Four avatars of the metropolis: technologies that will change our cities

(Photo of Chicago by Trey Ratcliff)

Many cities I work with are encouraging clusters of innovative, high-value, technology-based businesses to grow at the heart of their economies. They are looking to their Universities and technology partners to assist those clusters in identifying the emerging sciences and technologies that will disrupt existing industries and provide opportunities to break into new markets.

In advising customers and partners on this subject, I’ve found myself drawn to four themes. Each has the potential to cause significant disruptions, and to create opportunities that innovative businesses can exploit. Each one will also cause enormouse changes in our lives, and in the cities where most of us live and work.

The intelligent web

(Diagram of internet tags associated with “Trafalgar” and their connections relevant to the perception of London by visitors to the city by unclesond)

My colleague and friend Dr Phil Tetlow characterises the world wide web as the biggest socio-technical information-computing space that has ever been created; and he is not alone (I’ve paraphrased his words slightly, but I hope he’ll agree I’ve kept the spirit of them intact).

The sheer size and interconnected complexity of the web is remarkable. At the peak of “web 2.0” in 2007 more new information was created in one year than in the preceding 5000 years. More important, though, are the number and speed of  transactions that are processed through the web as people and automated systems use it to exchange information, and to buy and sell products and services.

Larger-scale emergent phenomena are already resulting from this mass of interactions. They include universal patterns in the networks of links that form between webpages; and the fact that the informal collective activity of “tagging” links on social bookmarking sites tends to result in relatively stable vocabularies that describe the content of the pages that are linked to.

New such phenomena of increasing complexity and significance will emerge as the ability of computers to understand and process information in the forms in which it is used by humans grows; and as that ability is integrated into real-world systems. For example, the IBM “Watson” computer that competed successfully against the human champions of the television quiz show “Jeopardy” is now being used to help healthcare professionals identify candidate diagnoses based on massive volumes of research literature that they don’t have the time to read. Some investment funds now use automated engines to make investment decisions by analysing sentiments expressed on Twitter; and many people believe that self-driving cars will become the norm in the future following the award of a driving license to a Google computer by the State of Nevada.

As these astonishing advances become entwined with the growth in the volume and richness of information on the web, the effects will be profound and unpredictable. The new academic discipline of “Web Science” attempts to understand the emergent phenomena that might arise from a human-computer information processing system of such unprecedented scale. Many believe that our own intelligence emerges from complex information flows within the brain; some researchers in web science are considering the possibility that intelligence in some form might emerge from the web, or from systems like it.

That may seem a leap too far; and for now, it probably is. But as cities such as Birmingham, Sunderland and Dublin pursue the “open data” agenda and make progress towards the ideal of an “urban observatory“, the quantity, scope and richness of the data available on the web concerning city systems will increase many-fold. At the same time, the ability of intelligent agents such as Apple’s “Siri” smartphone technology, and social recommendation (or “decision support”) engines such as FourSquare will evolve too. Indeed, the domain of Smarter Cities is in large part concerned with the application of intelligent analytic software to data from city systems. Between the web of information and analytic technologies that are available now, and the possibilities for emergent artificial intelligence in the future, there lies a rich seam of opportunity for innovative individuals, businesses and communities to exploit the intelligent analysis of city data.

Things that make themselves

(Photo of a structure created by a superparamagnetic fluid containing magnetic nanoparticles in suspension, by Steve Jurvetson)

Can you imagine downloading designs for chocolate, training shoes and toys and then making them in your own home, whenever you like? What if you could do that for prosthetic limbs or even weapons?

3D printing makes all of this possible today. While 3D printers are still complex and expensive, they are rapidly becoming cheaper and easier to use. In time, more and more of us will own and use them. My one-time colleague Ian Hughes has long been an advocate; and Staffordshire University make their 3D printer available to businesses for prototyping and exploratory use.

Their spread will have profound consequences. Gun laws currently control weapons which are relatively large and need to be kept somewhere; and which leave a unique signature on each bullet they fire. But if guns can be “printed” from downloadable designs whenever they are required  – and thrown away afterwards because they are so easy to replace – then forensics will rarely in future have the opportunity to match a bullet to a gun that has been fired before. Enforcement of gun ownership will require the restriction of access to digital descriptions of gun designs. The existing widespread piracy of music and films shows how hard it will be to do that.

3D printers, combined with technologies such as social media, smart materials, nano- and bio-technology and mass customisation, will create dramatic changes in the way that physical products are designed and manufactured – or even grown. For example CocoWorks, a collaboration involving Warwick University, uses a combination of social media and 3D printing to allow groups of friends to collectively design confectionery that they can then “print out” and eat.

These changes will have significant implications for city economies. The reduction in wage differentials between developed and emerging economies already means that in some cases it is more profitable to manufacture locally in rapid response to market demand than to manufacture globally at lowest cost. In the near-future technology advances will accelerate a convergence between the advanced manufacturing, design, communication and information technology industries that means that city economic strategies cannot afford to focus on any of them separately. Instead, they should look for new value at the evolving intersections between them.

Of mice, men and cyborgs

(Professor Kevin Warwick, who in 2002 embedded a silicon chip with 100 spiked electrodes directly into his nervous system. Photo by M1K3Y)

If the previous theme represents the convergence of the information world and products and materials in the physical world; then we should also consider convergence between the information world and living beings.

The “mouse” that defined computer usage from the 1980s through to the 2000s was the first widely successful innovation in human/computer interaction for decades; more recently, the touchscreen has once again made computing devices accessible or acceptable to new communities. I have seen many people who would never choose to use a laptop become inseparable from their iPads; and two-year-old children understand them instinctively. The world will change as these people interact with information in new ways.

More exciting human-computer interfaces are already here – Apple’s intelligent agent for smartphones, “Siri”; Birmingham City University’s MotivPro motion-capture and vibration suit; the Emotiv headset that measures thoughts and can interpret them; and Google’s augmented reality glasses.

Even these innovations have been surpassed by yet more intimate connections between ourselves and the information world. Professor Kevin Warwick at Reading University has pioneered the embedding of technology into the human body (his own body, to be precise) since 2002; and in the effort to create ever-smaller pilotless drone aircraft, control technology has been implanted into insects. There are immense ethical and legal challenges associated with these developments, of course. But it is certain that boundaries will crumble between the information that is processed on a silicon substrate; information that is processed by DNA; and the actions taken by living people and animals.

Historically, growth in Internet coverage and bandwidth and the progress of digitisation technology led to the disintermediation of value chains in industries such as retail, publishing and music. As evolving human/computer interfaces make it possible to digitise new aspects of experience and expression, we will see a continuing impact on the media, communication and information industries. But we will also see unexpected impacts on industries that we have assumed so far to be relatively immune to such disruptions: surgery, construction, waste management, landscape gardening and arbitration are a few that spring to mind as possibilities. (Google futurist Thomas Frey speculated along similar lines in his excellent article “55 Jobs of the Future“).

Early examples are already here, such as Paul Jenning’s work at Warwick University on the engineering of the emotional responses of drivers to the cars they are driving. Looking ahead, there is enormous scope amidst this convergence for the academic, entrepreneurial and technology partners within city ecosystems to collaborate to create valuable new ideas and businesses.

Bartering 2.0

(Photo of the Brixton Pound by Matt Brown)

Civilisation has grown through the specialisation of trades and the diversification of economies. Urbanisation is defined in part by these concepts. They are made possible by the use of money, which provides an abstract quantification of the value of diverse goods and services.

However, we are increasingly questioning whether this quantification is complete and accurate, particularly in accounting for the impact of goods and services on the environments and societies in which they are made and delivered.

Historically, money replaced bartering,  a negotiation of the comparative value of goods and services within an immediate personal context, as the means of quantifying transactions. The abstraction inherent in money dilutes some of the values central to the bartering process. The growing availability of alternatives to traditional bartering and money is making us more conscious of those shortcomings and trade-offs.

Social media, which enables us to make new connections and perform new transactions, combined with new technology-based local currencies and trading systems, offer the opportunity to extend our personalised concepts of value in space and time when negotiating exchanges; and to encourage transactions that improve communities and their environments.

It is by no means clear what effect these grass-roots innovations will have on the vast system of global finance; nor on the social and environmental impact of our activities. But examples are appearing everywhere; from the local, “values-led” banks making an impact in America; to the widespread phenomenon of social enterprise; to the Brixton and Bristol local currencies; and to Droplet, who are aiming to make Birmingham the first city with a mobile currency.

These local currency mechanisms have the ability to support marketplaces trading goods and services such as food, energy, transport, expertise and many of the other commodities vital to the functioning of city economies; and those marketplaces can be designed to promote local social and environmental priorities. They have an ability that we are only just beginning to explore to augment and accelerate existing innovations such as the business-to-consumer and business-to-business markets in sustainable food production operated by Big Barn and Sustaination; or what are so far simply community self-help networks such as Growing Birmingham.

As Smarter City infrastructures expose increasingly powerful and important capabilities to such enterprises – including the “civic hacking” movement – there is great potential for their innovations to contribute in significant ways to the sustainable growth and evolution of cities.

Some things never change

Despite these incredible changes, some things will stay the same. We will still travel to meet in person. We like to interact face-to-face where body language is clear and naturally understood, and where it’s pleasant to share food and drink. And the world will not be wholly equal. Humans are competitive, and human ingenuity will create things that are worth competing for. We will do so, sometimes fairly, sometimes not.

It’s also the case that predictions are usually wrong and futurologists are usually mistaken; so you have good cause to disregard everything you’ve just read.

But whether or not I have the details right, these trends are real, significant, and closer to the mainstream than we might expect. Somewhere in a city near you, entrepreneurs are starting new businesses based on them. Who knows which ones will succeed, and how?

Can cities break Geoffrey West’s laws of urban scaling?

(Photo of Kowloon by Frank Müller)

As I mentioned a couple of weeks ago, I recently read Geoffrey West’s fascinating paper on urban scaling laws, “Growth, innovation, scaling and the pace of life in cities“.

The paper applies to cities techniques that I recall from my Doctoral studies in the Physics and Engineering of Superconducting Devices for studying the emergent properties of self-organising complex systems.

Cities, being composed of 100,000s or millions of human beings with free-will who interact with each other, are clearly examples of such complex systems; and their emergent properties of interest include economic output, levels of crime, and expenditure on maintaining and expanding physical infrastructures.

It’s a less intimidating read than it might sound, and draws fascinating conclusions about the relationship between the size of city populations; their ability to create wealth through innovation; sustainability; and what many of us experience as the increasing speed of modern life.

I’m going to summarise the conclusions the paper draws about the characteristics and behaviour of cities; and then I’d like to challenge us to change them.

Professor West’s paper (which is also summarised in his excellent TED talk) uses empirical techniques to present fascinating insights into how cities have performed in our experience so far; but as I’ve argued before, such conclusions drawn from historic data do not rule out the possibility of cities achieving different levels of performance in the future by undertaking transformations.

That potential to transform city performance is vitally important in the light of West’s most fundamental finding: that the largest, densest cities currently create the most wealth most efficiently. History shows that the most successful models spread, and in this case that could lead us towards the higher end of predictions for the future growth of world population in a society dominated by larger and larger megacities supported by the systems I’ve described in the past as “extreme urbanism“.

I personally don’t find that an appealing vision for our future so I’m keen to pursue alternatives. (Note that Professor West is not advocating limitless city growth either; he’s simply analysing and reporting insights from the available data about cities, and doing it in an innovative and important way. I am absolutely not criticising his work; quite the oppostite – I’m inspired by it).

So here’s an unfairly brief summary of his findings:

  • Quantitative measures of the creative performance of cities (such as wealth creation or the number of patents and inventions generated by city populations) – grow faster and faster the more that city size increases.
  • Quantitative measures of the cost of city infrastructures grow more slowly as city size increases, because bigger cities can exploit economies of scale to grow more cheaply than smaller cities.

West found that these trends were incredibly consistent across cities of very different sizes. To explain the consistency, he drew an analogy with biology: for almost all animals, characteristics such as metabolic rate and life expectancy vary in a very predictable way according to the size of the animal.

(Photo of Geoffery West describing the scaling laws that determine animal characteristics by Steve Jurvetson). Note that whilst the chart focusses on mammals, the scaling laws are more broadly applicable.

The reason for this is that the performance of the thermodynamic, cardio-vascular and metabolic systems that support most animals in the same way are affected by size. For example, geometry determines that the surface area of small animals is larger compared to their body mass than that of large animals. So smaller animals lose heat through their skin more rapidly than larger animals. They therefore need faster metabolic systems that convert food to replacement heat more rapidly to keep them warm. This puts more pressure on their cardio-vascular systems and in particular their heart muscles, which beat more quickly and wear out sooner. So mice don’t live as long as elephants.

Further, more complex mechanisms are also involved, but they don’t contradict the idea that the emergent properties of biological systems are determined by the relationship between the scale of those systems and the performance of the processes that support them.

Professor West hypothesised that city systems such as transportation and utilities, as well as characteristics of the way that humans interact with each other, would similarly provide the underlying reasons for the urban scaling laws he observed.

Those systems are exactly what we need to affect if we are to change the relationship between city size and performance in the future. Whilst the cardio-vascular systems of animals are not something that animals can change, we absolutely can change the way that city systems behave – in the same way that as human beings we’ve extended our life expectancy through ingenuity in medicine and improvements in standards of living. This is precisely the idea behind Smarter cities.

(A graph from my own PhD thesis showing real experimental data plotted against a theoretical prediction similar to a scaling law. Notice that whilst the theoretical prediction (the smooth line) is a good guide to the experimental data, that each actual data point lies above or below the line, not on it. In most circumstances, theory is only a rough guide to reality.)

The potential to do this is already apparent in West’s paper. In the graphs it presents that plot the performance of individual cities against the predictions of urban scaling laws, the performance of every city varies slightly from the law. Some cities outperform, and some underperform. That’s exactly what we should expect when comparing real data to an analysis of this sort. Whilst the importance of these variations in the context of West’s work is hotly contested, both in biology and in cities, personally I think they are crucial.

In my view, such variations suggest that the best way to interpret the urban scaling laws that Professor West discovered is as a challenge: they set the bar that cities should try to beat.

Cities everywhere are already exploring innovative, sustainable ways to create improvements in the performance of their social, economic and environmental systems. Examples include:

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

In all of those cases, cities have used technology effectively to disrupt and transform the behaviour of urban systems. They have all lifted at least some elements of performance above the bar set by urban scaling laws. There are many more examples in cities across the world. In fact, this process has been taking place continuously for as long as cities have existed – see, for example, the recent Centre for Cities report on the development and performance of cities in the UK throughout the 20th Century.

That report contains a specific challenge for Birmingham, my home city. It shows that in the first part of the 20th Century, Birmingham outperformed many UK cities and became prosperous and successful because of the diversity of its industries – famously expressed as the “city of a thousand trades”. In the latter part of the Century, however, as Birmingham became more dependent on an automotive industry that subsequently declined, the city lost a lot of ground. Birmingham is undertaking some exciting regenerative initiatives at present – such as the City Deal that increases it’s financial independence from Central Government; the launch of a Green Commission; and investments in ultra-fast broadband infrastructure. They are vitally important in order for the city to re-create a more vibrant, diverse, innovative and successful economy.

As cities everywhere emulate successful innovations, though, they will of course reset the bar of expected performance. Cities that wish to consistently outperform others will need to constantly generate new innovations.

This is where I’ll bring in another idea from physics – the concept of a phase change. A phase change occurs when a system passes a tipping point and suddenly switches from one type of behaviour to another. This is what happens when the temperature of water in a kettle rises from 98 to 99 to 100 degrees Centigrade and water – which is heavy and stays in the bottom of the kettle – changes to steam – which is light and rises out of the kettle’s spout. The “phase change” in this example is the transformation of a volume of water from a liquid to a gas through the process of boiling.

So the big question is: as we change the way that city systems behave, will we eventually encounter a phase change that breaks West’s fundamental finding that the largest cities create the most value most efficiently? For example, will we find new technologies for communication and collaboration that enable networks of people spread across thousands of miles of countryside or ocean to be as efficiently creative as the dense networks of people living in megacities?

I certainly hope so; because unless we can break the link between the size and the success of cities, I worry that the trend towards larger and larger cities and increasing global population will continue and eventually reach levels that will be difficult or impossible to maintain. West apparently agrees; in an interview with the New York Times, which provides an excellent review of his work, he stated that “The only thing that stops the superlinear equations is when we run out of something we need. And so the growth slows down. If nothing else changes, the system will eventually start to collapse.”

But I’m an optimist; so I look forward to the amazing innovations we’re all going to create that will break the laws of urban scaling and offer us a more attractive and sustainable future. It’s incredibly important that we find them.

(I’d like to think Dr. Pam Waddell, the Director of Birmingham Science City, for her helpful comments during my preparation of this post).

How cities can exploit the Information Revolution

(This post was first published as part of the “Growth Factory” report from the thinktank TLG Lab).

(Graphic of New York’s ethnic diversity from Eric Fischer)

Cities and regions in the UK face ever-increasing economic, social and environmental challenges. They compete for investment in what is now a single global economy. Demographics are changing with more than 90% of the population now living in urban areas, and where the number of people aged over 65 will double to 19 million by 2050. The resources we consume are becoming more expensive, with cities especially vulnerable to disruptions in supply.

The concept of “Smarter systems” has captured the imagination of experts as an approach to turn these challenges into opportunities for more sustainable economic and social growth; particularly in cities, where most of us live and work. Smarter systems – in cities, transportation, government and industry –can analyse the vast amounts of data being generated around us to help make more informed decisions, operate more efficiently or even predict the future.

These systems enable city planners around the world to design urban environments that promote safety, community vitality and economic growth. They can bring real-time information together from city transportation, social media, emergency services and leisure facilities to better enable cities, such as Rio de Janeiro, to manage major public events. They can enable transport systems to better manage traffic flow and reduce congestion, as in Singapore. They can stimulate economic growth by enabling small businesses to better compete for business in collaboration with regional trading partners, in systems such as that operated by the University of Warwick.

Government policies such as Open Data, personal care budgets and open public services will dramatically increase the information available to citizens to help them take well-informed decisions. This information will be rich, complex and associated with caveats and conditions. Making it usable by the broad population is an immense challenge which will not be addressed by technology alone. Data needs not only to be made available, but understandable so that it can inform better decision-making.

Where does Smarter city data come from?

Raw data for Smarter systems is derived from three sources: the city’s inhabitants, existing IT systems and readings from the physical environment.

Information from people has become more accessible with the continued spread of connected mobile devices, such as smartphones. Open Street Map, for example, provides a global mapping information service sourced from the activities of volunteers with portable satellite navigation devices. However, the quality and availability of crowd-sourced information depends on the availability and resources of volunteers, who cannot be held accountable for whether information is accurate, complete or up-to-date.

It is also important to understand data ownership and the associated privacy concerns. There is a difference between data freely and knowingly contributed by an individual for a specific purpose and information created as a side-effect of their activity – for example, the record of a person’s movements created by the GPS sensor in their smartphone.

The Open Data movement, supported by central government, will dramatically increase the availability of data from public systems. For example, efforts are underway to make NHS healthcare data available, with appropriate security measures, to Life Sciences organisations to reinforce the UK’s pre-eminent position in drug discovery research. However, the infrastructure required to make large volumes of data widely and rapidly available in a usable form will not be created for free. Until their cost is included in future government procurements – or until commercial systems of funding are created – then much data will likely only be made open on a more limited “best efforts” basis.

Furthermore, not all city data is held by public bodies. Many transportation and utility systems are owned and operated by the private sector, and it is not generally established what information they should make available, and how. Many Smarter city systems that use data from such sources are private partnerships rather than open systems.

Meanwhile, certain kinds of data are becoming far more accessible through the advancing ability of computer systems to understand human language. IBM’s Watson computer demonstrated this recently by competing and winning against world champions in the American television quiz show, Jeopardy! Wellpoint is using this kind of technology to draw insight from medical information held in similar forms. Its aim is to better tackle diseases such as cancer by empowering physicians to rapidly evaluate potential diagnoses and explore the latest supporting medical evidence. Similar technology can draw insight from case notes in social care systems, as Medway Youth Trust is doing, or from the reports of engineers maintaining roads, sewers, and other city systems.

An early “mashup” application using open data from Chicago’s police force

Information is also becoming more readily available from the physical environment. In Galway Bay, a network of underwater microphones is connected to a system that can identify and locate the sounds of dolphins and porpoises. Their location provides a dynamic indication of which parts of the Bay have the cleanest water. That information is made available to companies in the Bay to allow them to control their discharges of water; and to the fishing and leisure industries who are dependent on marine life. This Open Data approach is being used by cities across the world such as Dublin, Chicago and London as a resource for citizens and businesses.

Whilst advances in technology have lowered the cost of generating information from physical environments, challenges remain. From the perspective of a mobile telephone user, much of the UK has signal coverage. However, telephones are used one metre or more above ground level; at ground level, where many parts of our transport and utility infrastructures are located, coverage is much poorer. Additionally, mobile transmitters and receivers are relatively expensive and power-hungry. Cheaper, lower power technologies are needed to improve coverage, such as the “Weightless” standard being developed to use transmission bandwidth no-longer needed by analogue television.

Using and combining data appropriately

In order to make information from multiple sources available appropriately and usefully, several issues need to be tackled.

When computer systems are used to analyse information and take decisions, then the data formats and protocols used by those systems need to be matched. Information as simple as locations and dates may need to be converted between formats. At an engineering level, the protocols used to transmit data across cities using wired or wireless communications behave differently and require systems that integrate them.

The meaning of information from related sources also needs to be understood and adapted to context. Citizens who go shopping in wheelchairs need to know how to get between car-parks and shops with lifts, accessible public toilets and cash points. However, the computer systems of the organisations who own those facilities will encode the information separately, in ways that support their efficient management, not that support journey-planning between them.

The City of Portland in Oregon has gone further in a project to understand how information from systems across the city is related. They are now able to better predict the impact that key decisions will have on the entire city, years in advance.

Privacy and ownership of data may affect its subsequent use, often with terms and conditions in place for governing its access. Furthermore, safeguards are required to ensure that sensitive information cannot be inferred from a combination of sources. For example the location of a safe house or shelter being identified from building usage, building ownership and /or information concerning taxi journeys by the employees of particular council agencies.

The human dimension

Smarter systems will only succeed in improving cities if there is wide consumer engagement. To be of value, information will likely need to be timely and presented in a manner appropriate to consumer context. Individual behaviour will only change where personal value is derived as a result of new information being presented – a saving in time or money, or access to something of value to their family.

(Photo of traffic in Dhaka, Bangladesh, from Joisey Showa)

Many cities are experimenting with technologies that predict the future build up of traffic, by comparing real-time measurements to databases of past patterns of traffic flow. In Stockholm, this information is used by a road-use charging system that supports variable pricing. In California, commuters in a pilot project were given personalised predictions of their commuting time each day. Both systems encourage individuals to make choices based on new information.

Utility providers are exploring how information from smart meters can encourage water and energy users to change behaviour. A recent study in Dubuque, Iowa, showed that when householders were shown how their water usage compared to the average for their neighbours, they became better at conserving water – by fixing leaks, or using domestic appliances more efficiently. Skills across artistic and engineering disciplines are helping us understand how this type of information can be communicated more effectively. Many people will not want to study figures and charts on a smart meter or website; instead “ambient” information sources may be more effective – such as a glow-globe that changes colour from green to orange to red depending on household electricity use.

Systems that improve the sustainability of cities could also affect economic development. Lowering congestion through Smarter transportation schemes can improve productivity by reducing time lost by workers delayed by traffic. By making information and educational resources widely available, Smarter systems could improve access to opportunity across city communities. A city with vibrant communities of well-informed citizens may appear a more forward-looking and attractive place to live for educated professionals and, in turn, for businesses considering relocation. New York has improved its attractiveness since the 1970s by lowering the fear of crime. One of its tools is a “real-time crime centre” that brings information together from across the city in order to better react to crime and public order incidents. The system can even help to prevent crime by intelligently deploying police resources to the areas most likely to experience incidents based on past patterns of activity – on days with similar weather, transportation conditions or public events.

Success in delivering against these broader objectives is much more likely to be achieved where the cities themselves are more clearly accountable for them.

So where do we start?

Investments in Smarter systems often cut across organisations and budgets and many have objectives that are macro-economic, social and environmental, as well as financial. As such, they challenge existing accounting mechanisms. Whilst central government and the financial markets offer new investment solutions such as ethical funds, social impact bonds and city deals, so far these have not been used to fund the majority of Smarter solutions – many of which are supported by research programmes. The Technology Strategy Board’s investment in areas such as “Future Cities” and the “Connected Digital Economy” will provide a tremendous boost, but there is much to be done to assist cities in using new investment sources to fund Smarter initiatives – or to develop sustainable commercial or social-enterprise business models to deliver them.

Although progress can be driven by strong leadership, the issues of governance and fragmented budgets will need to be overcome if we are to take full advantage of the benefits technology can bring.

We live in an era of major global challenges – well described in the recent “People and the Planet” report by the Royal Society. At the same time, we have access to powerful new technologies and ideas to address them, such as those proposed by the 100 Academics who contributed essays to the book “The New Optimists”. When we focus those resources on cities, we focus on the structures in which we can have the greatest impact on the most people.

Already many forward-looking cities in the UK such as Sunderland and Birmingham are joining others around the world by investing in Smarter systems. If we can meet the technical, organisational and investment challenges, we will not only provide citizens, businesses and agencies with new choices and exciting opportunities; we’ll also position the UK economy to succeed as the Information Revolution gathers pace.

Virtualisation is bringing us back together

20120605-012840.jpg

(Image by Chris Drumm)

Back in 1953, Isaac Asimov’s “The Caves of Steel” was published, depicting a world of avatars, virtual collaboration and video-conferencing. It took the real world half a century to catch up with him. Asimov was a smart guy.

But he got one thing wrong. Asimov predicted that reliance on these forms of communication would make us terrified of meeting each other in person. Instead, research has shown that social media is often used to identify new and interesting people to meet in real life (see this article from the American Public Broadcasting Service, for example). In fact, this is exactly how I met my wife. More recently, I’ve enjoyed meeting @Sanfire_IA and @NewOptimists, amongst others, firstly on Twitter (go look them up), and then in real life. (In coffee shops, to be precise).

Tim Stonor and Dan Holowack have both written very interesting blog posts recently about the important role cities play in bringing people together, face-to-face, to create and share ideas. It’s the very lifeblood of the economy. (Edward Glaeser’s “Triumph of the City” discusses this topic in great and fascinating length).

The technologies that connect us virtually have a very important role to play in that aspects of our cities. I’ve met recently with people in cities including Birmingham, London and Sunderland who are involved in stimulating innovation and entrepreneurial activity in city economies. They are all passionate about the value that is created when creative people with disparate skills are brought together.

But they were also unanimous in voicing a concern that it’s tremendously difficult to persuade such people to take time away from the businesses they’re spending 60, 80 or 100 hours a week starting and running to meet people they don’t know; on the off-chance that a valuable new business idea will somehow spring into existence.

All of us face that challenge to some degree today. With the explosive growth in the flow of information we’ve experienced over the last 20 years or so, competition for our time and attention is intense. Social media is a significant part of that explosion of course; but it’s also a significant part of the answer.

Within a few minutes, on Freecycle I can find people near me who need what I no longer want; on LandShare I can find people whose untended land can be used to grow food, and on StumbleUpon I can find moments of genius in every domain from places I’d never in a million years have thought to look, but which StumbleUpon’s fuzzy search engine has ensured are nevertheless relevant to me. And then I can get in touch, arrange to meet, and find out more.

(I have deliberately chosen some of these examples, by the way, for their relevance to the efficiency with which natural resources are used to support economic activity. The recent “People and the Planet” report written by an incredible array of international experts on behalf of the Royal Society should leave us in no doubt at all of the importance of that topic).

This morning, I’ll be attending Birmingham’s Social Media cafe following a discussion about innovation in Birmingham in a Linked-In group, to discuss ideas for social business with people who I haven’t met before, but who I will probably soon be following on Twitter. That’s a great example of the interplay between virtual and physical interactions that’s speeding up the process of collaborative innovation and value-creation in cities today.

But it doesn’t stop there. Digitisation and mass customisation are long-standing trends in manufacturing, but technologies such as 3D printing are going to transform custom-manufacturing in the same way that global-sourcing and production line automation relatively recently transformed commodity manufacturing. And as this brilliant article in The Economist argues, the result will probably be to bring manufacturing activity back to be more local to the consumers of the goods being manufactured.

I turned 40 recently; traditionally a landmark that brings a certain degree of questioning of one’s direction in life. I have no such questions. The family that I now have after meeting my wife through social media is the most important part of that; and the privilege of living through these incredibly exciting and transformational times is the icing on the cake. I can’t wait to see where we’ll go next.

The world is at our childrens’ fingertips; and they will change it

(Image by TurkleTom)

Several of my recent posts to this blog have been concerned with two sides of the same coin: the importance of science and technology skills to our societies and economies; and the importance of making technology and information consumable and accessible.

But this is the first time I’m putting those concerns to the test in the very act of writing my blog – which I’m doing using the iPad that arrived 3 days ago.

My last purchase from Apple – a company whose controlling approach to technology and media ecosystems I don’t admire – was a 3rd generation iPod; it’s now so unusually old that I’m often asked if it’s some strange *new* gadget. I was very unimpressed by the speed with which that iPod’s battery deteriorated, and by the impossibility of replacing it. So I needed some considerable persuasion to shell out several hundred pounds on an iPad.

That persuasion came from my 3 year old son. On the (very rare, if you’re my boss reading this) occasions that I work from home, I sometimes share my laptop screen with him. My side has my e-mail on it; his side has Thomas the Tank Engine on YouTube (he gets the better deal). Often when I launch a new window, it pops up on his side of the screen, obscuring whatever’s going on on Sodor. His immediate and instinctive reaction is to touch the screen and try to drag the obstruction out of the way.

(I heard an amazing corollary to this from a contact at Birmingham City Council yesterday – she’s seen her toddler drag her fingers apart on the surface of a paper magazine in an attempt to “zoom” the pictures in it!)

I’ve just written an article that repeats an often quoted though hard to source statistic that 90% of the information that exists in the world today was created (or more accurately recorded) in the last 5 years.

That made me think that: every fact in the world is literally at the fingertips of our children.

You can argue whether that’s literally true; and whether it’s equally true for all the children in the world (it’s clearly not); but there’s a deep and fundamental truth to the insight that suggests: however much we think the technologies we use today have already changed the world, it’s absolutely nothing compared to the utter transformation that will be created by the real “information natives” that our very young children will become.

That’s why I shelled out for an iPad this week. Love Apple or loathe them, they are creating technologies that offer us – if we explore and engage with them – a window into an important part of the future. And if we want to help our children, our schools, our businesses and our cities prepare for that future, then we had better do our best to get to grips with them ourselves.

How will the UK create the skills that the economy of 2020 will need?

(Photo by Orange Tuesday)

I’ve been reading Edward Glaeser’s book “The Triumph of the City” recently. One of his arguments is that the basis of sustainable city economies is the presence of clusters of small, entrepreneurial businesses that constantly co-create new commercial value from technological innovations.

Alan Penn, the Dean of the Bartlett Institute for the Built Environment, made similar comments to me recently. Interestingly, both Alan and Edward Glaesar identified Birmingham, my hometown, as an example of a city with such an innovative, marketplace economy, along with London. They also both identified Manchester as a counter-example of a city overly dependent on commoditised industries and external investment.

Cities are fundamentally important to the UK economy; more than 90% of the UK population lives in urban areas. But many – or perhaps most – UK cities are not well placed to support innovative, marketplace-based, high-technology economies (see my recent post on this topic). For example, e-Skills UK report that less than 20% of people hired into information technology positions in the UK acquired their skills in the education system; and I agree strongly with Seth Godin’s views as expressed by the “Stop Stealing Dreams” manifesto that we need to question and change the fundamental objectives around which our education system is designed.

To create and / or sustain economies capable of organic innovation and growth, cities need a particular mixture of skills: entrepreneurial skills; commercial skills; operational skills; technology skills; and creative skills. The blunt truth is that our education system isn’t structured to deliver those skills to city economies with this objective.

Whilst the opinions I’ve expressed here are personal, I’ll shortly be launching a project at work for my employer IBM to look at the challenges in this space. IBM’s business interest is our need to continue hiring smart, skilled people in the UK; the interest of IBM’s technical community as individuals to commit their time to the project additionally involves personal passion for technology and education.

I’m enormously aware that I’m not the first person to whom these thoughts have occurred; and I know that I and my colleagues in IBM don’t have all the answers.

So if this topic interests you and you’d like to share your insight with the project I’m going to run this year, please let me know. I’d very much appreciate hearing from you.

Open Data isn’t free data

An early mashup using open data from Chicago’s police force

I support the principle of Open Data; and I’ve been creating commercial value from it since at least 2007, when as part of IBM’s Emerging Technologies team I developed scenarios to show how our customers could exploit it using early implementations of “Mashup” technology.

Here’s an example of what we were up to in those days, using alpha code for IBM Mashup Centre to integrate open data from Chicago’s public services with business data from insurance applications running in CICS. CICS is a transaction engine that’s now 43 years old and is used by 90% of Fortune 500 companies. When you take money out of a cashpoint, book an airline seat or renew your home insurance, there’s a decent chance CICS is involved somewhere. So there was (and is) vast economic potential in what we were doing.

But it’s not always straightforward to realise that value. It’s no accident we based our demonstration scenario in Chicago, which has long been at the leading edge of cities promoting Open Data. (It’s well worth catching up with how Chicago’s new CTO John Tolva is driving this agenda forwards, by the way). At the time, many other cities published similar data; but it wasn’t usable in the same way that Chicago’s was. It had been published in the form that was possible, cheaply, rather than in a form that was useful.

My point is: Open Data won’t deliver the value we all want it to unless we answer some hard questions. Such as:

Who will use Open Data, and why?

There are too many Open Data sites that don’t attract users and activity; so the investment in operating them doesn’t result in the creation of new value. That’s a shame; and we should try to understand why it happens. Often, I think it’s because they focus on making as much data as possible available in whatever form it’s in.

The Knight Commission report “The Information Needs of Communities” emphasised instead the need to consult with communities to find out what they need, rather than to publish data in anticipation of innovation. They are now publishing further guidance on implementing their ideas to promote open government.

Obviously, the problem with the extreme of this position is that if we restrict our Open Data efforts to providing only that data which is proven to be required through extensive consultation, we will limit the opportunity for spontaneous innovation. So a balance needs to be found.

How much does open data cost?

My experience building Open Data scenarios for our early Mashup technology taught me that high quality open data in a useable form was very rare. That’s because it’s expensive.

If producing highly usable information from the applications that manage the world’s information was easy or cheap, a good part of the IT industry would disappear overnight (whether you think that would be good or bad: it hasn’t happened). If we want usable data, we’re going to have to find ways and reasons to pay for it.

The cost to public sector organisations of processing Freedom of Information requests will sometimes provide the business case for spending money to open up data, but not always. Recent Government initiatives to make Open Data a criteria of future procurements will bake the cost of it into vendor proposals; but that won’t address the cost of opening up data from existing systems.

Finally, there will be many cases where clear value can be derived from open data; but not by the organisation that bears to cost of creating or distributing it. In order to balance the need for open innovation with the need to flow cost and revenue between organisations in a reasonable way, commercial models such as “freemium” will need to be explored. The “Dublinked” Open Data portal is doing that, for example.

How do we access and use Open Data?

As William Perrin argued recently, we need to think about how Open Data will be used beyond the community of technologists. I’ve blogged before about the need for technology and information to be accessible; and the need for our education system to provide us with the skills to use technology to manipulate and understand information. Those are both big challenges that we won’t overcome any time soon.

Where do we go next?

The potential value of Open Data is too great for us to afford to be negative, cynical or apathetic. Software automation and information technology are changing the way that value is created in the economy (see work on this from Imperial College and McKinsey), and the concept of Open Data is crucial to providing access to that potential across all sectors of society. But we will only realise that value if we find ways to addressing the cost of providing usable information; and to invest in making it accessible.

Acknowledgement: I’d like to thank Simon Whitehouse for discussions leading to this post, and for the link to William Perrin’s article.

Accessibility or Bust

(Photo: “Cable Confusion” by e-magic)

It’s been obvious since the 1990s that the communication and collaboration technologies that have evolved from the internet and mobile telephony are changing our planet – its culture, its environment and its economy. What’s differentiated those who’ve succeeded in applying those technologies from those who’ve failed is their ability to integrate them with society.

By society I mean people and the economy. People in the sense of the consumability and accessibility of technology; and the economy in the sense of adding value to the interactions between people. If technology isn’t consumable and accessible by people, and if it doesn’t add value to their interactions, it won’t be used.

James Watt and Matthew Boulton got this absolutely right in their industrial and commercial exploitation of the steam engine, which Jenny Uglow argued in her brilliant book “The Lunar Men” was the catalyst for the Industrial Revolution. Reuters got it right when they started a business using one of the original low-latency messaging technologies to distribute news around the world faster than anyone else – carrier pigeons.

We’re living through an era of acute financial, demographic and environmental pressures that we expect technology to rescue us from. The Internet of Things and Open Data will make information available to anyone, anytime to take better decisions, and use resources more efficiently. Internet entrepreneurs will continue to create innovative new business models. Cities everywhere will build digital industries to drive economic growth. The cost of transactions in public service and commerce will fall as delivery becomes “digital by default”.

Or will they?

People can only use information to take better decisions if they understand that information.

Take the transformation to open, digital, public services and personal budgets, for example, in UK public services. If individuals are to choose effectively which care services to purchase with their care budgets, then they need to be presented with comprehensible information that describes the range of services available to them. They need information describing what the services do; the quality of service outcomes and delivery; and who the provider of the service is. They need information describing who measures service quality, and how. They need information that describes whether they are eligible for the service, how much it costs, how to access it, and how to complain if something goes wrong. And that’s just for starters.

This is starting to sound like an awful lot of complicated information. Because we’re talking about social care, it needs to be presented to vulnerable people, who may have difficulty understanding it, and may not be able or willing to use digital technology.

Solving our problems using technology is not about Open Data, Open Source, or Agile Development or supporting the nation’s technology SMEs. All of those things are important, but they’re not enough. We need an acceleration of the rollout of broadband connectivity; we need to look at whether channels such as digital television and mobile can be used effectively; we need a really effective network of “living labs” to explore how people can interact effectively with these technologies; and we need to examine indirect user interactions with digital services, where a carer, a friend or a family member uses technology on behalf of someone else.

I’m exploring some of these issues in Sunderland, where the city has invested in broadband connectivity, Cloud computing, and a network of 39 “e-Village Halls” (see short articles on the Council’s website here  and here) which provide access to online information and transactions from community and neighbourhood centres in a trusted environment where help and advice are available. A few years ago, the Council ran a scheme called the “Let’s Go” Card where more than 2500 disadvantaged young people were given a smartcard with £33 a month to spend on leisure and educational activities that could be booked through an online portal. Many of the people in the scheme didn’t have direct access to the internet themselves; but they could get it through friends. The scheme was a huge success, with 94% of the eligible young people taking part.

The TSB’s Creative Industries KTN has looked recently at applying their expertise to the consumability of information provided by Smart Meters and other “Internet of Things” technologies; and I know of some other high-profile organisations who are developing similar plans. They’re starting to draw many private sector companies and Universities into their activities, and I think the results will be fascinating.

IBM’s own Andy Stanford-Clark has been interested in this subject for a while, and has explored the concept of ambient information interfaces which communicate information about domestic energy use in a non-technical way. And the NHS in the West Midlands is exploring effective ways to communicate healthcare information within a community of patients and employees through the NHS Local site. They have engaged a television production company, Maverick Television, to design the site using their expertise in communicating through technology. I hope that all of these initiatives will contribute to our ability to design smarter, digital city systems that we can all engage effectively in.

For me, this is the real shape of things to come. There’s been a lot of focus recently on improving the teaching of technology skills in the UK economy. But as I commented recently on this blog, to develop technology with real societal impact, we need to focus on a broader combination of technology, information, scientific, creative and entrepreneurial skills.

To put my money where my mouth is, I’m hoping to start a study project soon to explore that idea in more detail and create some recommendations for doing things differently. I’d be delighted to hear from anyone who’s interested in taking part.

Who will be the next generation of technology millionaires?

(Image: “IT is innovation” by Frank Allan Hansen)

A few years ago I attended a dinner debate hosted by the British Computer Society about the future of technology careers in the UK. At the time, I’d recently written a report for IBM UK on the subject. The common motivation was to explore the effect of globalisation on the UK’s IT industry.

Despite the continuing emergence of high quality technology industries around the world, the local demand for technology skills in the UK was then, and is now, increasing. The secret to understanding the seeming contradiction is twofold.

Firstly, consider which specific skills are required, and why. To cut a long story short, the ones that are needed on-shore in countries with high wages such as the UK are the ones most closely tied to agile innovation in local economic and cultural markets, or to the operation of critical infrastructures (such as water, roads and energy) or operations (such as banking and law enforcement).

Secondly, the more fundamental point is that we’re living through an Information Revolution that is increasing in pace and impact. That means the demand for science, technology, mathematics and information skills is going through the roof across the board. As  evidence, consider this article from McKinsey on the hidden “Information Economy”; or the claim that 90% of the information in the world was created in the last two years (widely referenced, e.g. by this article in Forbes); or that IBM now employs more mathematics PhD holders than any other organisation in the world.

At the BCS debate, a consultant from Capgemini introduced the evening by describing his meeting that morning with a group of London-based internet entrepreneurs. These people were young (20-25), successful (owning and running businesses worth £millions), and fiercely technology literate.

Today, I wonder if the same meeting would be held with internet entrepreneurs? In ten years time, I certainly don’t think it will be – they’ll be genetic engineers, nano-technologists, or experts in some field we can’t imagine yet. Of course, there are already many early entrepreneurs exploring those fields, as was shown in Adam Rutherford’s recent BBC Horizon documentary “Playing God”  (see this video or this review).

I’ve blogged recently about the importance of skills, education and localism to the future of our cities’ and country’s economies. This leads me to believe that more important than addressing the UK’s shortfall in IT skills (as reported by e-Skills last year) is understanding how to systematically integrate the teaching of technology, science, creative and business skills across schools, universities and vocational education. Further, that needs to be done in a way that’s responsive to the changes that will come to the sciences and technologies that have the most power to compliment the unique economy, geography and culture of the British isles.

This is already a problem for the UK economy. The e-Skills report found that UK businesses are nearly 10% less productive than US ones; and that 80% of that gap is down to less effective use of technology. Their research predicts that closing the technology gap could contribute £50bn to the UK economy over 5-7 years. But their finding that the British Education system provides less than 20% of the technology skills we need today means that closing the gap will be hard.

As the information revolution proceeds, the problem will get worse. And unless we do something about it in an enlightened way that recognises that the science and technology skills we’ll need in 10 years time are not the IT skills that are familiar to us today, we’ll fail to address it.

I was born in 1970; for me, the Tandy TRS80 computer my family bought in 1980 was a technological marvel, with its 16k RAM and graphic resolution of 128×48 pixels (all of them green). Today, my 3 year old son is growing up with a high resolution smartphone touchscreen as an unremarkable part of his world. By the time he’s of working age, the world will be unrecognisable – as will the skills he’ll require to be successful in it.

From the earliest years, we need to be exciting children in the mixture of creativity; abstract thinking and modelling; mathematics, technology, art and entrepreneurialism that are apparent now in such forums as TED. (www.ted.com). Whatever their interest and acumen, we need to give them the opportunity to find their own niche in that range of cross-disciplinary skills that will be economically valuable in the future. If we don’t, they won’t be ready to find jobs in the industries of the future when the computer programming industry, and others as we know them today, disappear.

The need for technology and mathematical skills in a Smarter Planet with Open Data

In amongst all the great discussions of Smarter Water, Smarter Transportation, Open Data and other themes at this week’s Science of Smarter Cities Colloquium in IBM’s new Research Lab in Dublin, an interesting theme has emerged that’s been on my mind for some time.

Many discussions have focussed on the huge importance of processing, analysis and acting on data and information in the Smarter Planet that’s gradually emerging around us as more and more of the physical world is instrumented, interconnected and automated. Imperial College’s work on disruptive business platforms includes the new commercial opportunities – some of them highly disruptive – that this information is making possible. And McKinsey recently wrote a fascinating paper on a similar subject – the emerging “Information Economy”.

A vital consequence of this is renewed – or even wholly new – demand for the skills required to manipulate and understand information. I’m talking about mathematics, statistics and computer programming here, amongst others. Unless it’s prepared by a numerate communication expert, data is often very difficult to understand and interpret. And communication experts may also have their own agenda in determining how they prepare data. And quite simply, we need more people able to undertake that sort of work – people with mathematical and technical skills. Some of the speakers from transport organisations at the colloquium this week have spoken directly of needing more of those skills.

The problem is that in the UK, we’re not producing enough of them. Google’s Chairman Eric Schmidt recently lambasted the British Education system for not producing enough computer programmers to feed demand in the creative industries vital for economic growth; and the recent Nesta report on the UK’s computer gaming industry cited the same issue as a reason for that industry’s recent decline in the global market.

City leaders understand this; Hanna Zdanowska, the Mayor of Lodz in Poland, spoke this morning of the importance of young skilled people to city economies, particularly as european populations age. (Lodz have amazing plans for regenerating their physical infrastructure and optimising their city systems, by the way, it was a great talk).

So what can we do about this? In yesterday’s Open Data discussion, Christopher Gutteridge, who’s behind Southampton University’s Open Data programme, said that we needed to encourage more “playful coding”. I think that phrase hit the nail on the head.

Our world is at the stage where technologies that can be manipulated by any human being who learns the basics of computing programming are becoming terrifically powerful. At the same time, the information that those technologies control is the lifeblood of our economy and society. For us to educate people without giving them the ability to participate in that system is surely a terrible folly for our children and our economy.

A fellow visiting academic at the University of Warwick, Jonnie Turpie who’s the Digital Media Director of Maverick TV, introduced me recently to the Birmingham Ormiston Academy. BOA is a new school that’s intended to teach creative and digital arts by exposing young people directly to small enterprises in that industry. I think it’s a great idea, and an example of the sort of way we could teach young people the skills to exploit information and technology in a way that’s exciting, challenging – and directly builds the skills we will need for the future.

%d bloggers like this: