The need for sympathetic digital urbanism

(Photo of me wearing the Emotiv headset, which measures the magnetic waves created by brain activity.)

(Photo of me wearing the Emotiv headset, which measures the magnetic waves caused by brain activity.)

(I’m a guest blogger on UBM’s Future Cities community; this article was published there last week. It builds on themes I first explored here in the article “Little/big; producer/consumer; and the story of the Smarter City“)..

Technology is changing how we understand cities, and how we will understand ourselves in the context of urban environments. We’re only at the beginning of this complex revolution.

Consider that scientists from Berkeley have used a Magnetic Resonance Imaging (MRI) scanner to reconstruct images perceived by a test subject’s brain activity while the subject watched a video. A less sensitive mind-reading technology is already available as a headset from Emotiv. (My colleagues have used Emotiv to help a paralysed person communicate by sending directional instructions from his thoughts to a computer.)

Developments in biotechnology, nanotechnology, and advanced manufacturing show similarly remarkable interactions between information systems and the physical and biological world: solar panels that can mend themselves; living biological tissues that can be printed.

These technologies, combined with our ability to process and draw insight from digital information, could offer real possibilities to engineer more efficient and sustainable city systems, such as transportation, energy, water, and food. But using them to address the demographic, financial, and environmental challenges of cities will raise questions about our relationship with the natural world, what it means to live in an ethical society, and what defines us as human.

(The remainder of this article, which explores ways in which we might answer those questions, can be found on UBM’s Future Cities site, as “Make Way for Sensitive Cities“).

Little/big; producer/consumer; and the story of the Smarter City

(Photo of me wearing the Emotiv headset)

(Photo of me wearing the Emotiv headset)

I have a four year old son. By the time I die he’ll be about my age if I’m lucky.

If I could see him now as he will be then; I would struggle to recognise his interactions with the world as human behaviour in the terms I am used to understanding it.

When he was two years old, I showed him a cartoon on the touchscreen tablet I’d just bought. When it finished, he pressed the thumbnail of the cartoon he wanted to watch next.

The implications of that instinctive and correct action are profound, and mark the start of the disappearance of the boundary between information and the physical world.

Just as the way that we communicate with each other has changed increasingly rapidly from the telephone to e-mail to social media; so the way that we interact with information systems will transform out of all recognition as technology evolves beyond the keyboard, mouse and touchscreen.

The Emotiv headset I’m wearing in the photo above can interpret patterns in the magnetic waves created by my thoughts as simple commands that can be understood by computers. My thoughts can influence the world of information; and they can even be captured as images, as shown in this recent work using Magnetic Resonance Imaging (MRI).

And information can influence the physical world. From control technology implanted in the muscles of insects; to prosthetic limbs and living tissues that are created from digital designs by general-purpose 3D printers. As the way we interact with information systems and use them to affect the world around us becomes so natural that we’re barely conscious of it, the Information Revolution will change our world in ways that we are only beginning to imagine.

These technologies offer striking possibilities; and we face striking challenges. The two will come together where the activity of the world is most concentrated: in cities.

In the last revolution, the Industrial Revolution, we built the centres of cities upwards around lifts powered by the steam engine invented by James Watt and commercialised by Matthew Boulton in Birmingham. In the last century we expanded them outwards around the car as we became used to driving to work, shops, parks and schools.

(Photo of 3D printer by Media Lab Prado)

We believe we can afford a lifestyle based on driving cars because its long-term social and environmental costs are not included in its financial price. But as the world’s population grows towards 9 billion by 2050, mostly in cities that are becoming more affluent in what it’s increasingly inaccurate to call “emerging economies”; that illusion will be shattered.

We’re already paying more for our food and energy as a proportion of income. That’s not because we’re experiencing a “double-dip recession”; it’s because the structure of the economy is changing. There is more competition for grain to feed the world’s fuel and food needs; and droughts caused by climate change are increasing uncertainty in it’s supply.

We have choices to make. Do we consume less? Can we use technology to address the inefficiencies of supply chains which waste almost half the food they produce whilst transporting it thousands of miles around the world, without disrupting them and endangering the billions of lives they support? Or do we disintermediate the natural stages of food supply by growing artificial meat in laboratories?

These choices go to the heart of our relationship with the natural world; what it means to be human; and to live in an ethical society. I think of a Smarter City as one which is taking those choices successfully; and using technology to address its challenges in a way that is both sustainable, and sympathetic to us as human beings and as communities.

Three trends are appearing across technology, urbanism, and the research of resilient systems to show us how to do that. The first is for little things and big things to work constructively together.

The attraction of opposites part 1: little and big

(Photo of Masshouse Circus, Birmingham, before its redevelopment, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, before its redevelopment, by Birmingham City Council)

Some physical interventions in cities have been “blunt”. Birmingham’s post-war economy needed traffic to be able to circulate around the city centre; but the resulting ringroad strangled it, until it was knocked down a decade ago. It didn’t meet the needs of individuals and communities within the city to live and interact.

By contrast, Exhibition road in London – a free-for-all where anyone can walk, drive, sit, park or catch a bus, anywhere they like – knits the city together. Elevated pedestrian roundabouts and city parks similarly provide infrastructures that support fluid movement by people cycling and walking; modes of transport in which it is easy to stop and interact with the city.

These big infrastructures are compatible with the life of the little people who inhabit the city around them; and who are the reason for its existence.

The same concepts apply to technology infrastructures.

Technology offers great promise in cities. We can collect data from people and infrastructures – the movement of cars, or the concentration of carbon dioxide. We can aggregate that data to provide information about city systems – how fast traffic is moving, or the level of carbon emissions of buildings. And we can draw insight from that information into the performance of cities – the impacts of congestion on GDP, and of environmental quality on life expectancy.

Cities are deploying mobile and broadband infrastructures to enable the flow of this data; and “open data” platforms to make it available to developers and entrepreneurs for them to explore new business opportunities and develop novel urban services.

But how does deploying broadband infrastructure in a poor neighbourhood create growth if the people who live there can’t afford subscriptions to it? Or if businesses there don’t have access to computer programming skills?

Connectivity and open data are the “big infrastructures” of the information age; how do we ensure that they are properly adapted to the “little” needs of individual citizens, businesses and communities?

We will do that by concerning ourselves with people and places, rather than information and infrastructures.

(Delay times at traffic junctions visualised by the Dublinked city information partnership.)

(Delay times at traffic junctions visualised by the Dublinked city information partnership)

Where civic information infrastructures are successful in creating economic and social growth, they are not deployed; they are co-created in a process of listening and learning between city institutions; businesses; communities; and individuals.

This process requires us to visit new places, such as the “Container City” incubation facility for social enterprise in Sunderland; to learn new languages; and understand different systems of value, such as the “triple bottom line” of social, environmental and financial capital.

If we design infrastructures by listening to and then enabling ideas, then we put the resources of big institutions and companies into the hands of people and businesses in a way that makes it less difficult to create many, more effective “little” innovations in hyper-local contexts – the “Massive Small” change first described by Kelvin Campbell.

By following this process, Dublin’s “Dublinked” partnership between the City and surrounding County Councils; the National University of Ireland, businesses and entrepreneurs is now sharing 3,000 city datasets; using increasingly sophisticated tools to draw value from them; identifying new ways for the city’s transport, energy and water systems to work; and starting new, viable, information-based businesses.

As a sustained process, these conversations and the trust they create form a “soft infrastructure” for a city, connecting it’s little and big inhabitants.

This soft infrastructure is what turns civic information into services that can become part of the fabric of life of cities and communities; and that can enable sustainable growth by weaving information into that fabric that describes the impact of choices that are about to be made.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times – and suggestions for alternative routes.)

For example, a project in San Francisco used algorithms that are capable of predicting traffic speeds and volume in the city one hour into the future with 85% accuracy. These algorithms were developed in a project in Singapore, where the resulting predictions were made available to traffic managers, so that they could set lane priorities and traffic light sequences to attempt to prevent any predicted congestion.

But in California, the predictions were made available instead to individual commuters who where told in advance the likely duration of their journey each day, including the impact of any congestion that would develop whilst the journey was underway. This gave them a new opportunity to take an informed choice: to travel at a different time; by a different route or mode; or not to travel at all.

The California project shows that it’s far more powerful to use the information resulting from city data and predictive algorithms not to influence a handful of traffic managers who respond to congestion; but to influence the hundreds or thousands of individual travellers who create it; and who have the power to choose not to create it.

And in designing information systems such as this, we can appeal not just to selfish interests, but to our sense of community and place.

A project in Dubuque, Iowa uses Smart water meters to tell householders whether they are using domestic appliances efficiently; and can detect weak underlying signals that indicate leaks. People who are given this information can choose to act on it; and to a certain extent, they do.

But something remarkable happened in a control group who were also given a “green points” score comparing their water efficiency to that of their neighbours. They were literally twice as likely to improve their water efficiency as people who were only told about their own water use.

Maslow’s hierarchy of needs tells us that once the immediate physical needs of our families are secured, our motivations are next driven by our relationships with the people around us. Technology gives us the ability to design new information-based services that appeal directly to those values, rather than to more distant general environmental concerns.

The attraction of opposites part 2: producer and consumer

(Photo of 3D-printed objects by Shapeways)

This information is at our fingertips; we are its producers and consumers. For the last decade, we have used and created it when we share photos in social media or buy and sell in online marketplaces.

But the disappearance of the boundaries between information systems, the physical world and our own biology means that it is not just information that we will be producing and consuming in the next decade, but physical goods and services too.

As a result, new peer-to-peer markets can already be seen in food production; parking spaces; car journeys; the manufacture of custom objects; and the production of energy from sources such as bio-matter and domestic solar panels.

Of course, we have all been producers and consumers since humans first began to farm and create societies with diversified economies. What’s new is the ability of technology to dramatically improve the flexibility, timeliness and efficiency of interactions between producers and consumers; creating interactions that are more sustainable than those enabled by conventional supply chains.

Even more tantalising is the possibility of using new rates of exchange in those transactions.

In Switzerland, a complementary currency, the Wir, has contributed to economic stability over the last century by allowing some debt repayments to be bartered locally when they cannot be repaid in universal currency. And last year, Bristol became the 5th UK town or city to operate its own currency.

These currencies are increasingly using advanced technologies, such as the “Droplet” smartphone payment scheme now operating in Birmingham and London. This combination of information technology and local currencies could be used to calculate rates of exchange that compare the complete social, environmental and economic cost of goods and services to their immediate, contextual value to the participants in the transaction.

That really could create a market infrastructure to support Smarter, sustainable, and more equitable city systems; and it sounds like a great idea to me.

But if it’s such a good idea, why aren’t markets based on it ubiquitous already?

Collaborative governance; and better stories for Smarter Cities

(Stories of Mumbai: an exploration of Mumbai’s history of urban development, and its prospects for the future, using storytelling and puppetshows, by the BMW Guggenheim Lab)

If we are going to use the technologies and ideas I’ve described to transform cities, then technologists like me need to learn from the best of urbanism.

Jan Gehl taught us to design liveable cities not by considering the buildings in them; but how people use the spaces between buildings.

In Smarter Cities our analogous challenge is to concentrate not only on information infrastructures and the financial efficiencies that they provide; not least because “Smart” ideas cut across city systems, and so gains in efficiency don’t always reward those who invest in infrastructure.

Our objective instead is to create the harder to quantify personal, social and environmental value that results when those infrastructures enable people to afford to eat better food or to heat their homes properly in winter; to access affordable transport to places of employment; and to live longer, independent lives as productive contributors to their communities.

These are the stories we need to tell about Smarter Cities.

These stories are of vital importance because the third trend we observe is that cities only really get smarter when their leaders and communities coordinate the use of public and private assets to achieve a collective vision of the future, and to secure external investment in it.

Doing so needs the commitment not just of the owners and managers of those assets, but of the shareholders, voters, employees and other stakeholders that they are accountable to.

To win the commitment of such a broad array of people we need to appeal to common instincts: our understanding of narrative, and our ability to empathise. Ultimately we will need the formal languages of finance and technology, but they are not where we should start.

DDespommier

(Dickson Despommier, inventor of the vertical farm, speaking at TEDxWarwick 2013)

It’s imperative that we tell these stories to inspire the evolution of our cities. The changes in coming decades will be so fast and so profound that cities that do not embrace them successfully will suffer severe decline.

Luckily, our ability to respond successfully to those changes depends on a technology that is freely available: language, used face to face in conversations. I can’t think of a more essential challenge than to use it to tell stories about how our world can be come smarter, fairer, and more sustainable.

And there’s no limit to what any one of us can achieve by doing this. Because it is collaborative governance rather than institutional authority that enables Smarter Cities, then there are no rules defining where the leadership to establish that governance will come from.

Whether you are a politician, academic, technologist, business person, community activist or simply a passionate individual; and whether your aim is to create a new partnership across a city, or simply to start an independent social enterprise within it; that leadership could come from you.

(This article is based on the script I wrote in preparation for my TEDxWarwick presentation on 13th March 2013).

No-one is going to pay cities to become Smarter

(The Bristol Pound, a local currency intended to encourage and reinforce local trading synergies.)

It’s been a busy week for cities in the UK; and we should draw important insights from its events.

On Monday, the Technology Strategy Board (TSB); Department of Business, Innovation and Skills; and the British Standards Institution were the sponsors of a meeting in London to establish a UK “Future Cities Network”. One of their objectives was to build a consensus from the UK to contribute to the City Protocol initiative launched at the Smart City Expo in Barcelona this month.

Wednesday and Thursday saw the society of IT managers in local government (SOCITM) hold its annual conference in Birmingham. This community includes the technology leaders of the UK’s city authorities; many of them are driving the transformation to shared public services in their regions; and exploring the opportunities this transformation provides to improve service quality and outcomes, as well as reducing costs.

Finally, it’s been a week of mixed news for Future Cities: the Technology Strategy Board shortlisted 4 UK cities as the finalists in their competition to host a £25 million “Future Cities Demonstrator” project.

This is clearly fantastic news for the cities concerned – London, Glasgow, Peterborough and Bristol – and they should be congratulated for their achievement. But it also means that 22 other cities who submitted proposals to the TSB have learned over the past two days that they will not benefit from this investment.

Whilst the TSB’s competition – and their progress in setting up the related “Future Cities Catapult Centre” – have been great catalysts to encourage cities in the UK to shape their thinking about the future, the decisions this week throw the real challenge they face into sharp focus:

No-one is going to pay cities to become Smarter.

The TSB investment of £25 million is astonishingly generous; but it will nevertheless be only a small contribution to the city that receives it; and the role of innovation stimulus organisations such as the TSB and the European Union’s FP7 programme is only to fund the first, exploratory initiatives; not to support their widespread adoption by cities everywhere.

The UK government’s “City Deals” are a great innovation that will give cities more autonomy over taxation and spending. But in reality they will not provide significant sums of new money; especially when compared to the scale of the financial challenge city authorities face. As the Local Government Association commented in their report “Funding outlook for councils from 2010/11 to 2019/20“:

“… councils will not be able to deliver the existing service offer by the end of this decade. Fundamental change is needed to one or both of … the way local services are funded and organised [or the] statutory and citizen expectations of what councils will provide.”

(A station on London’s Underground railway under construction in 1861, from the Science and Society Picture Library)

Some of these changes will be achieved through public sector transformation. The London Borough of Newham, for example, were recognised at the SOCITM Awards Dinner this week for their achievements in reducing costs and improving service quality through implementation of a successful transformation to online channels for many services.

This is a remarkable achievement for an authority serving one of London’s least affluent boroughs, demanding careful and innovative thinking about the provision of digital services to communities and citizens who may not have access to broadband connectivity or traditional computers. Newham have concentrated on the delivery of services through mobile telephones – which are much more widely owned than PCs and laptops – and  in contexts where a friend or family member assists the ultimate service user.

But local authority transformations of this sort won’t create intelligent transport solutions; or trigger a transformation to renewable energy sources; or improve the resilience of food supply to city populations.

In the UK, many of those services are supported by physical infrastructures that were first constructed in the Victorian era, more than a century ago. Through pride and vision – and the determination to out-do each other – the industrialists, engineers and philanthropists who created those infrastructures dramatically over-engineered them. We are now using them to support many times the population that existed when they were designed and built.

As competition for resources such as food, energy and water intensifies, driven by both a growing global population and by rapid improvements in living standards in emerging economies, these infrastructures will increasingly struggle to support us at the cost, and with the level of resilience, that we have become accustomed to. And whilst they are now often owned and operated by private sector organisations, or by public-private partnerships, the private sector is in no better position to address the challenges faced by cities than the public sector.

In the recent recession and the current slow recovery from it, many companies have failed, lost business, and reduced their workforce. And as the Guardian reported this week, whilst many business leaders take sustainability seriously and attempt to build it into their business models, the financial markets do not recognise those objectives in share prices; and do not offer investment vehicles that support them.

So if government and the financial markets can’t or won’t pay cities to become smarter, how are we going to re-engineer city infrastructures to be more intelligent and sustainable?

In my view, the key is to look at four ways in which money is already spent; and to harness that spending power to achieve the outcomes that cities need.

1. Encourage Venture Capital Investment

(Photo of the “Container City” incubation hub for social enterprises operated by Sustainable Enterprise Strategies in Sunderland)

The current economic climate has not stopped investors and venture capitalists from investing in exciting new businesses. Some of the businesses they are investing in are using technology to offer innovative services in cities. For example, Shutl and Carbon Voyage both use recently emerged technologies to match capacity and demand across networks of transport suppliers.

The systems that these businesses operate have the potential to catalyse local economic trading opportunities – and in so doing, safeguard or create jobs; to lower the carbon footprint of travel and distribution within cities; and to offer new and valuable services to city residents, workers and visitors.

Several cities, including Dublin and Sunderland, are engaged in an ongoing conversation with their local community of technology, business and social entrepreneurs to encourage and support them in developing new, sustainable business models of this sort that promote the social, environmental and economic objectives of the city.

These investments are not on the scale of the tens or hundreds of millions of pounds that would be required to completely overhaul city infrastructures; but they are complemented by the revenues the businesses earn. In this way, consumer, retail and business spending can be harnessed to contribute to the evolution of Smarter Cities.

2. Build Markets, not Infrastructure

Transport is an example of a city system that is not usually considered a marketplace; that’s one of the reasons why the entrepreneurial businesses that I mentioned in the previous section, which effectively create new markets for transport capacity, are so innovative.

But some city systems  already operate as marketplaces; such as energy in the UK, where consumers are free to switch between providers relatively easily. The fact that city infrastructures are already market-like to a degree is combining with trends in engineering to create exciting new developments.

As both international and national policies to encourage sustainable energy generation and use take effect; and as some fossil fuels become scarcer or more expensive, new power generation capacity is increasingly based on renewable energy sources such as wind, hydro-electric, tidal, geo-thermal and biological sources.

A challenge associated with some of those energy sources is that their generating capacity is small compared to their cost and physical impact. Wind farms, for example, take up vastly more space than gas- and coal-powered energy generation facilities, and produce only a fraction of their output.

(Photo by Greg Marshall of the rocks known as “The Needles” just off the coast of the Isle of Wight; illustrating the potential for the island to exploit wave and tidal energy sources)

However, for other power sources, a reduction in scale could be an advantage. The European Bioenergy Research Institute (EBRI) at Aston University in Birmingham, for example, exploit technologies that can recover energy from sewage and food waste. Those technologies can already be implemented on a small-enough scale that the city of Birmingham is setting up a local power distribution company to exploit a bio-energy power generation plant that EBRI will operate at Aston University. And the New Optimists, a community of scientists and industry leaders in Birmingham are considering on Birmingham’s behalf the possibility that such generation technology could eventually operate in city neighbourhoods and communities, or even within individual residences.

For all of these reasons, there is considerable interest at present in the formation of new, localised marketplaces in power generation and consumption. Ecoisland, a community initiative on the Isle of Wight, is perhaps at the forefront of this movement. Their objective is to make the Isle of Wight self-sufficient in energy; because their approach to meeting that objective is to form a new market, they are winning considerable investment from the financial markets due to the profit-making potential of that market.

3. Procure Infrastructure Smartly

City Authorities and property developers spend substantial sums of money on city infrastructures and related services. But the requirements and scoring systems of those procurements are often very traditional, and create no incentive for the providers of infrastructure services to offer innovative solutions.

Some flagship projects – such as Stockholm’s congestion-charging scheme and the smart metering programme in Dubuque, for example – have shown the tremendous potential of “Smarter” solutions. But their effectiveness is to some degree specific to their local context; relatively high levels of taxation are acceptable in Scandinavian society, for example, in return for high quality public service outcomes. Such levels of taxation are not so acceptable elsewhere.

There is tremendous scope for more creative and innovative approaches to procurement of city services to encourage service providers to offer “Smarter” solutions; Birmingham Science City’s Jackie Homan describred some of those possibilities very eloquently recently. The more urgently city authorities adopt those approaches, the sooner they are likely to benefit from the innovation that their infrastructure partners have the potential to provide.

(The Olympic flame at Vancouver’s Winter Olympics photographed by Evan Leeson)

4. Work With Ethical Investors

Finally, notwithstanding the challenges described in the Guardian article that I linked to above, some financial institutions do offer support for “Smart” and sustainable initiatives.

Vancouver’s “Change Everything” online community, for example, was an early pioneer in exploiting the power of social media to support social and environmental initiatives; it was created by Vancouver’s Credit Union, Vancity, a financial institution with social objectives.

Similarly, Sustainable Enterprise Strategies, who provide crucial support and incubation services to businesses and social enterprises in the most challenged communities in Sunderland, are supported by the UK’s Co-Operative Bank; and IBM and Citi-Group have collaborated to create a financing solution for city’s to invest in Streetline’s “Smart Parking” solution, which has reduced both traffic congestion and environmental pollution in cities such as San Francisco.

These are just some of the ways in which financial institutions have already been engaged to support Smarter Cities initiatives. They can surely be persuaded to do so more extensively by proposals that may have social or environmental objectives, but that are also well-formed from a financial perspective.

“The future is already here – it’s just not evenly distributed”

All of the initiatives that I’ve described in this article are are already under way. As the science fiction author William Gibson memorably said – in what is now the last century – “the future is already here; it’s just not evenly distributed”.

We should not wait for new, large-scale sources of Smarter City funding to appear before we start to transform our cities – we cannot afford to; and it’s simply not going to happen. What we must do is look at the progress that is already being made by cities, entrepreneurs and communities across the world, and follow their example.

Open urbanism: why the information economy will lead to sustainable cities

(Delegates browsing the exhibition space in Fira Barcelona at the World Bank’s Urban Research and Knowledge Symposium “Rethinking Cities”)

On Monday this week I attended the World Bank’s “Rethinking Cities” Symposium in Barcelona.  I was asked to give presentations to the Symposium on the contributions technology could make to two challenges: improving social and physical mobility in cities; and the encouragement of change to more sustainable behaviours by including “externalities” (such as social and environmental costs) in the prices of goods and services.

(In her speech ahead of the Rio +20 Summit, Christine Lagarde, Managing Director of the International Monetary Fund, said that one of the challenges for achieving a sustainable, equitably distributed return to growth following the recent economic challenges was that these externalities are not currently included in prices).

These two topics are clearly linked. The lack of access that some city communities have to economic and personal opportunity is in part a social consequence of the way that systems such as education, transport and  planning operate.

As human beings, however altruistic we are capable of being, each day we take tens or hundreds of decisions which, in the moment, are consciously or subconsciously based on selfish motivations. We drive cars to work because it’s quicker and more pleasant than using public transport; or because it’s quicker, easier and safer than cycling, for example. The accumulation of all of these decisions by all of us defines the behaviour of the cities we inhabit.

In principle we might all be better off – proximity allowing – if we cycled or walked to our places of work, or to school with our children. It would be safer because there would be less traffic; both the exercise and the reduction in pollution would improve our health; and we would probably talk to our neighbours more in the process. One of the reasons we don’t currently choose cycling or walking for these journeys is that we are too busy working to afford the time involved in doing so. Crudely speaking, we are in competition with each other to earn enough money to survive comfortably and to afford the lifestyles we aspire to.

(The Copenhagen Wheel bike photographed by Sujil Shah. The wheel stores energy under braking and uses it to power an electric motor when required and shares information with a smartphone app.)

Game Theory” – the mathematical analysis of human decision-making in groups – has something interesting to say on this subject. To oversimplify a complex and subtle field, Game Theory predicts that if we suspect each other of behaving selfishly, then we will behave selfishly too; but that when we observe others behaving in the common interest, then we are likely to behave in the same way.

So if we all knew that all of us were going to spend a little less time at work in order to walk with our children to school and then cycle to work, then we could do so, safe in the knowledge that individually we wouldn’t lose out, couldn’t we?

Obviously, that’s a ridiculous suggestion.

Except … in his plenary talk at the World Bank Symposium, Harvard Professor of Economics Edward Glaeser – author of “Triumph of the City” – at one point commented that part of the shift towards a more sustainable global economy might be for those of us who live in developed economies to forgo some monetary wealth in favour of living in more attractive cities.

So just maybe the suggestion wasn’t completely crazy, after all.

In Monday’s discussions at the Symposium we explored how sustainable choices could be made available in a way that appeals to the motivations of individuals and communities. We examined several ways to create positive and negative incentives through pricing; but also examples of simply “removing the barriers” to making such choices.

For example, if information was made available on demand to make it easier to plan a complete door-to-door journey using sustainable forms of transport such as cycling, buses, trains and shared car journeys, would people make less individual journeys in private cars?

Services are already emerging to provide this information, such as Moovel (a commercial offering) and Open Trip Planner (a free service using crowdsourced data). They are just two examples of the ways in which the availability of information is making our cities more open and transparent. At the moment, both services are too new for us to make an assessment of their impact; but it will be fascinating to observe their progress.

(The Portland, Oregon implementation of Open Trip Planner)

The lesson of Game Theory is that this transparency – which I think of as “Open Urbanism” in this context – is what is required to enable and encourage all of us to make the sustainable choices that in their collective impact could make a real difference to the way that cities work.

I’d like to explore four aspects of Open Urbanism a little further to support that idea: Open Thinking; Open Data; Open Systems and Open Markets.

Open Thinking

The simplest expression of Open Urbanism is through engagement and education. In the afternoon plenary debate at the Rethinking Cities symposium, the inspirational Jaime Lerner spoke of a city recycling programme that has been operating successfully for many years; and that involves citizens taking the time to separate recyclable waste in return for no direct individual benefit whatsoever. So how were they persuaded to spend their time in this way?

It simply began by teaching children why sorting and recycling waste was important, and how to do it. Those children taught and persuaded their parents to adopt the behaviour; and in time they taught their own children. In this way, recycling became a cultural habit. Jaime later referred to the general concept of “urban acupuncture” – finding a handful of people who have the ability to change, and understanding what it takes to encourage them to change – a bit like planting a tiny needle in exactly the right place in the city.

Open Data

The information available about cities, businesses, current events and every other aspect of life is increasing dramatically; through the Open Data movement; through crowdsourced information; through the spread of news and opinion via social media; and through the myriad new communication forms that are appearing and spreading every day. The availability of this information, and the awareness that it creates amongst us all of how our cities and our world behave, creates a powerful force for change.

For example, a UK schoolgirl recently provoked a national debate concerning the standard of school meals simply by blogging about the meals that were offered to her each day at school, and in particular commenting on their health implications.  And my colleagues in IBM along with our partners Royal Haskoning and Green Ventures have helped the city of Peterborough to understand, combine, visualise and draw insight from information concerning the environment, the economy, transport and social challenges in order to better inform planning and decision making.

Open Systems

The next stage is to develop models from this data that can simulate and predict how the many systems within cities interact; and the outcomes that result from those interactions. IBM’s recent “Smarter Cities Challenge” in my home city of Birmingham studied detailed maps of the systems in the city and their inputs and outputs, and helped Birmingham City Council understand how to developed those maps into a tool to predict the outcomes of proposed policy changes. In the city of Portland, Oregon – as shown in the video below – a similar interactive tool has already been produced.

(A video describing the “systems dynamics” project carried out by IBM in Portland, Oregon to model the interactions between city systems)

As data is made available from city systems in realtime, these models can be used not just to explore potential changes in policy; but to predict the dynamic behaviour of cities and create intelligent, pro-active – and even pre-emptive – responses. We can collect and access data now from an astonishing variety of sources: there are 30 billion RFID tags embedded into our world, across entire ecosystems of activity; we have 1 billion mobile phones with cameras able to capture and share images and events; and everything from  domestic appliances to vehicles to buildings is increasingly able to monitor its location, condition and performance and communicate that information to the outside world.

These sources can tell us which parking spaces are occupied, and which are free, for example. Streetline are using this information in San Francisco to create a market for parking spaces that reduces traffic congestion in the city. In South Bend, Indiana, an analytic system helps to predict and prevent wastewater overflows by more intelligently managing the city’s water infrastructure based on realtime information from sensors monitoring it. The city estimates that they have avoided the need to invest in hundreds of millions of dollars of upgrades to the physical capacity of the infrastructure as a result.

If such information is made openly available to innovators in city economies and communites, surprising new systems can be created. At a recent “hackathon” in Birmingham, an “app” was created that connects catering services with excess food to food distribution charities who can use it.

(The QR code that enabled Will Grant of Droplet to buy me a coffee at Birmingham Science Park Aston using Droplet’s local smartphone payment solution; and the receipt that documents the transaction)

That same information can create an appeal to our sense of community and place. The city of Dubuque in Iowa provides citizens and businesses with smart meters that measure and analyse their water use. They can detect when domestic appliances are used on inefficient settings, or when there is a leak in the water supply.

pilot project in Dubuque found that people were twice as likely to act on this information when they were not only provided with insight into their own water usage; but also provided with a  score that ranked their water conversation performance compared to that of their neighbours.

Open Markets

To return to the initial subject of this article, interesting new technology-enabled systems such as local currencies are emerging that could embed information from open city systems into the pricing systems of new markets within cities – and thereby quantify the cost of “externalities” in those markets. For instance, the Brixton and Bristol Pounds are local currencies intended to reinforce local economic synergies; and in Birmingham Droplet are now making their first payments through their local SmartPhone Payment system which similarly operates between local merchants.

We are on the cusp of incredibly exciting possibilities. Local currencies and trading systems could enable marketplaces in locally-generated power; or in localised manufacturing using technologies such as 3D printing. They could exploit distribution systems such as the one that Amazon make available to their marketplace traders; and underground waste and recycling systems that take waste and recyclables direct from the home to the appropriate recycling and disposal centres.

I can only image the city systems that might result if these capabilities and sources of information were made openly available to innovators within city communities. They could create solutions that are Smarter than we can imagine. Personally I’m convinced that this “Open Urbanism” is an essential part of the journey towards the sustainable city of the future.

The amazing heart of a Smarter City: the innovation boundary

(Photo of a mouse by pure9)

Innovation has always been exciting, interesting and valuable; but recently it’s become essential.

The “mouse” that defined computer usage from the 1980s through to the 2000s was an amazing invention in its time. It was the first widely successful innovation in human/computer interaction since the typewriter keyboard and video display which came decades before it; and it made computers accessible to new communities of people for the first time.

But whilst the mouse, like the touchscreen more recently popularised by the iPhone and iPad, was a great innovation that increased the usability and productivity of personal computers, it wasn’t really necessary for a greater and pressing purpose. Its benefits came later as we explored its capabilities.

We now have a greater purpose that demands innovation: the need to make our cities and communities more sustainable, vibrant and equal in the face of the severe economic, environmental and demographic pressures that we face; and that are well described in the Royal Society’s “People and the Planet” report.

We have already seen those pressures create threats to food and energy security; and in recent months I’ve spoken to city leaders who are increasingly concerned with the difference in life expectancy between the most affluent and most deprived areas of their cities – it can be 10 years or more. There are much worse inequalities on a global scale, of course. But this is a striking local difference in the basic opportunity of people to live.

Barnett Council in North London famously predicted recently that within 20 years, unless significant changes in public services are made, they will be unable to afford to provide any services except social care. There will be no money left to collect waste, run parks and leisure facilities, clean streets or operate any of the other services that support and maintain cities and communities. I have spoken informally to other Councils who have come to similar conclusions.

All the evidence, including the scientific analysis of the behaviour and sustainability of city systems by the Physicist Geoffrey West, points to the need to create innovations that change the way that cities work.

But where will this innovation come from?

I think innovation of this sort takes place at an “innovation boundary”: the boundary between capability and need.

When a potentially transformative infrastructure such as a Smarter City technology platform is designed and deployed well, then the services it provides precisely embody that boundary.

This idea is fundamental to the concept of Smarter Cities, where we are concerned with the capability of technology to transform cities. Technology vendors – including, but not limited to, my employer IBM – are sometimes expected to use the Smarter City movement as a channel through which to sell generic technology platforms. As vendors, we do deliver technology platforms for cities, and they are part of the capability required to transform them. But they are not the only part – far from it. And they must not be generic.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times – and suggestions for alternative routes.)

As I hope regular readers of this blog will know, I often explore the role of people and communities in transforming how cities work. A city is the combined effect of the behaviour of all of the people in it – whether they are buying food in a supermarket, traveling to work, relaxing in a park, planning an urban development or teaching in a school. No infrastructure – whether it is a road, a building, a broadband network or an intelligent energy grid – will have a transformative effect on a city unless it engages with individuals in a way that results in a change of behaviour. Work by my colleagues in IBM on transportation in California (pictured, left) and on water and energy usage in Dubuque, Iowa provide examples of what can be achieved when technology solutions are designed in the context of individual and community behaviour.

The innovations that discover how technology can change behaviour are sometimes very localised. They can be specific to the nature, challenges and opportunities of local communities; and are often therefore created by individuals, entrepreneurs, businesses and social enterprises within them. The “civic hacking” and “open data” movements are great examples of this sort of creativity.

But this is not the only sort of innovation that is required to enable Smarter City transformations. The infrastructures that support cities literally provide life-support to hundreds of thousands or millions of individuals. They must be highly resilient, performant and secure – particularly as they become increasingly optimised to support larger and larger city populations sustainably.

The invention, design, deployment and operation of Smarter City infrastructures require the resources of large organisations such as technology vendors, infrastructure providers, local governments and Universities who are able to make significant investments in them.

The secret to successfully transforming cities lies at the boundary between local innovations and properly engineered platforms. “Smarter City” transformations are effective when new and resilient information infrastructures are designed and deployed to meet the specific needs of city communities. One size does not fit all.

A technology infrastructure is no different in this regard to a physical infrastructure such as a new urban highway. In each case, there are some requirements that are obvious and generic – getting traffic in and out of a city centre more efficiently; or  making superfast broadband connectivity universally accessible. But other crucially important requirements are more complex, subtle and varied. How can a new road be integrated into the existing environment of a city so that local communities benefit from it, and so that it does not divide them? What access points, support and funding assistance are needed so that communities can use superfast broadband networks; and what services and information can be delivered to them using those networks that will make a difference?

If we understand those requirements, we can design infrastructures that properly support the innovation boundary. Doing so demands that we address three challenges:

Firstly, we must identify the specific information and technology services that can be provided to individuals, communities, entrepreneurs, businesses and social enterprises to help them succeed and grow. I’ve referred many times to the Knight Foundation’s excellent work in this area; it has inspired my own work with entrepreneurs and social enterprises in Sunderland and elsewhere.

(Meeting with social entrepreneurs in Sunderland to understand how new technology can help them)

Secondly, we need to understand and then supply the heavily engineered capabilities that are beyond the means of local communities to deliver for themselves; but that which enable them to create innovations with real significance.

At the 3rd EU Summit on Future Internet, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project, addressed this topic and identified the specific challenges that local innovators need help to overcome, and that could by provided by city information infrastructures. His challenges included: real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust. As we continue to engage with communities of innovators in cities, we will discover other requirements of this sort.

Finally, the boundary needs to be defined by standards. Many cities will deploy many information infrastructures, and many different vendors will be involved in supplying them. In order that successful local innovations can spread and interact with each other, Smarter City infrastructures should support Open Standards and interoperability with Open Source technologies.

It will take work to achieve that, of course. It is very easy to underestimate the complexity of the standards required to achieve interoperability. For example, in order to make it possible to safely change something as simple as a lightbulb, standards for voltage, power, physical dimensions, brightness, socket shape and fastening type, fragility and heat output are required. Some standards for Smarter City infrastructures are already in place – for example, Web services and the Common Alerting Protocol – but many others will need to be invented and encouraged to spread. Fortunately, the process is already underway. As an example, IBM recently donated MQTT, a protocol for connecting information between small devices such as sensors and actuators in Smarter City systems to the Open Source community.

(The first “Local Gov Camp” unconference in 2009, attended by community innovators with an interest in transforming local services, held in Fazeley Studios in Birmingham. Photo by s_p_a_c_e_m_a_n)

In the meantime, the innovation boundary is an amazing place to work. It puts me in contact with the leading edge of technology development – with IBM Research, and with new products such as the Intelligent Operations Centre for Smarter Cities. And it offers me the chance to collaborate with the academic institutions and thought-leaders who are defining the innovation boundary through initiatives such as “disruptive business platforms” (see this work from Imperial college, or these thoughts from my colleague Pete Cripps).

But more importantly, my work puts me in touch with innovators who are creating exciting and inspiring new ways for cities to work; often in the communities that need the most help, such as Margaret Elliott in Sunderland; Mark Heskett-Saddington of Sustainable Enterprise Strategies; and the team at Droplet in Birmingham.

I count myself terrifically honoured and lucky to have the privilege of working with them.

Five roads to a Smarter City

(Photo of Daikoku junction by Ykanazawa1999

Recently, I discussed the ways in which cities are formulating  “Smarter City” visions and the programmes to deliver them. Such cross-city approaches are clearly what’s required in order to have a transformative effect across an entire city.

However, whilst some cities have undergone dramatic changes in this way – or have been built as “Smarter” cities in the first place as in the case of the famous Masdar project in Abu Dhabi – most cities are making progress one step at a time.

Four patterns have emerged in how they are doing so. Each pattern is potentially replicable by other cities; and each represents a proven approach that can be used as part of a wider cross-city plan.

I’ll start at the beginning, though, and describe why cross-city transformations can be hard to envision and deliver. Understanding why that can be the case will give us insight into which simpler, smaller-scale approaches can succeed more easily.

What’s so hard about a Smarter City?

Cities are complex ecosystems of people and organisations which need to work together to create and deliver Smarter City visions. Bringing them together to act in that way is difficult and time-consuming.

(Photo of Beijing by Trey Ratcliff)

Even where a city community has the time and willingness to do that, the fragmented nature of city systems makes it hard to agree a joint approach. Particularly in Europe and the UK, budgets and responsibilities are split between agenices; and services such as utilities and transport are contracted out and subject to performance measures that cannot easily be changed. Agreeing the objectives and priorities for a Smarter City vision in this context is hard enough; agreeing the financing mechanisms to fund programmes to deliver them is even more difficult.

Some of the cities that have made the most progress so far in Smarter City transformations have done so in part because they do not face these challenges – either because they are new-build cities like Masdar, or because they have more hierarchical systems of governance, such as Guangzhou in China. In other cases, critical challenges or unusual opportunities provide the impetus to act – for example in Rio, where an incredible cross-city operations centre has been implemented in preparation for the 2014 World cup and 2016 Olympics.

Elsewhere, cities must spend time and effort building a consensus. San Francisco, Dublin and Sunderland are amongst those who began that process some time ago; and many others are on the way.

But city-wide transformations are not the only approach to changing the way that cities work – they are just one of the five roads to a Smarter City. Four other approaches have been shown to work; and in many cases they are more straightforward as they are contained within individual domains of a city; or exploit changes that are taking place anyway.

Smarter infrastructure

Many cities in the UK and Europe are supported by transport and utility systems whose physical infrastructure is decades old. As urban populations rise and the pace of living increases, these systems are under increasing pressure. “Smarter” concepts and technologies can improve their efficiency and resilience whilst minimising the need to upgrade and expand them physically.

(Photo of a leaking tap by Vinoth Chandar. A project in Dubuque, Iowa showed that a community scheme involving smart meters and shared finances had a significant effect improving the repair of water leaks.)

In South Bend, Indiana, for example, an analytic system helps to predict and prevent wastewater overflows by more intelligently managing the existing infrastructure. The city estimates that they have avoided the need to invest in hundreds of millions of dollars of upgrades to the physical capacity of the infrastructure as a result. In Stockholm, a road-use charging system has significantly reduced congestion and improved environmental quality. In both cases, the systems have direct financial benefits that can be used to justify their cost.

These are just two examples of initiatives that offer a simplified approach to Smarter Cities; they deliver city-wide benefits but their implementation is within the sphere of a single organisation’s responsibility and finances.

Smarter micro-cities 

Environments such as sports stadiums, University campuses, business parks, ports and airports, shopping malls or retirement communities are cities in microcosm. Within them, operational authority and budgetary control across systems such as safety, transportation and communication usually reside with a single organisation. This can make it more straightforward to invest in a technology platform to provide insight into how those systems are operating together – as the Miami Dolphins have done in their Sun Life Stadium.

Other examples of such Smarter “micro-Cities” include the iPark industrial estate in Wuxi, China where a Cloud computing platform provides shared support services to small businesses; and the Louvre museum in Paris where “Intelligent Building” technology controls the performance of the environmental systems that protect the museum’s visitors and exhibits.

(Photo of the Louvre exhibition “‘The Golden Antiquity. Innovations and resistance in the 18th century” from the IBM press release for the Louvre project)

Improving the operation of such “micro-cities” can have a significant impact on the  cities and regions in which they are located – they are often major contributors to the economy and environment.

Shared Public Services

Across the world demographic and financial pressures are causing transformative change in public sector. City and regional leaders have said that their organisations are facing unprecedented challenges. In the UK it is estimated that nearly 900,000 public sector jobs will be lost over 5 years – approximately 3% of national employment.

In order to reduce costs whilst minimising impact to frontline services, many public sector agencies are making arrangements to share the delivery of common administrative services with each other, such as human resources, procurement, finance and customer relationship management.

Often these arrangements are being made locally between organisations that know and trust each other because they have a long history of working together. Sharing services means sharing business applications, IT platforms, and data; as town and village councils did in the Municipal Shared Services Cloud project.

As a result shared IT platforms with co-located information and applications are now deployed in many cities and regions. Smarter City systems depend on access to such information. Sunderland City Council are very aware of this; their CEO and CIO have both spoken about the opportunity for the City Cloud they are deploying to provide information to support public and private-sector innovation. Such platforms are an important enabler for the last trend I’d like to discuss: open data.

Open Data

(A visualisation created by Daniel X O Neil of data from Chicago’s open data portal showing the activities of paid political lobbyists and their customers in the city)

The open data movement lobbies for information from public systems to be made openly available and transparent, in order that citizens and entrepreneurial businesses can find new ways to use it.

In cities such as Chicago (pictured on the left) and Dublin, open data platforms have resulted in the creation of “Apps” that provide useful information and services to citizens; and in the formation of startup companies with new, data-based business models.

There are many challenges and costs involved in providing good quality, usable open data to city communities; but the shared service platforms I’ve described can help to overcome them, and provide the infrastructure for the market-based innovations in city systems that can lead to sustainable economic growth.

Let’s build Smarter Cities … together

All of these approaches can succeed as independent Smarter City initiatives, or as contributions to an overall city-wide plan. The last two in particular seem to be widely applicable. Demographics and economics are driving an inevitable transformation to shared services in public sector; and the open data movement and the phenomenon of “civic hacking” demonstrate the willingness and capability of communities to use technology to create innovations in city systems.

As a result, technology vendors, local authorities and city communities have an exciting opportunity to collaborate. The former have the ability to deliver the robust, scalable, secure infrastructures required to provide and protect information about cities and individual citizens; the latter have the ability to use those platforms to create local innovations in business and service delivery.

At the 3rd EU Summit on Future Internet in Helsinki earlier this year, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project and Chief Technologist for Telefonica,  addressed this topic and identified the specific challenges that civic hackers face that could be addressed by such city information infrastructures; he included real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust.

Cities such as Sunderland, Birmingham, Dublin, Chicago and San Francisco are amongst those investing in such platforms, and in programmes to engage with communities to stimulate innovation in city systems. Working together, they are taking impressive steps towards making cities smarter.

Can cities break Geoffrey West’s laws of urban scaling?

(Photo of Kowloon by Frank Müller)

As I mentioned a couple of weeks ago, I recently read Geoffrey West’s fascinating paper on urban scaling laws, “Growth, innovation, scaling and the pace of life in cities“.

The paper applies to cities techniques that I recall from my Doctoral studies in the Physics and Engineering of Superconducting Devices for studying the emergent properties of self-organising complex systems.

Cities, being composed of 100,000s or millions of human beings with free-will who interact with each other, are clearly examples of such complex systems; and their emergent properties of interest include economic output, levels of crime, and expenditure on maintaining and expanding physical infrastructures.

It’s a less intimidating read than it might sound, and draws fascinating conclusions about the relationship between the size of city populations; their ability to create wealth through innovation; sustainability; and what many of us experience as the increasing speed of modern life.

I’m going to summarise the conclusions the paper draws about the characteristics and behaviour of cities; and then I’d like to challenge us to change them.

Professor West’s paper (which is also summarised in his excellent TED talk) uses empirical techniques to present fascinating insights into how cities have performed in our experience so far; but as I’ve argued before, such conclusions drawn from historic data do not rule out the possibility of cities achieving different levels of performance in the future by undertaking transformations.

That potential to transform city performance is vitally important in the light of West’s most fundamental finding: that the largest, densest cities currently create the most wealth most efficiently. History shows that the most successful models spread, and in this case that could lead us towards the higher end of predictions for the future growth of world population in a society dominated by larger and larger megacities supported by the systems I’ve described in the past as “extreme urbanism“.

I personally don’t find that an appealing vision for our future so I’m keen to pursue alternatives. (Note that Professor West is not advocating limitless city growth either; he’s simply analysing and reporting insights from the available data about cities, and doing it in an innovative and important way. I am absolutely not criticising his work; quite the oppostite – I’m inspired by it).

So here’s an unfairly brief summary of his findings:

  • Quantitative measures of the creative performance of cities (such as wealth creation or the number of patents and inventions generated by city populations) – grow faster and faster the more that city size increases.
  • Quantitative measures of the cost of city infrastructures grow more slowly as city size increases, because bigger cities can exploit economies of scale to grow more cheaply than smaller cities.

West found that these trends were incredibly consistent across cities of very different sizes. To explain the consistency, he drew an analogy with biology: for almost all animals, characteristics such as metabolic rate and life expectancy vary in a very predictable way according to the size of the animal.

(Photo of Geoffery West describing the scaling laws that determine animal characteristics by Steve Jurvetson). Note that whilst the chart focusses on mammals, the scaling laws are more broadly applicable.

The reason for this is that the performance of the thermodynamic, cardio-vascular and metabolic systems that support most animals in the same way are affected by size. For example, geometry determines that the surface area of small animals is larger compared to their body mass than that of large animals. So smaller animals lose heat through their skin more rapidly than larger animals. They therefore need faster metabolic systems that convert food to replacement heat more rapidly to keep them warm. This puts more pressure on their cardio-vascular systems and in particular their heart muscles, which beat more quickly and wear out sooner. So mice don’t live as long as elephants.

Further, more complex mechanisms are also involved, but they don’t contradict the idea that the emergent properties of biological systems are determined by the relationship between the scale of those systems and the performance of the processes that support them.

Professor West hypothesised that city systems such as transportation and utilities, as well as characteristics of the way that humans interact with each other, would similarly provide the underlying reasons for the urban scaling laws he observed.

Those systems are exactly what we need to affect if we are to change the relationship between city size and performance in the future. Whilst the cardio-vascular systems of animals are not something that animals can change, we absolutely can change the way that city systems behave – in the same way that as human beings we’ve extended our life expectancy through ingenuity in medicine and improvements in standards of living. This is precisely the idea behind Smarter cities.

(A graph from my own PhD thesis showing real experimental data plotted against a theoretical prediction similar to a scaling law. Notice that whilst the theoretical prediction (the smooth line) is a good guide to the experimental data, that each actual data point lies above or below the line, not on it. In most circumstances, theory is only a rough guide to reality.)

The potential to do this is already apparent in West’s paper. In the graphs it presents that plot the performance of individual cities against the predictions of urban scaling laws, the performance of every city varies slightly from the law. Some cities outperform, and some underperform. That’s exactly what we should expect when comparing real data to an analysis of this sort. Whilst the importance of these variations in the context of West’s work is hotly contested, both in biology and in cities, personally I think they are crucial.

In my view, such variations suggest that the best way to interpret the urban scaling laws that Professor West discovered is as a challenge: they set the bar that cities should try to beat.

Cities everywhere are already exploring innovative, sustainable ways to create improvements in the performance of their social, economic and environmental systems. Examples include:

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

In all of those cases, cities have used technology effectively to disrupt and transform the behaviour of urban systems. They have all lifted at least some elements of performance above the bar set by urban scaling laws. There are many more examples in cities across the world. In fact, this process has been taking place continuously for as long as cities have existed – see, for example, the recent Centre for Cities report on the development and performance of cities in the UK throughout the 20th Century.

That report contains a specific challenge for Birmingham, my home city. It shows that in the first part of the 20th Century, Birmingham outperformed many UK cities and became prosperous and successful because of the diversity of its industries – famously expressed as the “city of a thousand trades”. In the latter part of the Century, however, as Birmingham became more dependent on an automotive industry that subsequently declined, the city lost a lot of ground. Birmingham is undertaking some exciting regenerative initiatives at present – such as the City Deal that increases it’s financial independence from Central Government; the launch of a Green Commission; and investments in ultra-fast broadband infrastructure. They are vitally important in order for the city to re-create a more vibrant, diverse, innovative and successful economy.

As cities everywhere emulate successful innovations, though, they will of course reset the bar of expected performance. Cities that wish to consistently outperform others will need to constantly generate new innovations.

This is where I’ll bring in another idea from physics – the concept of a phase change. A phase change occurs when a system passes a tipping point and suddenly switches from one type of behaviour to another. This is what happens when the temperature of water in a kettle rises from 98 to 99 to 100 degrees Centigrade and water – which is heavy and stays in the bottom of the kettle – changes to steam – which is light and rises out of the kettle’s spout. The “phase change” in this example is the transformation of a volume of water from a liquid to a gas through the process of boiling.

So the big question is: as we change the way that city systems behave, will we eventually encounter a phase change that breaks West’s fundamental finding that the largest cities create the most value most efficiently? For example, will we find new technologies for communication and collaboration that enable networks of people spread across thousands of miles of countryside or ocean to be as efficiently creative as the dense networks of people living in megacities?

I certainly hope so; because unless we can break the link between the size and the success of cities, I worry that the trend towards larger and larger cities and increasing global population will continue and eventually reach levels that will be difficult or impossible to maintain. West apparently agrees; in an interview with the New York Times, which provides an excellent review of his work, he stated that “The only thing that stops the superlinear equations is when we run out of something we need. And so the growth slows down. If nothing else changes, the system will eventually start to collapse.”

But I’m an optimist; so I look forward to the amazing innovations we’re all going to create that will break the laws of urban scaling and offer us a more attractive and sustainable future. It’s incredibly important that we find them.

(I’d like to think Dr. Pam Waddell, the Director of Birmingham Science City, for her helpful comments during my preparation of this post).

Are Smarter Cities the Key to Social Mobility?

(Photo of Santa Cruz by Cortto)

An interview with Chris Cooper, IBM UK Architect for Smarter Cities

My colleague Chris Cooper was recently appointed as IBM UK’s Architect for Smarter Cities. For many years Chris has helped IBM’s customers and partners in the transport industry build smarter systems with positive social and environmental impact; so he came to his new role with a wealth of experience.

Chris wrote a great paper a couple of weeks ago on the important connections between transport, open data and social mobility (it’s available here, though you need a subscription to access the full article). This week we explored those themes further in a discussion that I thought was worth sharing.

[Rick]: You’ve spoken and written about “Social Mobility” in the context of Smarter Transport and Smarter Cities; can you summarise what you mean by the concept?

[Chris]: Social mobility in the context of Smarter Transport systems is the ability to move people and resources in an informed way that achieves positive social outcomes. It relies on the use of information and communication technologies to facilitate the organisation and optimisation of connections between goods, services and human capital. In short, it can enable communities to work together to achieve their goals.

The real challenge for such systems is how to measure the value of their social, environmental and economic impact. Today, we measure value in monetary terms. But that’s very much a point-in-time measure; and there’s an argument that the full cost of goods and services are not identified and included in their financial price – particularly the social and environmental costs. It’s possible that such costs could be quantified by measures such as standard of living or the “happiness index” that has been suggested by the UK Prime Minister, David Cameron, amongst others.

I recently read a speech by Christine Lagard, Managing Director of the International Monetary Fund, ahead of the Rio+20 Summit. She called for a sustainable and equitably distributed recovery to economic growth; and stated that a barrier to achieving that was that the social and environmental costs you’ve referred to are not included in the prices we pay for goods and services. You’ve described “Social Mobility” as a vision for transport that addresses those challenges and empowers communities.

Yes, absolutely. But one of the challenges we will face is that the companies who operate our transport services are expected to peform against traditional financial measures – and they are audited in the same way. Those measures do not take account of social and environmental impact. If those measures were to be augmented by a “sustainability index” that assessed longer term contributions to society and the environment, then we might look back on current assessments of company performance and view them rather differently.

So if in the future mechanisms such as Carbon Taxes were introduced and became accepted components of financial performance, would we look back at the assessments we’re making today and consider them incomplete?

(Photo of carbon dioxide scrubber from Steve Simpson)

That’s very possible. Our current systems measure short term performance and don’t provide an incentive to plan for the future. It’s becoming more important to correct this as competition for our finite resources intensifies. To do so we need to introduce mechanisms to adjust the cost of resources to recognise their scarcity and the impact of consuming them.

A good precedent can be seen in the way we have combated acid rain. Social and political pressure resulted in the application of financial penalties to the use of the chemicals that contributed to acid rain. Over time those financial penalties made the causative chemicals prohibitively expensive to use; or made it cost-effective to install equipment to prevent their emission, such as the the carbon dioxide scrubbers that are now commonplace in power stations.

No-one argues with the logic of doing that anymore; and we no longer suffer from acid rain. Of course, in today’s globalised economy its important that such measures are applied universally so that they don’t create imbalances in competition, and that’s by no means a simple challenge to resolve.

At the Base Cities London conference we both attended recently, the Deputy Mayor for Environment for Los Angeles told us that in contrast to the relatively weak agreement between national leaders at Rio 20+, city leaders had returned from their own conference in Rio determined to implement the changes required to achieve sustainable economic growth. How do you see the ideas we’ve discussed working in city economies?

If companies published the “sustainability index” I’ve described, consumers could consider it when choosing which companies they should buy goods and services from. That could be a very powerful tool for influencing the impact of the millions of buying decisions made every day by individuals in local markets.

Rather than acting as an overhead or a barrier to innovation, such an index could enable companies to improve their performance. In order to transform operations to more measurably sustainable models, companies will need to invest in  understanding their supply chains, operations and markets in more depth. Doing so will undoubtedly provide opportunities for optimisation.

More generally, localism is going to be an increasingly important concept as we realise that it’s more realistic and effective to affect the communities around us rather than the world at large.

We haven’t spoken much about transport; I’ve seen some interesting studies recently that have highlighted the challenges some communities in cities have in accessing effective transport. To what extent is the concept of social mobility concerned with enabling city communities to travel to where they need to to live, shop and work?

That’s a really important point. The urban spaces we inhabit – including the surrounding rural spaces which supply them – need to be designed in harmony with the transport systems that move people and goods around them.

Whether that’s best accomplished by a “grid” system or through networks of urban villages; and how those ideas apply to new-build cities in emerging economies or the transformation of existing cities in developed economies are subjects that are hotly debated.

I personally think that mixed developments that concentrate a critical mass of people, goods and services within walking distance are the key to enabling the transactions through which cities create value and wealth to take place more frequently and at lower financial, social and environmental cost. Travel doesn’t just consume resources; it’s often an unproductive use of time.

So is it more important to focus on enabling travel within cities than between them in national systems?

Research has shown that cities are the most efficient systems for generating social and economic value; but it’s well known that some cities are losing population, or are losing key skills from their population to their suburbs and commuter belts. The reasons for that include the desire for more space; to live in more attractive environments; or to have better access to quality education for children. All of those challenges could be addressed by more holistic thinking, planning and investment in city systems, including their transport. And they would bring people with important skills and experience back into the diverse, creative environments of our cities.

One possible approach would be to allow cities to expand into the greenbelts surrounding them. By allowing cities and their transport systems to expand as little as one mile (1.5 kilometres) into their surrounding greenbelts – which are an artificial creation – we could significantly increase their size in a way that exploits their existing infrastructure.

Has the privatisation of transport in the UK over the past few decades resulted in a system that is cost-effective to provide – on a strictly financial basis – rather than one that is optimally beneficial to city communities and economies?

That’s certainly a concern, though key organisations in transport are starting to look ahead to new strategies for the future. Rather than focus on what we can’t predict – whether high-speed rail or hovercars will be our transport of choice, for example – I think we should focus on what we want our transport systems to achieve for us – such as universal access to local and national travel – and how we make progress towards such goals over the next few years.

So to summarise our discussion, would you agree that the challenge for cities is to evolve in ways that encourage the development of spaces, communities and transport systems in harmony so that they enable local transactions and interactions as a more sustainable form of growth?

(IBM’s Smarter City Technology Centre in Dublin)

Yes. It’s important for local communities, cities, regions and even nations to become conscious of their unique strengths; to exploit local transactions to reinforce them; and to trade them with regional and national partners.

Cities are increasingly looking for these differentiators; and multi-national companies such as IBM are looking to build relationships based on them. Such relationships – in Moscow, Dublin and Dubuque, for example – connect the ideas, experience and economies of scale that accrue from global operations to the intricacies and unique expertise of local markets. And they do it with the passion that comes from local engagement.

Chris, thankyou, that’s been a really interesting discussion. As individuals we all care about the places and communities in which we live; the ideas we’ve discussed today give us the reason and opportunity to contribute to those communities through our work as well as in our private lives in very important and exciting ways. 

How cities can exploit the Information Revolution

(This post was first published as part of the “Growth Factory” report from the thinktank TLG Lab).

(Graphic of New York’s ethnic diversity from Eric Fischer)

Cities and regions in the UK face ever-increasing economic, social and environmental challenges. They compete for investment in what is now a single global economy. Demographics are changing with more than 90% of the population now living in urban areas, and where the number of people aged over 65 will double to 19 million by 2050. The resources we consume are becoming more expensive, with cities especially vulnerable to disruptions in supply.

The concept of “Smarter systems” has captured the imagination of experts as an approach to turn these challenges into opportunities for more sustainable economic and social growth; particularly in cities, where most of us live and work. Smarter systems – in cities, transportation, government and industry –can analyse the vast amounts of data being generated around us to help make more informed decisions, operate more efficiently or even predict the future.

These systems enable city planners around the world to design urban environments that promote safety, community vitality and economic growth. They can bring real-time information together from city transportation, social media, emergency services and leisure facilities to better enable cities, such as Rio de Janeiro, to manage major public events. They can enable transport systems to better manage traffic flow and reduce congestion, as in Singapore. They can stimulate economic growth by enabling small businesses to better compete for business in collaboration with regional trading partners, in systems such as that operated by the University of Warwick.

Government policies such as Open Data, personal care budgets and open public services will dramatically increase the information available to citizens to help them take well-informed decisions. This information will be rich, complex and associated with caveats and conditions. Making it usable by the broad population is an immense challenge which will not be addressed by technology alone. Data needs not only to be made available, but understandable so that it can inform better decision-making.

Where does Smarter city data come from?

Raw data for Smarter systems is derived from three sources: the city’s inhabitants, existing IT systems and readings from the physical environment.

Information from people has become more accessible with the continued spread of connected mobile devices, such as smartphones. Open Street Map, for example, provides a global mapping information service sourced from the activities of volunteers with portable satellite navigation devices. However, the quality and availability of crowd-sourced information depends on the availability and resources of volunteers, who cannot be held accountable for whether information is accurate, complete or up-to-date.

It is also important to understand data ownership and the associated privacy concerns. There is a difference between data freely and knowingly contributed by an individual for a specific purpose and information created as a side-effect of their activity – for example, the record of a person’s movements created by the GPS sensor in their smartphone.

The Open Data movement, supported by central government, will dramatically increase the availability of data from public systems. For example, efforts are underway to make NHS healthcare data available, with appropriate security measures, to Life Sciences organisations to reinforce the UK’s pre-eminent position in drug discovery research. However, the infrastructure required to make large volumes of data widely and rapidly available in a usable form will not be created for free. Until their cost is included in future government procurements – or until commercial systems of funding are created – then much data will likely only be made open on a more limited “best efforts” basis.

Furthermore, not all city data is held by public bodies. Many transportation and utility systems are owned and operated by the private sector, and it is not generally established what information they should make available, and how. Many Smarter city systems that use data from such sources are private partnerships rather than open systems.

Meanwhile, certain kinds of data are becoming far more accessible through the advancing ability of computer systems to understand human language. IBM’s Watson computer demonstrated this recently by competing and winning against world champions in the American television quiz show, Jeopardy! Wellpoint is using this kind of technology to draw insight from medical information held in similar forms. Its aim is to better tackle diseases such as cancer by empowering physicians to rapidly evaluate potential diagnoses and explore the latest supporting medical evidence. Similar technology can draw insight from case notes in social care systems, as Medway Youth Trust is doing, or from the reports of engineers maintaining roads, sewers, and other city systems.

An early “mashup” application using open data from Chicago’s police force

Information is also becoming more readily available from the physical environment. In Galway Bay, a network of underwater microphones is connected to a system that can identify and locate the sounds of dolphins and porpoises. Their location provides a dynamic indication of which parts of the Bay have the cleanest water. That information is made available to companies in the Bay to allow them to control their discharges of water; and to the fishing and leisure industries who are dependent on marine life. This Open Data approach is being used by cities across the world such as Dublin, Chicago and London as a resource for citizens and businesses.

Whilst advances in technology have lowered the cost of generating information from physical environments, challenges remain. From the perspective of a mobile telephone user, much of the UK has signal coverage. However, telephones are used one metre or more above ground level; at ground level, where many parts of our transport and utility infrastructures are located, coverage is much poorer. Additionally, mobile transmitters and receivers are relatively expensive and power-hungry. Cheaper, lower power technologies are needed to improve coverage, such as the “Weightless” standard being developed to use transmission bandwidth no-longer needed by analogue television.

Using and combining data appropriately

In order to make information from multiple sources available appropriately and usefully, several issues need to be tackled.

When computer systems are used to analyse information and take decisions, then the data formats and protocols used by those systems need to be matched. Information as simple as locations and dates may need to be converted between formats. At an engineering level, the protocols used to transmit data across cities using wired or wireless communications behave differently and require systems that integrate them.

The meaning of information from related sources also needs to be understood and adapted to context. Citizens who go shopping in wheelchairs need to know how to get between car-parks and shops with lifts, accessible public toilets and cash points. However, the computer systems of the organisations who own those facilities will encode the information separately, in ways that support their efficient management, not that support journey-planning between them.

The City of Portland in Oregon has gone further in a project to understand how information from systems across the city is related. They are now able to better predict the impact that key decisions will have on the entire city, years in advance.

Privacy and ownership of data may affect its subsequent use, often with terms and conditions in place for governing its access. Furthermore, safeguards are required to ensure that sensitive information cannot be inferred from a combination of sources. For example the location of a safe house or shelter being identified from building usage, building ownership and /or information concerning taxi journeys by the employees of particular council agencies.

The human dimension

Smarter systems will only succeed in improving cities if there is wide consumer engagement. To be of value, information will likely need to be timely and presented in a manner appropriate to consumer context. Individual behaviour will only change where personal value is derived as a result of new information being presented – a saving in time or money, or access to something of value to their family.

(Photo of traffic in Dhaka, Bangladesh, from Joisey Showa)

Many cities are experimenting with technologies that predict the future build up of traffic, by comparing real-time measurements to databases of past patterns of traffic flow. In Stockholm, this information is used by a road-use charging system that supports variable pricing. In California, commuters in a pilot project were given personalised predictions of their commuting time each day. Both systems encourage individuals to make choices based on new information.

Utility providers are exploring how information from smart meters can encourage water and energy users to change behaviour. A recent study in Dubuque, Iowa, showed that when householders were shown how their water usage compared to the average for their neighbours, they became better at conserving water – by fixing leaks, or using domestic appliances more efficiently. Skills across artistic and engineering disciplines are helping us understand how this type of information can be communicated more effectively. Many people will not want to study figures and charts on a smart meter or website; instead “ambient” information sources may be more effective – such as a glow-globe that changes colour from green to orange to red depending on household electricity use.

Systems that improve the sustainability of cities could also affect economic development. Lowering congestion through Smarter transportation schemes can improve productivity by reducing time lost by workers delayed by traffic. By making information and educational resources widely available, Smarter systems could improve access to opportunity across city communities. A city with vibrant communities of well-informed citizens may appear a more forward-looking and attractive place to live for educated professionals and, in turn, for businesses considering relocation. New York has improved its attractiveness since the 1970s by lowering the fear of crime. One of its tools is a “real-time crime centre” that brings information together from across the city in order to better react to crime and public order incidents. The system can even help to prevent crime by intelligently deploying police resources to the areas most likely to experience incidents based on past patterns of activity – on days with similar weather, transportation conditions or public events.

Success in delivering against these broader objectives is much more likely to be achieved where the cities themselves are more clearly accountable for them.

So where do we start?

Investments in Smarter systems often cut across organisations and budgets and many have objectives that are macro-economic, social and environmental, as well as financial. As such, they challenge existing accounting mechanisms. Whilst central government and the financial markets offer new investment solutions such as ethical funds, social impact bonds and city deals, so far these have not been used to fund the majority of Smarter solutions – many of which are supported by research programmes. The Technology Strategy Board’s investment in areas such as “Future Cities” and the “Connected Digital Economy” will provide a tremendous boost, but there is much to be done to assist cities in using new investment sources to fund Smarter initiatives – or to develop sustainable commercial or social-enterprise business models to deliver them.

Although progress can be driven by strong leadership, the issues of governance and fragmented budgets will need to be overcome if we are to take full advantage of the benefits technology can bring.

We live in an era of major global challenges – well described in the recent “People and the Planet” report by the Royal Society. At the same time, we have access to powerful new technologies and ideas to address them, such as those proposed by the 100 Academics who contributed essays to the book “The New Optimists”. When we focus those resources on cities, we focus on the structures in which we can have the greatest impact on the most people.

Already many forward-looking cities in the UK such as Sunderland and Birmingham are joining others around the world by investing in Smarter systems. If we can meet the technical, organisational and investment challenges, we will not only provide citizens, businesses and agencies with new choices and exciting opportunities; we’ll also position the UK economy to succeed as the Information Revolution gathers pace.

%d bloggers like this: