits of local trading whilst making the impact of import and export more transparent so that more informed choices can be made.

Such place-based trading networks could connect the choices we make every day more directly with their impact on the places in which we live and work; exploiting our consciousness of the investments we’ve made in those places to persuade us to choose differently to protect and improve them. And if they’re linked sufficiently to the industrial national and international supply chains that provide what can’t be sourced locally, they could take into account the wider social and environmental impact of imported goods and services too. Of course, that will only be achieved if those systems are made more transparent, but the pressure to do that already exists. And the more we have the means to exploit transparency, the more effective that pressure will be.

We want to make our cities and lives more sustainable because we’re conscious of the environmental, social and economic challenges facing our planet; we’re most likely to do so through choices that have positive impacts we can see on the places where we live. Technology will continue to provide new mechanisms that can make such choices available to us; but its down to us as individuals and communities to harness and use them.

How Smarter Cities Get Started

(Photo of The Cube in Birmingham by Elliott Brown)

I was delighted recently to be invited to join Birmingham’s new “Smart City Commission”. The Commission is meeting for the first time today, and leading up to it I gave some thought to what the common ideas are that are emerging from cities that are making progress with their “Smarter” transformations.

Many of the environmental, social and economic forces behind the transition to Smarter Cities are common everywhere; however, the capabilities that enable cities to act in response to them are usually very specific to individual cities. They depend on factors such as geographic location, the structure and performance of the local economy, the character of local communities, and the approach of leaders and stakeholders across the city.

The relationships between those stakeholders and communities are crucial. Cities may aspire to encourage economic growth amongst small, high-technology businesses; or to stimulate innovation in service delivery by social enterprises; or to switch to more sustainable patterns of travel and energy usage. To act successfully to achieve any of these aims, long and complex chains of connections between individuals need to work effectively, from city leaders, through their organisations, to community and business associations such as small business forums, neighbourhood communities, and faith groups, to individual companies, their employees and citizens across the city.

So how does it happen that this complex web of city systems can make cohesive progress towards such challenging objectives?

I’m not going to claim to have a complete answer, but I do think we can observe patterns in the behaviour of the cities who have made the most progress.

Does the city have a plan?

Cities already have plans, of course. In fact, often they have lots of plans – for the economy, for housing, for public service transformation, for marketing and for many other aspects of urban systems.

What is really required in a Smarter City context, though, is a single plan that captures the vision and means for transformation; and that is collectively defined and owned by stakeholders across the city; not by any single organisation acting alone. It needs to be consistent with existing plans within individual domains of the city; and in time needs to influence those plans to develop and change.

(Photo of Mount St. Helens from Portland, Oregon, by Keith Skelton)

Evidence supporting the importance of formulating such cross-city plans is growing. IBM’s work with the City of Portland is illustrating the deep and sometimes unexpected connections between city systems.  Elsewhere, Tim Stonor is a great advocate of the relationships between the physical organisation of cities and their social and economic character. IBM’s system, Tim’s work and that of the physicist and biologist Geoffrey West are all capable of making quantified predictions about the impacts of links within and between city systems.

A Smarter City plan needs to set out a vision that is clear and succinct, often expressed in a single sentence capturing the future that the city aspires to. That vision is usually supported by a handful of statements that summarise its impact on key aspects of the city – such as wealth creation, inclusivity and sustainability. Together these statements are something that everyone involved in the city can understand, agree to and promote. Sunderland’s “Economic Masterplan” is an example of a cross-city vision that is constructed in this way.

To make the vision deliverable, a set of quantified objectives against which progress can be measured are vital. In IBM as we work with cities to establish these measures, we’re learning that social, financial, environmental, strategic and brand values are all important and related. They could include improvements in education attainment; creation of jobs; increase in the GDP contribution by small businesses in specific sectors; reduction in carbon impact in specific systems or across the city as a whole; improvements in measures of health and well-being; and may include some qualitative as well as quantifiable criteria. It is against such objectives that specific programmes and initiatives can be designed in order to make real progress towards the city’s vision.

In this way a roadmap of activity aligned with a city’s transformation objectives can be laid out. It’s important that this roadmap includes a mixture of long and short-term projects across city domains; and in particular that it includes some “quick wins” – in attempting to work in new partnerships to achieve new objectives, nothing builds confidence and trust like early success.

Does the city have an effective stakeholder forum?

Once stakeholders from a city ecosystem have come together to define a vision and a plan to achieve it, it’s vital that they maintain a regular and empowered decision-making forum to drive progress. The delivery of a Smarter City plan relies on many separate investments and activities being undertaken by many independent individuals and organisations, justified on an ongoing basis against their various short-term financial obligations. Keeping such a complex programme on track to achieve cohesive city-level outcomes is an enormous challenge.

Such forums are often chaired by the city’s local authority; and they often involve representatives from local universities who act as trusted advisors on topics such as urban systems, sustainability and technology. They can include representatives from local employers, faith and community groups, institutions such as sports and retail centres, and trusted partners in domains such as technology, transport, city planning, architecture and energy. The broader the forum, the more completely the city is represented; but these are “coalitions of the willing”, and each city begins with its own unique mix.

In fact, a formative event or workshop that brings such city stakeholders together for the first time, is often the catalyst for the development of a Smarter City plan in the first place.

Is the city community acting together?

(Photo of the crowd at Moseley Folk Festival, Birmingham, by Pete Ashton)

It’s impossible to understate the importance of individual people in making cities Smarter. The functioning of a city is the combined effect of the behaviour of all of the people within it; and Smarter City systems will not change anything unless they engage with and meet the needs of those individuals.

The Knight Foundation’s excellent work on the “Information Needs of Communities“, for example, highlights the importance of engaging deeply with communities to understand the information needs of the individuals within them, rather than providing generic information platforms for cities as a whole. Where such information platforms do succeed, it is because their delivery and operations are focussed on specific areas identified as priorities in consultation with communities.

Community and faith groups are tremendously important in this process, as they can bridge between institutions such as Councils and employers and individuals in all the communities of a city, including those that face the most significant challenges. Every city has communities that struggle to access information, services and opportunities; and communities that are less engaged in the decision-making and consultation processes that lead to such things as Smarter City plans.

In Sunderland, the City Council has placed computer access points in around 40 “e-village halls” (see short articles on the Council’s website here and here). These are often facilities owned and run by community associations, and provide a trusted environment in which members of local communities can help each other access digital information and services. The city has a strong tradition of social enterprises  working in these communities; Sustainable Enterprise Strategies offer advice, facilities and support to such organisations from their new “Container City” facility.

These networks of people, organisations and infrastructure are vital assets that support Sunderland’s transformation objectives, particularly as the city delivers its new Cloud computing platform. They are a good example of the way a city can bring individuals, communities, organisations and technology together in support of common aims.

It’s a tremendous honour for me to have been asked to join Birmingham’s Smart City Commission . I’ve lived more than half my life in the city; it’s where I finished my education and started my career and family. So the chance to contribute to its future thinking is a personal privilege as well as a professional one. The commission has drawn together an incredible collection of expertise from across the city and beyond; I hope we can rise to the challenge of keeping Birmingham on course to play as prominent a role in the Information Revolution into the future as it played in the Industrial Revolution of the past.

Can cities break Geoffrey West’s laws of urban scaling?

(Photo of Kowloon by Frank Müller)

As I mentioned a couple of weeks ago, I recently read Geoffrey West’s fascinating paper on urban scaling laws, “Growth, innovation, scaling and the pace of life in cities“.

The paper applies to cities techniques that I recall from my Doctoral studies in the Physics and Engineering of Superconducting Devices for studying the emergent properties of self-organising complex systems.

Cities, being composed of 100,000s or millions of human beings with free-will who interact with each other, are clearly examples of such complex systems; and their emergent properties of interest include economic output, levels of crime, and expenditure on maintaining and expanding physical infrastructures.

It’s a less intimidating read than it might sound, and draws fascinating conclusions about the relationship between the size of city populations; their ability to create wealth through innovation; sustainability; and what many of us experience as the increasing speed of modern life.

I’m going to summarise the conclusions the paper draws about the characteristics and behaviour of cities; and then I’d like to challenge us to change them.

Professor West’s paper (which is also summarised in his excellent TED talk) uses empirical techniques to present fascinating insights into how cities have performed in our experience so far; but as I’ve argued before, such conclusions drawn from historic data do not rule out the possibility of cities achieving different levels of performance in the future by undertaking transformations.

That potential to transform city performance is vitally important in the light of West’s most fundamental finding: that the largest, densest cities currently create the most wealth most efficiently. History shows that the most successful models spread, and in this case that could lead us towards the higher end of predictions for the future growth of world population in a society dominated by larger and larger megacities supported by the systems I’ve described in the past as “extreme urbanism“.

I personally don’t find that an appealing vision for our future so I’m keen to pursue alternatives. (Note that Professor West is not advocating limitless city growth either; he’s simply analysing and reporting insights from the available data about cities, and doing it in an innovative and important way. I am absolutely not criticising his work; quite the oppostite – I’m inspired by it).

So here’s an unfairly brief summary of his findings:

  • Quantitative measures of the creative performance of cities (such as wealth creation or the number of patents and inventions generated by city populations) – grow faster and faster the more that city size increases.
  • Quantitative measures of the cost of city infrastructures grow more slowly as city size increases, because bigger cities can exploit economies of scale to grow more cheaply than smaller cities.

West found that these trends were incredibly consistent across cities of very different sizes. To explain the consistency, he drew an analogy with biology: for almost all animals, characteristics such as metabolic rate and life expectancy vary in a very predictable way according to the size of the animal.

(Photo of Geoffery West describing the scaling laws that determine animal characteristics by Steve Jurvetson). Note that whilst the chart focusses on mammals, the scaling laws are more broadly applicable.

The reason for this is that the performance of the thermodynamic, cardio-vascular and metabolic systems that support most animals in the same way are affected by size. For example, geometry determines that the surface area of small animals is larger compared to their body mass than that of large animals. So smaller animals lose heat through their skin more rapidly than larger animals. They therefore need faster metabolic systems that convert food to replacement heat more rapidly to keep them warm. This puts more pressure on their cardio-vascular systems and in particular their heart muscles, which beat more quickly and wear out sooner. So mice don’t live as long as elephants.

Further, more complex mechanisms are also involved, but they don’t contradict the idea that the emergent properties of biological systems are determined by the relationship between the scale of those systems and the performance of the processes that support them.

Professor West hypothesised that city systems such as transportation and utilities, as well as characteristics of the way that humans interact with each other, would similarly provide the underlying reasons for the urban scaling laws he observed.

Those systems are exactly what we need to affect if we are to change the relationship between city size and performance in the future. Whilst the cardio-vascular systems of animals are not something that animals can change, we absolutely can change the way that city systems behave – in the same way that as human beings we’ve extended our life expectancy through ingenuity in medicine and improvements in standards of living. This is precisely the idea behind Smarter cities.

(A graph from my own PhD thesis showing real experimental data plotted against a theoretical prediction similar to a scaling law. Notice that whilst the theoretical prediction (the smooth line) is a good guide to the experimental data, that each actual data point lies above or below the line, not on it. In most circumstances, theory is only a rough guide to reality.)

The potential to do this is already apparent in West’s paper. In the graphs it presents that plot the performance of individual cities against the predictions of urban scaling laws, the performance of every city varies slightly from the law. Some cities outperform, and some underperform. That’s exactly what we should expect when comparing real data to an analysis of this sort. Whilst the importance of these variations in the context of West’s work is hotly contested, both in biology and in cities, personally I think they are crucial.

In my view, such variations suggest that the best way to interpret the urban scaling laws that Professor West discovered is as a challenge: they set the bar that cities should try to beat.

Cities everywhere are already exploring innovative, sustainable ways to create improvements in the performance of their social, economic and environmental systems. Examples include:

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

In all of those cases, cities have used technology effectively to disrupt and transform the behaviour of urban systems. They have all lifted at least some elements of performance above the bar set by urban scaling laws. There are many more examples in cities across the world. In fact, this process has been taking place continuously for as long as cities have existed – see, for example, the recent Centre for Cities report on the development and performance of cities in the UK throughout the 20th Century.

That report contains a specific challenge for Birmingham, my home city. It shows that in the first part of the 20th Century, Birmingham outperformed many UK cities and became prosperous and successful because of the diversity of its industries – famously expressed as the “city of a thousand trades”. In the latter part of the Century, however, as Birmingham became more dependent on an automotive industry that subsequently declined, the city lost a lot of ground. Birmingham is undertaking some exciting regenerative initiatives at present – such as the City Deal that increases it’s financial independence from Central Government; the launch of a Green Commission; and investments in ultra-fast broadband infrastructure. They are vitally important in order for the city to re-create a more vibrant, diverse, innovative and successful economy.

As cities everywhere emulate successful innovations, though, they will of course reset the bar of expected performance. Cities that wish to consistently outperform others will need to constantly generate new innovations.

This is where I’ll bring in another idea from physics – the concept of a phase change. A phase change occurs when a system passes a tipping point and suddenly switches from one type of behaviour to another. This is what happens when the temperature of water in a kettle rises from 98 to 99 to 100 degrees Centigrade and water – which is heavy and stays in the bottom of the kettle – changes to steam – which is light and rises out of the kettle’s spout. The “phase change” in this example is the transformation of a volume of water from a liquid to a gas through the process of boiling.

So the big question is: as we change the way that city systems behave, will we eventually encounter a phase change that breaks West’s fundamental finding that the largest cities create the most value most efficiently? For example, will we find new technologies for communication and collaboration that enable networks of people spread across thousands of miles of countryside or ocean to be as efficiently creative as the dense networks of people living in megacities?

I certainly hope so; because unless we can break the link between the size and the success of cities, I worry that the trend towards larger and larger cities and increasing global population will continue and eventually reach levels that will be difficult or impossible to maintain. West apparently agrees; in an interview with the New York Times, which provides an excellent review of his work, he stated that “The only thing that stops the superlinear equations is when we run out of something we need. And so the growth slows down. If nothing else changes, the system will eventually start to collapse.”

But I’m an optimist; so I look forward to the amazing innovations we’re all going to create that will break the laws of urban scaling and offer us a more attractive and sustainable future. It’s incredibly important that we find them.

(I’d like to think Dr. Pam Waddell, the Director of Birmingham Science City, for her helpful comments during my preparation of this post).

Are Smarter Cities the Key to Social Mobility?

(Photo of Santa Cruz by Cortto)

An interview with Chris Cooper, IBM UK Architect for Smarter Cities

My colleague Chris Cooper was recently appointed as IBM UK’s Architect for Smarter Cities. For many years Chris has helped IBM’s customers and partners in the transport industry build smarter systems with positive social and environmental impact; so he came to his new role with a wealth of experience.

Chris wrote a great paper a couple of weeks ago on the important connections between transport, open data and social mobility (it’s available here, though you need a subscription to access the full article). This week we explored those themes further in a discussion that I thought was worth sharing.

[Rick]: You’ve spoken and written about “Social Mobility” in the context of Smarter Transport and Smarter Cities; can you summarise what you mean by the concept?

[Chris]: Social mobility in the context of Smarter Transport systems is the ability to move people and resources in an informed way that achieves positive social outcomes. It relies on the use of information and communication technologies to facilitate the organisation and optimisation of connections between goods, services and human capital. In short, it can enable communities to work together to achieve their goals.

The real challenge for such systems is how to measure the value of their social, environmental and economic impact. Today, we measure value in monetary terms. But that’s very much a point-in-time measure; and there’s an argument that the full cost of goods and services are not identified and included in their financial price – particularly the social and environmental costs. It’s possible that such costs could be quantified by measures such as standard of living or the “happiness index” that has been suggested by the UK Prime Minister, David Cameron, amongst others.

I recently read a speech by Christine Lagard, Managing Director of the International Monetary Fund, ahead of the Rio+20 Summit. She called for a sustainable and equitably distributed recovery to economic growth; and stated that a barrier to achieving that was that the social and environmental costs you’ve referred to are not included in the prices we pay for goods and services. You’ve described “Social Mobility” as a vision for transport that addresses those challenges and empowers communities.

Yes, absolutely. But one of the challenges we will face is that the companies who operate our transport services are expected to peform against traditional financial measures – and they are audited in the same way. Those measures do not take account of social and environmental impact. If those measures were to be augmented by a “sustainability index” that assessed longer term contributions to society and the environment, then we might look back on current assessments of company performance and view them rather differently.

So if in the future mechanisms such as Carbon Taxes were introduced and became accepted components of financial performance, would we look back at the assessments we’re making today and consider them incomplete?

(Photo of carbon dioxide scrubber from Steve Simpson)

That’s very possible. Our current systems measure short term performance and don’t provide an incentive to plan for the future. It’s becoming more important to correct this as competition for our finite resources intensifies. To do so we need to introduce mechanisms to adjust the cost of resources to recognise their scarcity and the impact of consuming them.

A good precedent can be seen in the way we have combated acid rain. Social and political pressure resulted in the application of financial penalties to the use of the chemicals that contributed to acid rain. Over time those financial penalties made the causative chemicals prohibitively expensive to use; or made it cost-effective to install equipment to prevent their emission, such as the the carbon dioxide scrubbers that are now commonplace in power stations.

No-one argues with the logic of doing that anymore; and we no longer suffer from acid rain. Of course, in today’s globalised economy its important that such measures are applied universally so that they don’t create imbalances in competition, and that’s by no means a simple challenge to resolve.

At the Base Cities London conference we both attended recently, the Deputy Mayor for Environment for Los Angeles told us that in contrast to the relatively weak agreement between national leaders at Rio 20+, city leaders had returned from their own conference in Rio determined to implement the changes required to achieve sustainable economic growth. How do you see the ideas we’ve discussed working in city economies?

If companies published the “sustainability index” I’ve described, consumers could consider it when choosing which companies they should buy goods and services from. That could be a very powerful tool for influencing the impact of the millions of buying decisions made every day by individuals in local markets.

Rather than acting as an overhead or a barrier to innovation, such an index could enable companies to improve their performance. In order to transform operations to more measurably sustainable models, companies will need to invest in  understanding their supply chains, operations and markets in more depth. Doing so will undoubtedly provide opportunities for optimisation.

More generally, localism is going to be an increasingly important concept as we realise that it’s more realistic and effective to affect the communities around us rather than the world at large.

We haven’t spoken much about transport; I’ve seen some interesting studies recently that have highlighted the challenges some communities in cities have in accessing effective transport. To what extent is the concept of social mobility concerned with enabling city communities to travel to where they need to to live, shop and work?

That’s a really important point. The urban spaces we inhabit – including the surrounding rural spaces which supply them – need to be designed in harmony with the transport systems that move people and goods around them.

Whether that’s best accomplished by a “grid” system or through networks of urban villages; and how those ideas apply to new-build cities in emerging economies or the transformation of existing cities in developed economies are subjects that are hotly debated.

I personally think that mixed developments that concentrate a critical mass of people, goods and services within walking distance are the key to enabling the transactions through which cities create value and wealth to take place more frequently and at lower financial, social and environmental cost. Travel doesn’t just consume resources; it’s often an unproductive use of time.

So is it more important to focus on enabling travel within cities than between them in national systems?

Research has shown that cities are the most efficient systems for generating social and economic value; but it’s well known that some cities are losing population, or are losing key skills from their population to their suburbs and commuter belts. The reasons for that include the desire for more space; to live in more attractive environments; or to have better access to quality education for children. All of those challenges could be addressed by more holistic thinking, planning and investment in city systems, including their transport. And they would bring people with important skills and experience back into the diverse, creative environments of our cities.

One possible approach would be to allow cities to expand into the greenbelts surrounding them. By allowing cities and their transport systems to expand as little as one mile (1.5 kilometres) into their surrounding greenbelts – which are an artificial creation – we could significantly increase their size in a way that exploits their existing infrastructure.

Has the privatisation of transport in the UK over the past few decades resulted in a system that is cost-effective to provide – on a strictly financial basis – rather than one that is optimally beneficial to city communities and economies?

That’s certainly a concern, though key organisations in transport are starting to look ahead to new strategies for the future. Rather than focus on what we can’t predict – whether high-speed rail or hovercars will be our transport of choice, for example – I think we should focus on what we want our transport systems to achieve for us – such as universal access to local and national travel – and how we make progress towards such goals over the next few years.

So to summarise our discussion, would you agree that the challenge for cities is to evolve in ways that encourage the development of spaces, communities and transport systems in harmony so that they enable local transactions and interactions as a more sustainable form of growth?

(IBM’s Smarter City Technology Centre in Dublin)

Yes. It’s important for local communities, cities, regions and even nations to become conscious of their unique strengths; to exploit local transactions to reinforce them; and to trade them with regional and national partners.

Cities are increasingly looking for these differentiators; and multi-national companies such as IBM are looking to build relationships based on them. Such relationships – in Moscow, Dublin and Dubuque, for example – connect the ideas, experience and economies of scale that accrue from global operations to the intricacies and unique expertise of local markets. And they do it with the passion that comes from local engagement.

Chris, thankyou, that’s been a really interesting discussion. As individuals we all care about the places and communities in which we live; the ideas we’ve discussed today give us the reason and opportunity to contribute to those communities through our work as well as in our private lives in very important and exciting ways. 

The simple idea behind Smarter Cities: take better-informed, more forward-looking decisions

(Photo by Tanakawho)

I’m sometimes staggered by the sheer breadth of topics that we concern ourselves with in working to make cities Smarter. We encompass technology, social systems, the individual motivation of citizens, financial models, and the really big challenges of demographics and sustainability in our thinking.

I’m also struck by the level of sophistication of some of that debate. This week, I finally read the great paper by Geoffrey West and colleagues on urban scaling laws, “Growth, innovation, scaling and the pace of life in cities“. The paper applies to cities techniques that I recall from my Doctoral studies in the Physics and Engineering of Superconducting Devices for studying the emergent properties of self-organising complex systems. (Translate that to “understanding the outcomes of the interactions between the 100,000s or millions of human beings with free will who inhabit cities” and I hope you can see the similarity).

The paper is a less intimidating read than it might sound, and draws fascinating conclusions about the relationship between the size of city populations; their ability to create wealth through innovation; sustainability; and what many of us experience as the increasing speed of modern life. It’s well worth reading, as are David Roberts’ recent thoughts on the same subject on the Birmingham Science City blog.

However, I like to keep my feet on the ground; and there’s a very simple way of thinking about what’s really important about Smarter Cities.

I’m not thinking of the challenges facing our cities and societies – I’ve touched on those in numerous other blog posts, especially here and here. Rather, I’m concerned with what I think is the straightforward elegance of the proposition that technology offers us to address them.

Technology has developed in recent years at an incredible rate in three ways that are relevant to this discussion. For a long time, IBM has termed them “Instrumented, Interconnected and Intelligent”.

“Instrumented” refers to our increasingly sophisticated ability to connect Information Technology systems with the physical world; whether that’s through sensors that measure the performance of environmental infrastructures; through integrating technology more closely with our own bodies; or through controlling the physical environment via technologies such as actuators and 3D printing.

“Interconnected” refers to the continued growth in the bandwidth and coverage of communication infrastructures, particularly the internet. Whilst very, very significant challenges remain – such as the lack of access to broadband connectivity of large swathes of the population, or the lack of cheap, low-power connectivity at ground level where the components of environmental infrastructures are located – in general, communication and connectivity have improved out of all recognition in recent years.

(IBM’s Watson computer challenges human opponents in the US TV quiz show Jeopardy)

“Intelligent” refers to our capability to make sense of the ever increasing volume of data made available by instrumented, interconnected systems. Computers can now process data to the extent that they can compete successfully against human beings in general knowledge TV game shows; predict the occurrence of crime; and help healthcare professionals make accurate diagnoses based on research literature they’ve never read. Throughout my life I’ve read a lot of science fiction that has predicted a lot of amazing things; but none of it foresaw anything as impressive as these achievements.

I can sum up all of this in a single sentance that encapsulates the value technology brings to Smarter Cities:

By making more complete and accurate information available to decision makers, we can enable them to take better-informed, more forward-looking decisions.

Simple common sense tells us that if we implemented that idea across city systems, we would improve any number of social, environmental and financial outcomes. Real examples of enacting that principle already exist in such diverse areas as preventative social care in Medway and enabling commuters to take better travel choices in California.

(The city operations centre in Rio de Janeiro provides the city’s management team with incredibly rich information on which to base decisions.)

A really exciting possibility for the future lies in the ability of local currencies and trading systems to enable consumers and citizens to take such choices more frequently throughout their everyday lives. Such systems can incorporate regional social and environmental impact in the apparent cost of goods and services. Whilst today that ability is limited to goods and services created within the scope of the trading system, in future the Open Data movement will increasingly make the social and environmental footprint of all goods and services transparent such that local trading schemes can incorporate them. For my money, that’s a truly exciting prospect for the future.

The challenge that prevents us from enacting this principle more frequently is implicit in my description of it. Providing more complete and accurate information has an upfront cost; but the financial returns that follow from “more forward-looking” decisions by definition are realised after some period of time. Worse; the organisational and budgetary structure of cities imply that the organisations responsible for those upfront costs are rarely the ones that are able to realise the consequent financial benefits.

In the last couple of points, my focus shifted from “social, environmental and financial” outcomes to “financial benefits”. The former might be the ultimate objectives of cities considering Smarter City initiatives; but they will only win investment funding where they can demonstrate short term financial returns for investors.

So in arguing that there’s a simple way to describe the core idea that underpins Smarter Cities, I’m not arguing that it’s a simple matter to secure the funding to implement it. However, securing such funding from decision makers and investors who are short of time and who are not from a technical background could certainly be made easier by communicating to them a simple idea that’s rooted in common sense.

And that’s exactly how I think we can and should describe Smarter Cities; so I’ll do it again for completeness: use more complete and accurate information to take better-informed, more forward-looking decisions.

Sounds simple, doesn’t it?

Digital Platforms for Smarter City Market-Making

Local delicacies for sale in Phnom Penh’s central market

There’s been a distinct change recently in how we describe what a “Smarter City” is. Whereas in the past we’ve focused on the capabilities of technology to make city systems more intelligent, we’re now looking to marketplace economics to describe the defining characteristics of Smarter City behaviour.

The link between the two views is the ability of emerging technology platforms to enable the formation of new marketplaces which make possible new exchanges of resources, information and value. Historically, growth in Internet coverage and bandwidth led to the disintermediation of value chains in industries such as retail, publishing and music. Soon we will see technologies that connect information with the physical world in more intimate ways cause disruptions in industries such as food supply, manufacturing and healthcare.

There are two reasons we’ve switched focus from a technology to an economic perspective of Smarter Cities. The first is that these new marketplaces are the way to make both public service delivery and economic growth within cities sustainable. The second is that it’s only by examining the money flows within them that we can identify the revenue streams that will fund the construction and operation of their supporting technology platforms.

The importance of driving sustainable, equitably distributed recovery to economic growth from the current financial crisis was championed by Christine Lagarde, the Managing Director of the International Monetary Fund, in her speech ahead of the Rio +20 Summit. She emphasised the role of stability in enabling such a recovery. Instability is change, and managing change consumes resources. So stable systems – or stable cities – consume less resources than unstable ones. And they’re much more comfortable places to live.

(Photo of a Portuguese call centre by Vitor Lima)

This concept explains a shift in the economic strategy of some cities and nations. In recent decades cities have used Foreign Direct Investment (FDI) tools such as tax breaks to incent existing businesses to relocate to their economies. When cities such as Sunderland and Birmingham lost 10%-25% of their jobs in less than two decades in the 1980’s and 1990’s, FDI provided the emergency fix that brought in new jobs in call centres, financial services and manufacturing.

But businesses that find it possible and cost-effective to relocate for these reasons can and do relocate again when more attractive incentives are offered elsewhere. So they tend to integrate relatively shallowly in local economies – retaining their existing globalised supply chains, for example. When they move on, they cause expensive, socially damaging instabilities in the cities they leave behind.

(Photo of the Clock Tower in Birmingham’s Jewellery Quarter by Roland Turner)

The new focus is on sustainable, organic economic growth driven by SMEs in locally re-inforcing clusters. By building clusters of companies providing related products and services with strong input/output linkages, cities can create economies that are more deeply rooted in their locality. Examples include the cluster of wireless technology companies in Cambridge with strong ties to the local university; or Birmingham’s Jewellery Quarter, an incredibly dense cluster of designers, manufacturers and retailers who work with Birmingham City University’s School of Jewellery and Horology and their Jewellery Innovation Centre. Many cities I work with are focussing their economic development resources on clusters in the specific industry sectors where they can demonstrate unique strength.

In order to succeed, such clusters need access to transactional marketplaces for trading with each other; and for winning business in local, national and international markets. The disruptive, disintermediating capabilities of Smarter City technologies could help such marketplaces to work more quickly, at lower cost; to extend the market reach of their members; to find new innovations through discovering synergies across traditional industry sectors; or to support the formation of innovative business models that recognise and capitalise social and environmental value. These marketplaces are also exactly what’s needed to support the transformation to open public services.

(Photo of cattle market in Kashgar, China by By Ben Paarmann)


Marketplaces need infrastructure. In traditional terms, that infrastructure might have consisted – in the case of my local cattle market in Kidderminster say – of a physical building; a hinterland connected by transport routes; a governing authority; a system of payments; and a means of determining the quality and value of goods and services to be exchanged. Smarter City markets are no different. They may be based on technology platforms rather than in buildings; but they need governance, identity and reputation management, payment systems and other supporting services. The implementation and operation of those infrastructure capabilities has a significant cost.

This is where large and small organisations need to partner to deliver meaningful innovation in Smarter Cities. The resources of larger organisations – whether they are national governments, local councils, transport providers, employers or technology vendors – are required to underwrite infrastructure investments on the basis of future financial returns in the form of commercial revenues or tax receipts. But innovations in the delivery of value to local communities are likely to be created by small, agile organisations deeply embedded in those communities. An example where this is already happening is in Dublin, where entrepreneurial organisations are using the city’s open data portal to develop new business models that are winning venture capital backing.

(Photo of the “Container City” incubation hub for social enterprises operated by Sustainable Enterprise Strategies in Sunderland)


In order to replicate at scale what’s happening in Dublin and Sunderland, we need to define the open standards through which agile “Apps” developed by local innovators can access the capabilities of new marketplace infrastructures. Those standards need to be associated with financial models that balance affordability for citizens, communities and entrepreneurial businesses with the cost of operating resilient infrastructures.

If we can get that balance right, then stakeholders across city systems everywhere could work more effectively together to deliver Smarter City solutions that really address the big survival challenges facing us: reliable systems that everyone can use across the rich diversity of our cities, communities and citizens.

Will we reach our food future through evolution or catastrophe?

(Photo of Oregon Chai Tea and a vitamin pill by Sam Reckweg)

The food that we eat in 2050 will be dramatically different to what’s on our plates today; and it will reach our tables through an unrecognisable supply chain. We have some big choices to take – or more accurately a lot of small ones – in determining what that food future will look like; and whether we reach it through a deliberately chosen process of change, or by allowing a catastrophe to overtake us.

If that sounds alarmist, consider the level of civic unrest associated with the Eurozone crisis in Greece and Spain; or that in the 2000 strike by the drivers who deliver fuel to petrol stations in the UK some city supermarkets came within hours of running out of food completely. Or simply look to the frightening effects of last year’s grain shortage.

The economic and social systems under pressure today are connected globally, and connected to food supply; and whilst the current crises were precipitated by short term circumstances, their severity is determined by longer term forces that are here to stay.

Three such forces are at work. The first and fundamental force is the expected growth in the world’s population towards 10 billion in 2070. Second is our expectation that we can continue to enjoy the resource-intensive lifestyles of today’s developed economies, and specifically to continue to eat a lot of cheap meat. This expectation will become unsustainable as growth in developing economies rightly corrects inbalances in the distribution of wealth and provides a better quality of life globally. Finally as global economic growth increases the demand for energy, and as fossil fuels become scarcer and harder to extract, the cost of the energy required to grow and transport food will increase (this article in The Economist magazine describes the complex issues around future energy availability).

Ahead of the the Rio+20 Sustainable Development Summit, Christine Lagarde, Managing Director of the International Monetary Fund, has described in a stark but very grounded way the threats to life, wellbeing and the economy that these forces are already creating, particularly in some of the poorest regions on the planet. Her speech is a call to action to world leaders to drive a sustainable and fairly distributed economic recovery from today’s situation. The evidence and expert testimony asserting the critical importance of choosing to do that now is growing – see for example these publications from the Royal Society in the UK and the prestigious scientific journal, Nature.

Part of that journey has to be a more sustainable approach to food production, distribution and consumption. Some amazing new technology-enabled businesses are making it easier to buy locally produced, seasonal food, for instance. Sustaination and Big Barn connect local food producers and consumers directly, using social media to disintermediate the traditional supply chain; whilst Growing Birmingham and Landshare encourage the use of more urban land and private gardens to grow food.

However, cities – the environments in which more than 90% of the UK’s population, and more than 50% of the world’s population live – will never feed themselves through these means alone. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency. Unless we accept food sources from “Extreme Urbanism” such as vertical farming or lab-grown artificial meat, cities will always import the majority of their food.

(An example of local food processing: my own homemade chorizo.)

Many of the good reasons to choose local food, though, are really to do with reducing the industrialisation of food production. The simple act of transporting food from one place to another isn’t necessarily bad, within reason; and only constitutes 4% of its environmental footprint, even in today’s supply chain. The other 96% is simply the energy required to grow and process food; and that’s what we need to reduce.

One of our main opportunities to do that is to choose to eat different food. As Wendy Coch at Business Insider says, “It typically takes a long time and lots of grain to raise cattle. That’s why red meat has 18 times the carbon footprint as an equal amount of pasta.”

The other opportunity is to reduce food wastage. We produce more food, and catch more fish, than we need; and we throw too much of it away because it doesn’t meet quota restrictions, or because of inefficiencies in distribution. Those are big political challenges that world governments are wrestling with in the lead-up to the Rio summit. Whilst many are pessimistic that they will find and agree solutions, there was good news on this front from the European Union today with an agreement to ban fishing ships from throwing away their excess catch.

(Photo by Nick Saltmarsh)

But we as consumers are responsible for food waste too. Just one UK supplier of readymade sandwiches throws away 13,000 slices of bread every day because we don’t want to eat sandwiches made with crusts. We plan our meals and food-buying so poorly that much of the food we buy goes rotten before we use it. And few of us are familiar with the recipes and food processing techniques that make use of leftover food, or the tougher cuts of meat such as chuck steak and pork shoulder – homemade jams, soups, stews, sausages and pâtés, for example.

So at one level, the solution to our food challenge is simple. As a delegate at the New Optimists Food Forum (part of the EU Smart Agri Food programme) told me this week, if we choose to eat meat 2-3 times a week rather than 2-3 times a day, we would go a long way towards a sustainable food system. Choosing to be more organised in our domestic lives and learning some new kitchen skills would help too.

Of course the real challenge is persuading billions of human beings to make such new choices about buying, preparing and eating food every day. So whilst the ability of technology to continue to disintermediate new industries such as food is a marvellous adventure for our times; perhaps its real role in this context is much simpler: to spread awareness of the impact of our food consumption; to popularise meat-free dishes as a choice for all of us, not just for vegetarians; and to re-educate us about traditional techniques and recipes for using leftover food.

In summary: to promote and enable informed, responsible decisions about food. I hope I’ve done just a little bit of that today.

The economics and attractiveness of Smarter Cities

(Photo of building work in Wembley from Mick Baker)

After a relaxing break over the festive season, I’m finally back up to speed with working life. It looks like an exciting year ahead; we’ve expanded our “Smarter Cities” team in the UK, and are working with some interesting clients and partners.

I met this week with the Bartlett Institute for the Built Environment at University College, London. We discussed how cities can make themselves “more attractive” places to live and work – a common priority of cities in the process of regeneration. A mixture of factors are involved such as lighting, education, the vitality of business and retail environments, transport, public safety and architecture. Technology isn’t central – but it’s going to be interesting to me as a technologist to see how it can play a role.

I’ve also been looking at how investment cases for Smarter Cities projects and transformations are constructed. A business partner commented recently that a good number – perhaps a majority – of Smarter Cities initiatives have been pilot projects rather than full-scale implementations; or have been part-funded by Government or EU Research programmes; or both.

There are exceptions, such as the London Congestion Charge scheme; that has an interesting mix of short-term return (it generates revenues that cover both investment and operating costs); longer-term economic benefits (by reducing congestion it lowers barriers to productivity, economic growth and job creation); and improvements to the city environment – it was an enabler for pedestrianisation in some areas.

A colleague of mine told me about the healthcare trust in Durham and Darlington that helped its local council pay for pavements to be gritted. It was “common sense” that by doing so they prevented people from slipping and thereby improved wellbeing and lowered treatment costs. Not everyone agreed with the practise – and one trust governor resigned in protest, particularly as there was no model to quantify and prove the benefits. Perhaps for the same reason, the practise has now stopped, a victim of public sector spending cuts.

It’s clear that we need new models and tools to calculate the financial, social and environmental costs and impacts of “Smarter” projects, so that we can build business cases and commercial vehicles for investing sustainably in them. Some of my colleagues were involved in a project to create such a model in Manchester – you can download a report on that project here after registering; and I spoke this week to another business partner who has been developing financial models in a similar space.

The UK Smarter Cities community is eagerly awaiting a decision by the Technology Strategy Board as to whether it will approve funding for a “Future Cities” Catapult centre; I have argued that a capability to construct such financial models should be a focus for such a centre if and when it is approved. I have my fingers crossed, and am hoping to hear news soon.

Building these models will bring challenges. For example, the pollution created by traffic congestion in cities has a measurable effect reducing life expectancy (see the reports here  and here ). So congestion charge schemes such as London or Stockholm should increase life expectancy. That’s clearly a wellbeing benefit – but financially speaking, it increases the costs of supporting the city’s population as it lives longer.

If we can get the models right, though, and evolve them to be usable by different cities for different Smarter City initiatives, then we may finally see the explosion in full-scale projects that we’ve been expecting – and that we’ll need to face the financial, demographic and environmental challenges facing us.