Reclaiming the “Smart” agenda for fair human outcomes enabled by technology

(Lucie & Simon’s “Silent World“, a series of photographs of cities from which almost all trace of people has been removed.)

Over the last 5 years, I’ve often used this blog to explore definitions of what a “Smart City” is. The theme that’s dominated my thinking is the need to synthesise human, urban and technology perspectives on cities and our experience of them.

The challenge with attempting such a broad synthesis within a succinct definition is that you end up with a very high-level, conceptual definition – one that might be intellectually true, but that does a very poor job of explaining to the wider world what a Smart City is, and why it’s important.

We need a simple, concise definition of Smart Cities that ordinary people can identify with. To create it, we need to reclaim the “Smart” concept from technologies such as analytics, the Internet of Things and Big Data, and return to it’s original meaning – using the increasingly ubiquitous and accessible communications technology enabled by the internet to give people more control over their own lives, businesses and communities.

I’ve written many articles on this blog about the futile and unsophisticated argument that rages on about whether Smart Cities should be created by “top-down” or “bottom-up” approaches: clearly, anything “Smart” is a subtle harmonisation of both.

In this article, I’d like to tackle an equally unconstructive argument that dominates Smart Cities debates: are Smart Cities defined by the role of technology, or by the desire to create a better future?

It’s clear to me that anything that’s really “Smart” must combine both of those ideas.

In isolation, technology is amoral, inevitable and often banal; but on the other hand a “better future” without a means to achieve it is merely an aspiration, not a practical concept. Why is it “Smart” to want a better future and better cities today in a way that wanting them 10, 20, 50 or 100 years ago wasn’t?

Surely we can agree that focussing our use of a powerful and potentially ubiquitously accessible new technology – one that’s already transforming our world – on making the world a better place, rather than just on making money, is an idea worthy of the “Smart” label?

In making this suggestion, I’m doing nothing more than returning to the origin of the term “Smart” in debates in social science about the “smart communities” that would emerge from our new ability to communicate freely and widely with each other following the emergence of the Internet.

Smart communities are enabled by ubiquitous access to empowering technology

In his 2011 book “Civilization“, Niall Fergusson comments that news of the Indian Mutiny in 1857 took 46 days to reach London, travelling in effect at 3.8 miles an hour – the speed of a brisk walk. By contrast, in January 2009 when US Airways flight 1549 crash landed in the Hudson river, Jim Hanrahan’s message on Twitter communicated the news to the entire world four minutes later; it reached Perth, Australia at more than 170,000 miles an hour.

(In the 1960s, the mobile phone-like “communicators” used in Star Trek were beyond our capability to manufacture; but they were used purely for talking. Similarly, while William Gibson’s 1980s vision of “cyberspace” was predictive and ambitious in its descriptions of virtual environments and data visualisations, the people who inhabited it interacted with each other almost as if normal space has simply been replaced by virtual space: there was no sense of the immense power of social media to enable new connections.)

Social media is the tool that around a quarter of the world’s population now simply uses to stay in touch with friends and family at this incredible speed. Along with mobile devicese-commerce technology and analytics, social media has made it dramatically easier for individuals, communities and small businesses anywhere around the world with the potential to transact with each other to make contact and interact without needing the enormous supply chains and sales and marketing channels that previously made such activity the prerogative of large, multi-national corporations.

It was in a workshop with social scientists at the University of Durham that I first became aware that “Smart” concepts originated in social science in the 1990s and pre-date the famous early large-scale technology infrastructure projects in cities like Masdar and Songdo. The term was coined to describe the potential for new forms of governance, citizen engagement, collective intelligence and stakeholder collaboration enabled by Internet communication technologies. The hope was that new forms of exchange and contract between people and organisations would create a better chance of realising the underlying outcomes we really want – health, happiness and fulfilment:

“The notion of smart community refers to the locus in which such networked intelligence is embedded. A smart community is defined as a geographical area ranging in size from a neighbourhood to a multi-county region within which citizens, organizations and governing institutions deploy and embrace NICT [“New Information and Communication Technologies”] to transform their region in significant and fundamental ways (Eger 1997). In an information age, smart communities are intended to promote job growth, economic development and improve quality of life within the community.”

(Amanda Coe, Gilles Paquet and Jeffrey Roy, “E-Governance and Smart Communities: A Social Learning Challenge“,  Social Science Computer Review, Spring 2001)

But technology’s not Smart unless it’s used to create human value

It’s no surprise that technology companies such as Cisco, Siemens and my former employer IBM came to similar realisations about the transformative potential of digital technology in addressing societal as well as business challenges as technology spread from the back office into the everyday world, leading, for example, to the launch of IBM’s “Smarter Planet” initiative in 2008, a pre-cursor to their “Smarter Cities” programme.

Let’s pause at this point to say: that’s a tremendously exciting idea. A technology company – Apple – recently recorded the largest corporate profit in the history of business. Microsoft’s founder Bill Gates was just recognised as the richest person on the planet. Technology companies make enormous profits, and they feed significant portions of those profits back into research and development. Shouldn’t it be wonderful that some of those resources are invested into exploring how to make cities, communities and people more successful?

(The Dubuque water and energy portal, showing an individual household insight into it's conservation performance; but also a ranking comparing their performance to their near neighbours)

(The Dubuque water and energy portal, showing an individual household insight into it’s conservation performance; but also a ranking comparing their performance to their near neighbours)

IBM, for example, has invested millions of dollars of effort in implementing Smarter Cities projects in cities such as Dubuque through the IBM Research “First of a Kind” programme; and has helped over a hundred cities worldwide develop new initiatives and strategies through the charitable “Smarter Cities Challenge” – advising Kyoto on how to become a more “walkable” city, for instance.

So what’s the problem?

Large technology corporations are often criticised in debates on this topic for their size, profitability and “top-down” approaches – and the local authorities who work with them are often criticised too. In my experience, that criticism is based on an incomplete understanding of the people involved, and how the projects are carried out; and I think it misses the point.

The real question we should be asking is more subtle and important: what happens to the social elements of an idea once it becomes apparent to businesses both large and small that they can make money by selling the technologies that enable it?

I know very well the scientists, engineers and creatives at many of the companies, social enterprises and government bodies – of any size – who are engaged in Smart Cities initiatives. They are almost universally extremely bright, well intentioned and humane, and fully capable of talking with passion about the social and environmental value of their work. “Top-down” is at best a gross simplification of the projects that they carry out, and at worst a gross misrepresentation. Their views dominated the early years of the Smart Cities market as it developed.

But as the market has matured and grown, the focus has switched from research, exploration and development to the marketing and selling of well-defined product and service offerings. Amidst the need to promote those offerings to potential customers, and to differentiate them against competitors, it’s easy for the subtle intertwining of social, economic, environmental and technology ideas to be drowned out.

That’s what led to the unfortunate statement that armed Professor Adam Greenfield with the ammunition he needed to criticise the Smart Cities movement. A technology company that I won’t name made an over-reaching and mis-guided assertion that Smart Cities would create “autonomous, intelligently functioning IT systems that will have perfect knowledge of users’ habits” – blissfully ignoring the fact that such perfection is scientifically and philosophically impossible, not to mention inhuman and undesirable.

As a scientist-turned-technologist-turned-wannabe-urbanist working in this field, and as someone who’s been repeatedly inspired by the people, communities, social scientists, social innovators, urban designers and economists I’ve met over the past 5 years, I started writing this blog to explore and present a more balanced, humane vision of a Smart City.

Zen and the art of Smart Cities: opposites should create beautiful fusions, not arguments

Great books change our lives, and one of many that has changed mine is “Zen and the Art of Motorcycle Maintenance” by Robert M. Pirsig. Pirsig explores the relationship between what he called “romantic” perspectives of life, which focus on emotional meaning and value “quality”, and “rational” perspectives, which focus on the reasons our world behaves in the way that it does and value “truth”. He argues that early Greek philosophers didn’t distinguish between “quality” and “truth”, and that by considering them together we can learn to value things that are simultaneously well-intentioned and well-formed.

This thinking is echoed in Alan Watts’ “The Way of Zen“, in which he comments on the purpose of the relentless practise of technique that is part of the Zen approach to art that:

“The very technique involves the art of artlessness, or what Sabro Hasegawa has called the ‘controlled accident’, so that paintings are formed as naturally as the rocks and grasses which they depict”

(Alan Watts, “The Way of Zen“)

In other words, by working tirelessly to perfect their technique – i.e. their use of tools – artists enable themselves to have “beautiful accidents” when inspiration strikes.

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

Modern technologies from social media to Smartphones to Cloud computing and Open Source software are both incredibly powerful and, compared to any previous generation of technology, incredibly cheap.

If we work hard to ensure that they can be used to access and manipulate the technologies that will inevitably be used to make the operations of city infrastructures and public services more efficient, then they have incredible potential to be a tool for people everywhere to shape the world around them to their own advantage; and for us to collectively create a world that is fairer, healthier and more resilient.

But unless we re-claim the word “Smart” to describe those outcomes, the market will drive our energy and resources in the direction of narrower financial interests.

The financial case for investment in Smart technologies is straightforward: as the costs of smartphones, sensors, analytics, and cloud computing infrastructure reduce rapidly, market dynamics will drive their aggressive adoption to make construction, infrastructure and city services more efficient, and hence make their providers more competitive.

But those market dynamics do not guarantee that we will get everything we want for the future of our cities: efficiency and resilience are not the same as health, happiness and opportunity for every citizen.

So how can we adapt that investment drive to create the outcomes that we want?

Can responsible business create a better world?

Some corporate behaviours promote these outcomes, driven by the voting and buying powers of citizens and consumers. Working for Amey, for example, my customers are usually government organisations who serve an electorate; or private sector companies who are regulated by government bodies. In both cases, there is a direct chain of influence leading from individual citizen needs and perceptions through to the way we operate and deliver our services. If we don’t engage with, respect and meet those needs and expectations, we will not be successful. I can observe that influence at work driving an ethic of service, care and responsibility throughout our business at Amey, and it’s been an inspiration to me since joining the company.

UniLever have taken a similar approach, using consumer desires for sustainable products to link corporate performance to sustainable business practices; and Jared Diamond wrote extensively about successful examples of socially and environmentally sustainable resource extraction businesses, such as Chevron’s sustainable operations in the Kutubu oilfield in Papua New Guinea, in his book “Collapse“. Business models such as social enterprise and the sharing economy also offer great potential to link business success to positive social and environmental outcomes.

But ultimately our investment markets are still strongly focused on financial performance, and reward the businesses that make the most money with the investment that enables them to grow. This is why many social enterprises do not scale-up; and why many of the rapidly growing “sharing economy” businesses currently making the headlines have nothing at all to do with sharing value and resources, but are better understood as a new type of profit-seeking transaction broker.

Responsible business models are a choice made by individual business leaders, and they depend for their successful operation on the daily choices and actions of their employees. They are not a market imperative. For as long as that is the case, we cannot rely on them to improve our world.

Policy, legislation and regulation

I’ve quoted from Jane Jacobs on many occasions on this blog that “private investment shapes cities, but social ideas (and laws) shape private investment”.

It’s a source of huge frustration to me that so much of the activity in the Smart Cities community ignores that so obviously fundamental principle, and focuses instead on the capabilities of technology or on projects funded by research grants.

The recent article reporting a TechUK Smart Cities conference titled “Milton Keynes touted as model city for public sector IoT use” is a good example. Milton Keynes have many Smart City projects underway that are technologically very interesting, but every one of them is funded by a significant grant of funds from a central government department, a research or innovation funding body, or a technology company. Not a single project has been paid for by a sustainable, re-usable business case. Other cities can aspire to emulate Milton Keynes all they want, but they won’t win research and innovation funding to re-deploy solutions that have already been proven.

Research and innovation grants provide the funding that proves for the first time that a new idea is viable. They do not pay for that idea to be enacted across the world.

(Shaleen Meelu and Robert Smith with Hugh Fearnley-Whittingstall at the opening of the Harborne Food School. The School is a Community Interest Company that promotes healthy, sustainable approaches to food through courses offered to local people and organisations)

(Shaleen Meelu and Robert Smith with Hugh Fearnley-Whittingstall at the opening of the Harborne Food School. The School is a Community Interest Company that promotes healthy, sustainable approaches to food through courses offered to local people and organisations)

Policy, legislation and regulation are far more effective tools for enabling widespread change, and are what we should be focussing our energy and attention on.

The Social Value Act requires that public authorities, who spend nearly £200 billion every year on private sector goods and services, procure those services in a way that creates social value – for example, by requiring that national or international service providers engage local small businesses in their supply chains.

In an age in which private companies are investing heavily in the use of digital technology because it provides them with by far the most powerful tool to increase their success, surely local authorities should fulfil their Social Value Act obligations by using procurement criteria to ensure that those companies employ that same tool to create social and environmental improvements in the places and communities in which they operate?

Similary, the British Property Federation estimates that £14 billion is invested in the development of new property in the UK each year. If planning and development frameworks oblige that property developers describe and quantify the social value that will be created by their developments, and how they will use technology do so – as I’ve promoted on this blog for some time now, and as the British Standards Institute have recently recommended – then this enormous level of private sector investment can contribute to investing in technology for public benefit; just as those same frameworks already require investment in public space around commercial buildings.

The London Olympic Legacy Development Corporation have been following this strategy in support of the Greater London Authority’s Smart London Plan. As a result, they are securing private sector investment in deploying technology not only to redevelop the Olympic park using smart infrastructure; but also to ensure that that investment benefits the existing communities and business economies in neighbouring areas.

A Smart manifesto for human outcomes enabled by technology

These business models, policy measures and procurement approaches are bold, difficult measures to enact. They are not as sexy as Smartphones, analytics and self-driving cars. But they are much more important if what we want to achieve are positive human outcomes, not just financially successful technology companies and a continuous stream of research projects.

What will make it more likely that businesses, local governments and national governments adopt them?

Citizen understanding. Consumer understanding. A definition of smart people, places, communities, businesses and governments that makes sense to everyone who votes, works, stands for election, runs for business or buys things. In other words, everyone.

If that definition doesn’t include the objective of making the world a healthier, happier, fairer, more sustainable place for everyone, then it’s not worth the effort. If it doesn’t include harnessing modern technology, then it misses the point that human ingenuity has recently given us a phenomenal new toolkit that make possible things that we’d never previously dreamt of.

I think it should go something like this:

“Smart people, places, communities, businesses and governments work together to use the modern technologies that are changing our world to make it fairer and more sustainable in the process, giving everyone a better chance of a longer, healthier, happier and more fulfilling life.”

I’m not sure that’s a perfect definition; but I think it’s a good start, and I hope that it combines the right realisation that we do have unprecendted tools at our disposal with the right sentiment that what really matters is how we use them.

(I’d like to thank John Murray of Scottish Enterprise for a useful discussion that inspired me to write this article)

6 inconvenient truths about Smart Cities

(When cities forget about people: La Defense, Paris, photographed by Phil Beard)

(I recently took the difficult decision to resign from IBM after nearly 20 years to become IT Director for Smart Data and Technology for Amey, one of the largest infrastructure and services companies in the UK, and a subsidiary of the Ferrovial Group. It’s a really exciting opportunity for me to build a team to create new Smart City services and infrastructures. If you’d like to work in the Smart Cities field, please have a look at the roles I’m hiring for. I’ll be continuing to write the Urban Technologist, and this seemed a good point to share my view of the current state of the Smart Cities movement.)

The last year has shown a huge acceleration of interest and action in the Smart Cities market – in the UK, and around the world. What has long been a topic of interest to technology companies, academics, urban designers and local authorities was covered extensively by mainstream media organisation such as the BBC, the Independent newspaper, New Statesman magazine and marketing magazine The Drum.

But what progress has been made implementing Smart Cities ideas?

In the UK, many local authorities have implemented Open Data portals, usually using Open Source platforms such as CKAN and investing a few £10,000s of resources. These are important first steps for building the ecosystems to share and build new service models using data. Some cities, notably Glasgow and Milton Keynes, have been successful deploying more sophisticated schemes supported by research and innovation grants – though as I pointed out last year, exciting as these initiatives are, research and innovation funds will not scale to support every city in the country.

Further afield, local authorities in Europe, the United States and Asia have constructed more substantial, multi-million Euro / Dollar business cases to invest their own funds in platforms that combine static open data with realtime data from sensors and infrastructure, and which use social media and smartphones to improve engagement between citizens, communities, businesses and both public- and private-sector service providers. The Center for Data Innovation recently wrote a nice summary of two reports explaining the financing vehicles that these cities are using.

This has not happened in the UK yet to the same extent. The highly centralised nature of public sector spending means that cities here have not yet been able to construct such ambitious business cases – Centre for Cities’ report “Outlook for Cities 2014” highlighted this as a general barrier to the UK’s cities carrying out initiatives to improve themselves, and reported that UK cities have autonomy over only about 17% of their funding as compared to an average of 55% across countries represented by the OECD.

As more city deals are signed and the city devolution agenda progresses, this will start to change – but I think that will still take a long time to happen.

(The London Underground is just one example of a transport operator using technology to help it operate more efficiently, safely and effectively)

Where similar technology platforms and channels of engagement are nevertheless starting to appear in the UK is through business cases based on efficiencies and increased customer satisfaction for private sector organisations that offer services such as transportation and asset management to cities, citizens and local authorities.

This approach means there’s even more of a need for collaboration between stakeholders in local ecosystems in order to establish and express common objectives – such as resilience, economic growth and social mobility – which can then guide the outcomes of those smart services through policy tools such as procurement practises and planning frameworks. Recent recommendations from the British Standards Institute on the adaptation of city planning policy to enable the Smart City agenda have highlighted the need for such collaboration.

As a consequence of this increased activity, more and more people and organisations of every type are becoming interested in Smart Cities – from oil companies to car manufacturers to politicians. This broadening of interest led to some extraordinary personal experiences for me last year, which included discussing Smart Cities with ex-US Vice President Al Gore (whose investment company Generation IM explores opportunities to invest in assets, technologies and developments that promote sustainability) and very briefly with the UK’s Princess Anne, a supporter of a leadership training scheme that will focus on Smart Cities this year.

But to be honest, I still don’t think we have really understood what a “Smart City” is; why it’s one of the most important concepts of our time; or how we can turn the concept into reality broadly and at scale.

I’ll explore six “inconvenient truths” in this article to describe why I think that’s the case; and what we can do about it:

  1. The “Smart City” isn’t a technology concept; it’s the political challenge of adapting one of the most powerful economic and social forces of our time to the needs of the places where most of us live and work.
  2. Cities won’t get smart if their leaders aren’t involved.
  3. We can’t leave Smart Cities to the market, we need the courage to shape the market.
  4. Smart cities aren’t top down or bottom up. They’re both.
  5. We need to tell honest stories.
  6. No-one will do this for us – we have to act for ourselves.

1. The “Smart City” isn’t a technology concept; it’s the political challenge of adapting one of the most powerful economic and social forces of our time to the needs of the places where most of us live and work

(Photograph of Macau in the evening by Michael Jenkin illustrating some the great complexity of cities: economic growth, social inequality and pollution)

One topic that’s endlessly revisited as more and more people encounter and consider the idea of a Smart City is just how we define that idea. The best definition I thought I had developed is this, updated slightly from the article “7 Steps to a Smarter City“:

A Smart City systematically creates and encourages innovations in city systems that are enabled by technology; that change the relationships between the creation of economic and social value and the consumption of resources; and that contribute to achieving a vision and clear objectives that are supported by a broad and active collaboration amongst city stakeholders.

But such definitions are contentious. Most obviously there’s the basic issue of whether “smart” implies a central role for digital technology – every technology company takes this approach, of course – or whether it’s simply about being more creative in the way that we manipulate the resources around us to achieve the outcomes we desire, whether that involves digital technology or not.

More broadly, a “city” is such a terrifically broad, complex and multi-disciplinary entity – and one whose behaviour is the aggregate of the millions of individual behaviours of its inhabitants, both enabled and constrained by the environment they experience – that it’s pretty much impossible to create any concise definition without missing out something important.

And of course those who live or work in towns and rural areas raise the challenge that limiting the discussion to “cities” omits important stakeholders from discussions about our future – as do those concerned with the national infrastructures that are not located wholly in cities, but without which neither cities nor any other habitations could survive as they do today.

I don’t think we’ll ever achieve a formal, functional definition of a “Smart City” that everyone will agree to. Much as the popularity of the term “Web 2.0″ between (roughly) 2003 and 2010 marked the period in time when interest in the internet re-emerged following the “dot com crash“, rather than defining a specific architecture or group of technologies, I think our interest in “Smart Cities” is best understood as the consequence of a period in history in which a large number of people became aware of – and convinced by – a set of inter-related trends:

In this context, it’s less useful to attempt to precisely define the concept of a smart city, and more important to encourage and enable each of us – every community, city, government and organisation – to develop our own understanding of the changes needed to overcome the challenges and take the opportunities before us, and of the rapidly evolving role of technology in doing so.

Why is it so important that we do that?

In their report “Cities Outlook 1901“, Centre for Cities explored the previous century of urban development in the UK, examining why at various times some cities thrived and some did not. They concluded that the single most important influence on the success of cities was their ability to provide their citizens with the right skills and opportunities to find employment, as the skills required in the economy changed as technology evolved.

The challenges faced by cities and their residents in this century will be unlike any we have faced before; and technology is changing more quickly, and becoming more powerful, than it ever has before. Creating “Smart Cities” involves taking the right political, economic, social and engineering approaches to meeting those challenges.

Cities that do so will be successful. Cities that don’t, won’t be. That is the digital divide of the 21st Century, and for everyone’s sake, I hope we are all on the right side of it.

2. Cities won’t get smart if their leaders aren’t involved

(The Sunderland Software Centre, a multi-£million new technology startup incubation facility in Sunderland’s city centre. The Centre is supported by a unique programme of events and mentoring delivered by IBM’s Academy of Technology, and arising from Sunderland’s Smart City strategy)

Let me tell a short tale of two cities and their Smart transformations.

For a long time I’ve written occasional articles on this blog about Sunderland, a city whose leaders, people and social entrepreneurs have inspired me. Sunderland is one of the very few cities in the UK who have spent significant sums of their own money on Smart City projects and supporting technologies, justified by well-constructed business cases. They have publicised investments of well over £10 million, most recently including their visionary “City Intelligence Hub” initiative.

The seeds of the Intelligence Hub idea were apparent when I first worked with the Council, as can be seen from an article written at the time by the Council’s Chief Executive, Dave Smith, for the Guardian’s Local Government Network Blog, explaining why data and Open Data are crucial to the future of effective, transparent public services.

It is no coincidence at all that one of the cities that has been boldest in investing in technology to support its economic, social and environmental objectives has a Chief Executive who shows belief, leadership and engagement in the ideas of Smart Cities.

Milton Keynes have approached their Smart City agenda in a different way. Rather than making significant investments themselves to procure solutions, they have succeeded in attracting enormous investments from technology companies, universities and innovation bodies to develop and test new solutions in the city.

It is similarly no coincidence that – like Bristol, London and Glasgow, to name just three more – Milton Keynes Council have senior leadership figures – initially the then Chief Executive, Dave Hill, followed by Director of Strategy, Geoff Snelson – who regularly attend Smart Cities conferences and government bodies, and who actively convene Smart Cities collaborations. Their very visible presence demonstrates their belief in the importance of Smart City approaches to those organisations seeking to invest in developing them.

A strategy to transform the operations of a local authority (or any other organisation) using technology, and to re-invest the savings achieved by doing so into new services and initiatives that create economic growth, social mobility and resilience is not going to succeed without direct Executive leadership. Similarly, technology vendors, service providers and research funding bodies are most attracted to invest in developing new ideas and capabilities in cities whose most senior leaders are directly seeking them – they all need the outcomes of their investment to achieve real change, and it’s only through the leaders that such change will happen.

For the most part, where this level of leadership is not engaged I have not seen cities create business cases and issue procurements for Smart City solutions, and I have not seen them be successful winning research and innovation investments.

Finally, let’s be really clear about what most of those city leaders need to do: they need to follow Sunderland’s lead, not Milton Keynes’s.

The research and innovation funding from the EU and the UK that Milton Keynes has attracted will only fund  projects that explore for the first time the capabilities of new, technology-enabled approaches to urban challenges. Those funding sources will not support the widespread deployment of successful approaches in cities around the UK and around the world.

The vast majority of cities will only benefit from Smart Cities initiatives by financing them through robust business cases based on a combination of financial efficiency and social, environmental or economic value – as Sunderland and some cities outside the UK are already doing.

Cities won’t get smart if their leaders aren’t involved in actively driving their institutions to adopt new business cases and operating models. Those that don’t risk leaving the fate of their cities not to chance; but to “the market”.

3. We can’t leave Smart Cities to the market, we need the courage to shape the market

(Photograph by Martin Deutsche of plans to redevelop Queen Elizabeth Park, site of the 2012 London Olympics. The London Legacy Development’s intention, in support of the Smart London Plan, is “for the Park to become one of the world’s leading digital environments, providing a unique opportunity to showcase how digital technology enhances urban living. The aim is to use the Park as a testing ground for the use of new digital technology in transport systems and energy services.”)

As I wrote in my last article on this blog, as the price of digital technologies such as smartphones, sensors, analytics, open source software and cloud platforms reduces rapidly, market dynamics will drive their aggressive adoption to make construction, infrastructure and city services more efficient, and hence make their providers more competitive.

But those market dynamics do not guarantee that we will get everything we want for the future of our cities: efficiency and resilience are not the same as health, happiness and opportunity for every citizen.

If we are to achieve those objectives, then we need the right policy environment – at national and local level – to augment the business case for efficient, resilient “smart city” infrastructures to ensure that they are deployed in a way that makes them open to access and adaptation by ordinary people, businesses and communities; and so that they create the conditions and environment in which vibrant, fair digital cities grow from the successful innovations of their citizens, communities and businesses in the information economy.

In far too many discussions of Smart Cities I hear the argument that we can’t invest in these ideas because we lack the “normalised evidence base” that proves their benefits. I think that’s the wrong view. There are more than enough qualitative examples and stories that demonstrate that these ideas have real value and can make lives better. If we insist on moving no further until there’s a deeper, broader corpus of quantified evidence, then there’ll be no projects to deliver the evidence – a chicken and egg problem.

Writing in “The Plundered Planet”, the economist Paul Collier asserts that any proposed infrastructure of reasonable novelty and significant scale is effectively so unique – especially when considered in its geographic, political, social and economic context – that an accurate cost/benefit case simply cannot be constructed in advance based on comparable prior examples, because those examples don’t – and never will – exist.

Instead we need policy legislation to recognise the importance of digital infrastructure for cities so that it becomes a “given” in any public service or infrastructure business case, not something that has to be individually justified.

This is not a new idea. For example, the Economist magazine wrote recently about the efforts involved in distributing the benefits of the industrial revolution to society at large rather than solely to business owners and the professional classes.

More specifically to cities, in her seminal 1961 work “The Death and Life of Great American Cities“, Jane Jacobs wrote that:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

The “anti-city images” Jacobs was referring to were the vast urban highways built over the last half century to enable the levels of road traffic thought to be vital to economic growth. Since Jacobs’ time, a growing chorus of urbanists from Bogota’s ex-Mayor Enrique Penalosa to town planner Jeff Speck, architect Jan Gehl and London’s current Mayor Boris Johnson has criticised those infrastructures for the great harm they cause to human life – they create noise, pollution, a physical barrier to walking through our cities, and too often they injure or kill us.

Just as Jacobs reminded us to focus on the nature of individual human life in order to understand how cities should be built, Dan Hill of the Future Cities Catapult wrote as long ago as 2008 on the need to understand similar subtleties in the application of digital technology to cities.

Fifty years after she wrote, we should follow Dan’s example and take Jane Jacobs’ advice.

4. Smart cities aren’t top down or bottom up. They’re both.

(The SMS for Life project uses the cheap and widely used SMS infrastructure – very much the product of “top-down” investment – to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa – a “bottom-up” innovation. Photo by Novartis AG)

In case it wasn’t really clear last time I wrote about it (or the time before that), I am utterly fed up with the unconstructive argument about whether cities are best served by “top down” or “bottom up” thinking.

It’s perfectly obvious that we need both: the “bottom up” creativity through which everyone seeks to create a better life for themselves, their family, their business and their community from the resources available to them; and the top-down policies and planning that – when they work best – seek to distribute resources fairly so that everyone has the opportunity to innovate successfully.

It’s only by creating harmony between these two approaches that we will shape the market to create the cities we want and need.

Over the last few years I’ve been inspired by extraordinary thinkers from many disciplines who have tackled the need for this balance. Some of them are creating new ideas now; others created amazing ideas years or decades ago that are nevertheless imperative today. All of them are worth reading and learning from:

  • The economist E F Schumacher, who identified that investment in the distribution and accessibility of “appropriate technologies” was the best way to stimulate and support development in a way that gave rise to the broadest possible opportunities for people to be successful.
  • Andrew Zolli, head of the philanthropic PopTech foundation, who describes the inspiring innovators who synthesise top-down and bottom-up approaches to achieve phenomenal societal changes as “translational leaders” – people with the ability to engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.
  • Jan Gehl who inspired the “human scale cities” movement by relating the scale of city structures –  from pavements to housing blocks to skyscrapers – to the human senses, and the nature of our lives and movement.
  • And, of course, Jane Jacobs, whose book “The Death and Life of Great American Cities” was the first written in the context of modern society and cities to point out that cities, however vast their physical size and population, can only ever be understood by considering the banal minutiae of the daily lives of ordinary people like you and I – why we walk along this street or that; how well we know our neighbours; how far it is to walk to the nearest school, shop or park; and whether we and our families feel happy and safe.

5. We need to tell honest stories

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

Any “smart city” initiative that successfully uses digital technology to create a financially sustainable social, economic or environmental improvement, in a particular physical place and on behalf of a particular community, must draw together skills from a wide variety of disciplines such as architecture, economics, social science, psychology and technology. Experts from these disciplines use a vast and confusing array of language and terminology; and all of us are frequently guilty of focussing on the concerns of our discipline, rather than communicating the benefits of our work in plain language.

The leaders of city institutions and businesses, who we are asking to take the courageous and forward-looking decisions to invest in our ideas, are understandably not familiar with this torrent of technical terminology, which can easily appear to be (and too often is) jargon; and new ideas that appear to be presented in jargon are unlikely to be trusted.

Simon Giles of Accenture was quoted in an article on UBM’s Future Cities site as saying that the Smart Cities industry has not done a good enough job of selling the benefits of its ideas to a wide audience. Simon is a very smart guy, and I think that’s a challenge we need to face up to, and start to tell better stories about the differences Smart Cities will make to everyday lives.

In the Community Lover’s Guide to Birmingham, for example, Nick Booth describes the way his volunteer-led social media surgeries helped the Central Birmingham Neighbourhood Forum, Brandwood End Cemetery and Jubilee Debt Campaign to benefit from technology.

Another Birmingham initiative, the Northfield Ecocentre, crowdfunded £10,000 to support their “Urban Harvest” project. The funds helped the Ecocentre pick unwanted fruit from trees in domestic gardens in Birmingham and distribute it between volunteers, children’s centres, food bank customers and organisations promoting healthy eating; and to make some of it into jams, pickles and chutneys to raise money so that in future years the initiative can become self-sustaining.

In the village of Chale on the Isle of Wight, a community not served by the national gas power network and with significant levels of fuel poverty, my IBM colleague Andy Stanford-Clark has helped an initiative not only to deploy solar panels and smart meters to generate energy and measure its use by each household; but to co-design with residents how they will use that technology, so that the whole community feels a sense of ownership and inclusion in the initiative. The project has resulted in a significant drop in rent arrears as residents use the technology to reduce their utility bills, in some cases by up to 50 percent. Less obviously, the sense of shared purpose has extended to the creation of a communal allotment area in the village and a successful campaign to halve bus fares to nearby towns.

There are countless other examples. Play Fitnessgamify” exercise to persuade children to get fit, and work very hard to ensure that their products are accessible to children in communities of any level of wealth. Casserole Club use social media to introduce people who can’t cook for themselves to people who are prepared to volunteer to cook for others. The West Midlands Collaborative Commerce Marketplace uses analytics technology to help it’s 10,000 member businesses work together to win more than £4billion in new contracts each year. … and so on.

None of these initiatives are purely to do with technology. But they all use technologies that simply were not available and accessible as recently as a few years ago to achieve outcomes that are important to cities and communities. By understanding how the potential of technology was apparent to the stakeholders in such initiatives, why it was affordable and accessible to them, and how they acquired the skills to exploit it, we can learn how to design Smart Cities in a way that encourages widespread grass-roots, localised innovation.

It’s vital that these stories are honest and grounded in reality. London School of Economics Professor Adam Greenfield rightly criticised technology companies that have overstated (and misunderstood) the potential benefits of Smart Cities ideas by describing “autonomous, intelligently functioning IT systems that will have perfect knowledge of users’ habits”. No-one trusts such hyperbole, and it undermines our efforts to communicate sensibly the very real difference that sympathetically applied technology can make to real lives, businesses, communities and places.
BLANK

6. No-one will do this for us – we have to act for ourselves

Harborne Food School

(The Harborne Food School, started by Shaleen Meelu in 2014, as a community business initiative to promote healthy, sustainable approaches to food)

No single person or organisation can shape the Smart Cities market so that it delivers the cities that we need. Local governments have the ethics of civic duty and care but lack the expertise in financing and business model innovation to convert existing spending schemes into the outcomes they desire. Private sector corporations as institutions are literally amoral and strongly incentivised by the financial markets to maximise profits. Many social enterprises are enormously admirable attempts to fuse these two models, but often lack the resources and ability to scale.

Ultimately, though, all of these organisations are staffed and run by people like you and I; and we can choose to influence their behaviour. Hence my new employer Amey measures itself against a balanced scorecard that measures social, environmental and wellbeing performance in addition to financial profits; and my previous employer IBM has implemented a re-use and recycling system so sophisticated and effective that only 0.3% of the resources and assets that reach the end of their initial useful life are disposed of in landfill or by incineration: the vast majority are re-used, have their components re-manufactured or materials recycled.

Most of us won’t ever be in a position to determine the reporting model or approach to recycling of corporations as large as Amey or IBM. But all of us make choices every day about the products we buy, the organisations we work for, the politicians we vote for, the blog articles we read, share and write and the activities we prioritise our resources on.

Those choices have real effects, and digital technology gives us all the opportunity for our choices to have more impact than ever before. This blog, which costs me nothing to operate other than the time it takes me to write articles, now reaches thousands of readers in over 150 counties. Air BnB took 2 years to accumulate the same number of rentable rooms that it took the Hilton Hotel chain 50 years to build.

It has never been easier to express an opinion widely or create a new way of doing things. That’s exactly what Shaleen Meelu did when she started the Harborne Food School to promote healthier, more sustainable approaches to food, with the support of Birmingham’s Smart City community. It’s an opportunity all of us should seize; and it’s absolutely the best opportunity we have to create better cities and a better world for ourselves.

Smart Digital Urbanism: creating the conditions for equitably distributed opportunity in the digital age

(The sound artists FA-TECH [http://fa-tech.tumblr.com/] improvising in Shoreditch, London. Shoreditch's combination of urban character, cheap rents and proximity to London's business, financial centres and culture led to the emergence of a thriving technology startup community - although that community's success is now driving rents up, challenging some of the characteristics that enabled it.)

(The sound artists FA-TECH improvising in Shoreditch, London. Shoreditch’s combination of urban character, cheap rents and proximity to London’s business, financial centres and culture led to the emergence of a thriving technology startup community – although that community’s success is now driving rents up, challenging some of the characteristics that enabled it.)

(I first learned of the architect Kelvin Campbell‘s concept of “massive/small” just over two years ago – the idea that certain characteristics of policy and the physical environment in cities could encourage “massive amounts of small-scale innovation” to occur. Kelvin recently launched a collaborative campaign to capture ideas, tools and tactics for massive/small “Smart Urbanism“. This is my first contribution to that campaign.)

Over the past 5 years, enormous interest has developed in the potential for digital technologies to contribute to the construction and development of cities, and to the operation of the services and infrastructures that support them. These ideas are often referred to as “Smart Cities” or “Future Cities”.

Indeed, as the price of digital technologies such as smartphones, sensors, analytics, open source software and cloud platforms reduces rapidly, market dynamics will drive their aggressive adoption to make construction, infrastructure and city services more efficient, and hence make their providers more competitive.

But those market dynamics do not guarantee that we will get everything we want for the future of our cities: efficiency and resilience are not the same as health, happiness and opportunity for every citizen.

Is it realistic to ask ourselves whether we can achieve those objectives? Yes, it has to be.

Many of us believe in that possibility, and spend a lot of our efforts finding ways to achieve it. And over the same timeframe that interest in “smart” and “future” cities has emerged, a belief has developed around the world that the governance institutions of cities – local authorities and elected mayors, rather than the governments of nations – are the most likely political entities to implement the policies that lead to a sustainable, resilient future with more equitably distributed economic growth.

Consequently many Mayors and City Councils are considering or implementing legislation and policy frameworks that change the economic and financial context in which construction, infrastructure and city services are deployed and operated. The British Standards Institute recently published guidance on this topic as part of its overall Smart Cities Standards programme.

But whilst in principle these trends and ideas are incredibly exciting in their potential to create better cities, communities, places and lives in the future, in practise many debates about applying them falter on a destructive and misleading argument between “top-down” and “bottom-up” approaches – the same chasm that Smart Urbanism seeks to bridge in the physical world.

Policies and programmes driven by central government organisations or implemented by technology and infrastructure corporations that drive digital technology into large-scale infrastructures and public services are often criticised as crude, “top-down” initiatives that prioritise resilience and efficiency at the expense of the concerns and values of ordinary people, businesses and communities. However, the organic, “bottom-up” innovation that critics of these initatives champion as the better, alternative approach is ineffective at creating equality.

("Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(“Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

“Bottom-up innovation” is what every person, community and business does every day: using our innate creativity to find ways to use the resources and opportunities available to us to make a better life.

But the degree to which we fail to distribute those resources and opportunities equally is illustrated by the stark variation in life expectancy between the richest and poorest areas of cities in the UK: often this variation is as much as 20 years within a single city.

Just as the “design pattern”, a tool invented by a town planner in the 1970s, Christopher Alexander, is probably the single most influential concept that drove the development of the digital technology we all use today, two recent movements in town planning and urban design – “human scale cities” and “smart urbanism” – offer the analogies that can connect “top-down” technology policies and infrastructure with the factors that affect the success of “bottom-up” creativity to create “massive / small” success: future, digital cities that create “massive amounts of small-scale innovation“.

The tools to achieve this are relatively cheap, and the right policy environment could make it fairly straightforward to augment the business case for efficient, resilient “smart city” infrastructures to ensure that they are deployed. They are the digital equivalents of the physical concepts of Smart Urbanism – the use of open grid structures for spatial layouts, and the provision of basic infrastructure components such as street layouts and party walls in areas expected to attract high growth in informal housing. Some will be delivered as a natural consequence of market forces driving technology adoption; but others will only become economically viable when local or national government policies shape the market by requiring them:

  • Broadband, wi-if and 3G / 4G connectivity should be broadly available so that everyone can participate in the digital economy.
  • The data from city services should be made available as Open Data and published through “Application Programming Interfaces” (APIs) so that everybody knows how they work; and can adapt them to their own individual needs.
  • The data and APIs should be made available in the form of Open Standards so that everybody can understand them; and so that the systems that we rely on can work together.
  • The data and APIs should be available to developers working on Cloud Computing platforms with Open Source software so that anyone with a great idea for a new service to offer to people or businesses can get started for free.
  • The technology systems that support the services and infrastructures we rely on should be based on Open Architectures, so that we have freedom to chose which technologies we use, and to change our minds.
  • Governments, institutions, businesses and communities should participate in an open dialogue about the places we live and work in, informed by open data, enabled by social media and smartphones, and enlightened by empathy.

(Casserole Club, a social enterprise developed by FutureGov uses social media to connect people who have difficulty cooking for themselves with others who are happy to cook an extra portion for a neighbour; a great example of a locally-focused “sharing economy” business model which creates financially sustainable social value.)

These principles would encourage good “digital placemaking“: they would help to align the investments that will be made in improving cities using technology with the needs and motivations of the public sector, the private sector, communities and businesses. They would create “Smart Digital Urbanism”: the conditions and environment in which vibrant, fair digital cities grow from the successful innovations of their citizens, communities and businesses in the information economy.

In my new role at Amey, a vast organisation in the UK that delivers public services and operates and supports public infrastructure, I’m leading a set of innovative projects with our customers and technology partners to explore these ideas and to understand how we can collaboratively create economic, social and environmental value for ourselves; for our customers; and for the people, communities and businesses who live in the areas our services support.

It’s a terrifically exciting role; and I’ll soon be hiring a small team of passionate, creative people to help me identify, shape and deliver those projects. I’ll post an update here with details of the skills, experience and characteristics I’m looking for. I hope some of you will find them attractive and get in touch.

From concrete to telepathy: how to build future cities as if people mattered

(An infographic depicting realtime data describing Dublin - the waiting time at road junctions; the location of buses; the number of free parking spaces and bicycles available to hire; and sentiments expressed about the city through social meida)

(An infographic depicting realtime data describing Dublin – the waiting time at road junctions; the location of buses; the number of free parking spaces and bicycles available to hire; and sentiments expressed about the city through social media)

(I was honoured to be asked to speak at TEDxBrum in my home city of Birmingham this weekend. The theme of the event was “DIY” – “the method of building, modifying or repairing something without the aid of experts or professionals”. In other words, how Birmingham’s people, communities and businesses can make their home a better place. This is a rough transcript of my talk).

What might I, a middle-aged, white man paid by a multi-national corporation to be an expert in cities and technology, have to say to Europe’s youngest city, and one of its most ethnically and nationally diverse, about how it should re-create itself “without the aid of experts or professionals”?

Perhaps I could try to claim that I can offer the perspective of one of the world’s earliest “digital natives”. In 1980, at the age of ten, my father bought me one of the world’s first personal computers, a Tandy TRS 80, and taught me how to programme it using “machine code“.

But about two years ago, whilst walking through London to give a talk at a networking event, I was reminded of just how much the world has changed since my childhood.

I found myself walking along Wardour St. in Soho, just off Oxford St., and past a small alley called St. Anne’s Court which brought back tremendous memories for me. In the 1980s I spent all of the money I earned washing pots in a local restaurant in Winchester to travel by train to London every weekend and visit a small shop in a basement in St. Anne’s Court.

I’ve told this story in conference speeches a few times now, perhaps to a total audience of a couple of thousand people. Only once has someone been able to answer the question:

“What was the significance of St. Anne’s Court to the music scene in the UK in the 1980s?”

Here’s the answer:

Shades Records, the shop in the basement, was the only place in the UK that sold the most extreme (and inventive) forms of “thrash metal” and “death metal“, which at the time were emerging from the ashes of punk and the “New Wave of British Heavy Metal” in the late 1970s.

G157 Richard with his Tandy

(Programming my Tandy TRS 80 in Z80 machine code nearly 35 years ago)

The process by which bands like VOIVOD, Coroner and Celtic Frost – who at the time were three 17-year-olds who practised in an old military bunker outside Zurich – managed to connect – without the internet – to the very few people around the world like me who were willing to pay money for their music feels like ancient history now. It was a world of hand-printed “fanzines”, and demo tapes painstakingly copied one at a time, ordered by mail from classified adverts in magazines like Kerrang!

Our world has been utterly transformed in the relatively short time between then and now by the phenomenal ease with which we can exchange information through the internet and social media.

The real digital natives, though, are not even those people who grew up with the internet and social media as part of their everyday world (though those people are surely about to change the world as they enter employment).

They are the very young children like my 6-year-old son, who taught himself at the age of two to use an iPad to access the information that interested him (admittedly, in the form of Thomas the Tank Engine stories on YouTube) before anyone else taught him to read or write, and who can now use programming tools like MIT’s Scratch to control computers vastly more powerful than the one I used as a child.

Their expectations of the world, and of cities like Birmingham, will be like no-one who has ever lived before.

And their ability to use technology will be matched by the phenomenal variety of data available to them to manipulate. As everything from our cars to our boilers to our fridges to our clothing is integrated with connected, digital technology, the “Internet of Things“, in which everything is connected to the internet, is emerging. As a consequence our world, and our cities, are full of data.

(The programme I helped my 6-year old son write using MIT's "Scratch" language to draw a picture of a house)

(The programme I helped my 6-year old son write using MIT’s “Scratch” language to cause a cartoon cat to draw a picture of a house)

My friend the architect Tim Stonor calls the images that we are now able to create, such as the one at the start of this article, “data porn”. The image shows data about Dublin from the Dublinked information sharing partnership: the waiting time at road junctions; the location of buses; the number of free parking spaces and bicycles available to hire; and sentiments expressed about the city through social media.

Tim’s point is that we should concentrate not on creating pretty visualisations; but on the difference we can make to cities by using this data. Through Open Data portals, social media applications, and in many other ways, it unlocks secrets about cities and communities:

  • Who are the 17 year-olds creating today’s most weird and experimental music? (Probably by collaborating digitally from three different bedroom studios on three different continents)
  • Where is the healthiest walking route to school?
  • Is there a local company nearby selling wonderful, oven-ready curries made from local recipes and fresh ingredients?
  • If I set off for work now, will a traffic jam develop to block my way before I get there?

From Dublin to Montpellier to Madrid and around the world my colleagues are helping cities to build 21st-Century infrastructures that harness this data. As technology advances, every road, electricity substation, University building, and supermarket supply chain will exploit it. The business case is easy: we can use data to find ways to operate city services, supply chains and infrastructure more efficiently, and in a way that’s less wasteful of resources and more resilient in the face of a changing climate.

Top-down thinking is not enough

But to what extent will this enormous investment in technology help the people who live and work in cities, and those who visit them, to benefit from the Information Economy that digital technology  and data is creating?

This is a vital question. The ability of digital technology to optimise and automate tasks that were once carried out by people is removing jobs that we have relied on for decades. In order for our society to be based upon a fair and productive economy, we all need to be able to benefit from the new opportunities to work and be successful that are being created by digital technology.

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the city centre before its redevelopment in 2003, by Birmingham City Council)

Too often in the last century, we got this wrong. We used the technologies of the age – concrete, lifts, industrial machinery and cars – to build infrastructures and industries that supported our mass needs for housing, transport, employment and goods; but that literally cut through and isolated the communities that create urban life.

If we make the same mistake by thinking only about digital technology in terms of its ability to create efficiencies, then as citizens, as communities, as small businesses we won’t fully benefit from it.

In contrast, one of the authors of Birmingham’s Big City Plan, the architect Kelvin Campbell, created the concept of “massive / small“. He asked: what are the characteristics of public policy and city infrastructure that create open, adaptable cities for everyone and that thereby give rise to “massive” amounts of “small-scale” innovation?

In order to build 21st Century cities that provide the benefits of digital technology to everyone we need to find the design principles that enable the same “massive / small” innovation to emerge in the Information Economy, in order that we can all use the simple, often free, tools available to us to create our own opportunities.

There are examples we can learn from. Almere in Holland use analytics technology to plan and predict the future development of the city; but they also engage in dialogue with their citizens about the future the city wants. Montpellier in France use digital data to measure the performance of public services; but they also engage online with their citizens in a dialogue about those services and the outcomes they are trying to achieve. The Dutch Water Authority are implementing technology to monitor, automate and optimise an infrastructure on which many cities depend; but making much of the data openly available to communities, businesses, researchers and innovators to explore.

There are many issues of policy, culture, design and technology that we need to get right for this to happen, but the main objectives are clear:

  • The data from city services should be made available as Open Data and through published “Application Programming Interfaces” (APIs) so that everybody knows how they work; and can adapt them to their own individual needs.
  • The data and APIs should be made available in the form of Open Standards so that everybody can understand it; and so that the systems that we rely on can work together.
  • The data and APIs should be available to developers working on Cloud Computing platforms with Open Source software so that anyone with a great idea for a new service to offer to people or businesses can get started for free.
  • The technology systems that support the services and infrastructures we rely on should be based on Open Architectures, so that we have freedom to chose which technologies we use, and to change our minds.
  • Governments, institutions, businesses and communities should participate in an open dialogue, informed by data and enlightened by empathy, about the places we live and work in.

If local authorities and national government create planning policies, procurement practises and legislation that require that public infrastructure, property development and city services provide this openness and accessibility, then the money spent on city infrastructure and services will create cities that are open and adaptable to everyone in a digital age.

Bottom-up innovation is not enough, either

(Coders at work at the Birmingham “Smart Hack”, photographed by Sebastian Lenton)

Not everyone has access to the technology and skills to use this data, of course. But some of the people who do will create the services that others need.

I took part in my first “hackathon” in Birmingham two years ago. A group of people spent a weekend together in 2012 asking themselves: in what way should Birmingham be better? And what can we do about it? Over two days, they wrote an app, “Second Helping”, that connected information about leftover food in the professional kitchens of restaurants and catering services, to soup kitchens that give food to people who don’t have enough.

Second Helping was a great idea; but how do you turn a great idea and an app into a change in the way that food is used in a city?

Hackathons and “civic apps” are great examples of the “bottom-up” creativity that all of us use to create value – innovating with the resources around us to make a better life, run a better business, or live in a stronger community. But “bottom-up” on it’s own isn’t enough.

The result of “bottom-up” innovation at the moment is that life expectancy in the poorest parts of Birmingham is more than 10 years shorter than it is in the richest parts. In London and Glasgow, it’s more than 20 years shorter.

If you’re born in the wrong place, you’re likely to die 10 years younger than someone else born in a different part of the same city. This shocking situation arises from many, complex issues; but one conclusion that it is easy to draw is that the opportunity to innovate successfully is not the same for everyone.

So how do we increase everybody’s chances of success? We need to create the policies, institutions, culture and behaviours that join up the top-down thinking that tends to control the allocation of resources and investment, especially for infrastructure, with the needs of bottom-up innovators everywhere.

Translational co-operation

Harborne Food School

(The Harborne Food School, which will open in the New Year to offer training and events in local and sustainable food)

The Economist magazine reminded us of the importance of those questions in a recent article describing the enormous investments made in public institutions such as schools, libraries and infrastructure in the past in order to distribute the benefits of the Industrial Revolution to society at large rather than concentrate them on behalf of business owners and the professional classes.

But the institutions of the past, such as the schools which to a large degree educated the population for repetitive careers in labour-intensive factories, won’t work for us today. Our world is more complicated and requires a greater degree of localised creativity to be successful. We need institutions that are able to engage with and understand individuals; and that make their resources openly available so that each of us can use them in the way that makes most sense to us. Some public services are starting to respond to this challenge, through the “Open Public Services” agenda; and the provision of Open Data and APIs by public services and infrastructure are part of the response too.

But as Andrew Zolli describes in “Resilience: why things bounce back“, there are both institutional and cultural barriers to engagement and collaboration between city institutions and localised innovation. Zolli describes the change-makers who overcome those barriers as “translational leaders” – people with the ability to engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.

We’re trying to apply that “translational” thinking in Birmingham through the Smart City Alliance, a collaboration between 20 city institutions, businesses and innovators. The idea is to enable conversations about challenges and opportunities in the city, between people, communities, innovators and  the organisations who have resources, from the City Council and public institutions to businesses, entrepreneurs and social enterprises. We try to put people and organisations with challenges or good ideas in touch with other people or organisations with the ability to help them.

This is how we join the “top-down” resources, policies and programmes of city institutions and big companies with the “bottom-up” innovation that creates value in local situations. A lot of the time it’s about listening to people we wouldn’t normally meet.

Partly as a consequence, we’ve continued to explore the ideas about local food that were first raised at the hackathon. Two years later, the Harborne Food School is close to opening as a social enterprise in a redeveloped building on Harborne High Street that had fallen out of use.

The school will be teaching courses that help caterers provide food from sustainable sources, that teach people how to set up and run food businesses, and that help people to adopt diets that prevent or help to manage conditions such as diabetes. The idea has changed since the “Second Helping” app was written, of course; but the spirit of innovation and local value is the same.

Cities that work like magic

So what does all this have to do with telepathy?

The innovations and changes caused by the internet over the last two decades have accelerated as it has made information easier and easier to access and exchange through the advent of technologies such as broadband, mobile devices and social media. But the usefulness of all of those technologies is limited by the tools required to control them – keyboards, mice and touchscreens.

Before long, we won’t need those tools at all.

Three years ago, scientists at the University of Berkely used computers attached to an MRI scanner to recreate moving images from the magnetic field created by the brain of a person inside the scanner watching a film on a pair of goggles. And last year, scientists at the University of Washington used similar technology to allow one of them to move the other’s arm simply by thinking about it. A less sensitive mind-reading technology is already available as a headset from Emotiv, which my colleagues in IBM’s Emerging Technologies team have used to help a paralysed person communicate by thinking directional instructions to a computer.

Telepathy is now technology, and this is just one example of the way that the boundary between our minds, bodies and digital information will disappear over the next decade. As a consequence, our cities and lives will change in ways we’ve never imagined, and some of those changes will happen surprisingly quickly.

I can’t predict what Birmingham will or should be like in the future. As a citizen, I’ll be one of the million or so people who decide that future through our choices and actions. But I can say that the technologies available to us today are the most incredible DIY tools for creating that future that we’ve ever had access to. And relatively quickly technologies like bio-technology, 3D printing and brain/computer interfaces will put even more power in our hands.

As a parent, I get engaged in my son’s exploration of these technologies and help him be digitally aware, creative and responsible. Whenever I can, I help schools, Universities, small businesses or community initiatives to use them, because I might be helping one of IBM’s best future employees or business partners; or just because they’re exciting and worth helping. And as an employee, I try to help my company take decisions that are good for our long term business because they are good for the society that the business operates in.

We can take for granted that all of us, whatever we do, will encounter more and more incredible technologies as time passes. By remembering these very simple things, and remembering them in the hundreds of choices I make every day, I hope that I’ll be using them to play my part in building a better Birmingham, and better cities and communities everywhere.

(Shades Records in St. Anne's Court in the 1980s)

(Shades Records in St. Anne’s Court in the 1980s. You can read about the role it played in the development of the UK’s music culture – and in the lives of its customers – in this article from Thrash Hits;  or this one from Every Record Tells a Story. And if you really want to find out what it was all about, try watching Celtic Frost or VOIVOD in the 1980s!)

11 reasons computers can’t understand or solve our problems without human judgement

(Photo by Matt Gidley)

(Photo by Matt Gidley)

Why data is uncertain, cities are not programmable, and the world is not “algorithmic”.

Many people are not convinced that the Smart Cities movement will result in the use of technology to make places, communities and businesses in cities better. Outside their consumer enjoyment of smartphones, social media and online entertainment – to the degree that they have access to them – they don’t believe that technology or the companies that sell it will improve their lives.

The technology industry itself contributes significantly to this lack of trust. Too often we overstate the benefits of technology, or play down its limitations and the challenges involved in using it well.

Most recently, the idea that traditional processes of government should be replaced by “algorithmic regulation” – the comparison of the outcomes of public systems to desired objectives through the measurement of data, and the automatic adjustment of those systems by algorithms in order to achieve them – has been proposed by Tim O’Reilly and other prominent technologists.

These approaches work in many mechanical and engineering systems – the autopilots that fly planes or the anti-lock braking systems that we rely on to stop our cars. But should we extend them into human realms – how we educate our children or how we rehabilitate convicted criminals?

It’s clearly important to ask whether it would be desirable for our society to adopt such approaches. That is a complex debate, but my personal view is that in most cases the incredible technologies available to us today – and which I write about frequently on this blog – should not be used to take automatic decisions about such issues. They are usually more valuable when they are used to improve the information and insight available to human decision-makers – whether they are politicians, public workers or individual citizens – who are then in a better position to exercise good judgement.

More fundamentally, though, I want to challenge whether “algorithmic regulation” or any other highly deterministic approach to human issues is even possible. Quite simply, it is not.

It is true that our ability to collect, analyse and interpret data about the world has advanced to an astonishing degree in recent years. However, that ability is far from perfect, and strongly established scientific and philosophical principles tell us that it is impossible to definitively measure human outcomes from underlying data in physical or computing systems; and that it is impossible to create algorithmic rules that exactly predict them.

Sometimes automated systems succeed despite these limitations – anti-lock braking technology has become nearly ubiquitous because it is more effective than most human drivers at slowing down cars in a controlled way. But in other cases they create such great uncertainties that we must build in safeguards to account for the very real possibility that insights drawn from data are wrong. I do this every time I leave my home with a small umbrella packed in my bag despite the fact that weather forecasts created using enormous amounts of computing power predict a sunny day.

(No matter how sophisticated computer models of cities become, there are fundamental reasons why they will always be simplifications of reality. It is only by understanding those constraints that we can understand which insights from computer models are valuable, and which may be misleading. Image of Sim City by haljackey)

We can only understand where an “algorithmic” approach can be trusted; where it needs safeguards; and where it is wholly inadequate by understanding these limitations. Some of them are practical, and limited only by the sensitivity of today’s sensors and the power of today’s computers. But others are fundamental laws of physics and limitations of logical systems.

When technology companies assert that Smart Cities can create “autonomous, intelligently functioning IT systems that will have perfect knowledge of users’ habits” (as London School of Economics Professor Adam Greenfield rightly criticised in his book “Against the Smart City”), they are ignoring these challenges.

A recent blog article published by the highly influential magazine Wired recently made similar overstatements: “The Universe is Programmable” argues that we should extend the concept of an “Application Programming Interface (API)” – a facility usually offered by technology systems to allow external computer programmes to control or interact with them – to every aspect of the world, including our own biology.

To compare complex, unpredictable, emergent biological and social systems to the very logical, deterministic world of computer software is at best a dramatic oversimplification. The systems that comprise the human body range from the armies of symbiotic microbes that help us digest food in our stomachs to the consequences of using corn syrup to sweeten food to the cultural pressure associated with “size 0″ celebrities. Many of those systems can’t be well modelled in their own right, let alone deterministically related to each other; let alone formally represented in an accurate, detailed way by technology systems (or even in mathematics).

We should regret and avoid the hubris that leads to the distrust of technology by overstating its capability and failing to recognise its challenges and limitations. That distrust is a barrier that prevents us from achieving the very real benefits that data and technology can bring, and that have been convincingly demonstrated in the past. For example, an enormous contribution to our knowledge of how to treat and prevent disease was made by John Snow who used data to analyse outbreaks of cholera in London in the 19th century. Snow used a map to correlate cases of cholera to the location of communal water pipes, leading to the insight that water-borne germs were responsible for spreading the disease. We wash our hands to prevent diseases spreading through germs in part because of what we would now call the “geospatial data analysis” performed by John Snow.

Many of the insights that we seek from analytic and smart city systems are human in nature, not physical or mathematical – for example identifying when and where to apply social care interventions in order to reduce the occurrence of  emotional domestic abuse. Such questions are complex and uncertain: what is “emotional domestic abuse?” Is it abuse inflicted by a live-in boyfriend, or by an estranged husband who lives separately but makes threatening telephone calls? Does it consist of physical violence or bullying? And what is “bullying”?

IMG_0209-1

(John Snow’s map of cholera outbreaks in 19th century London)

We attempt to create structured, quantitative data about complex human and social issues by using approximations and categorisations; by tolerating ranges and uncertainties in numeric measurements; by making subjective judgements; and by looking for patterns and clusters across different categories of data. Whilst these techniques can be very powerful, just how difficult it is to be sure what these conventions and interpretations should be is illustrated by the controversies that regularly arise around “who knew what, when?” whenever there is a high profile failure in social care or any other public service.

These challenges are not limited to “high level” social, economic and biological systems. In fact, they extend throughout the worlds of physics and chemistry into the basic nature of matter and the universe. They fundamentally limit the degree to which we can measure the world, and our ability to draw insight from that information.

By being aware of these limitations we are able to design systems and practises to use data and technology effectively. We know more about the weather through modelling it using scientific and mathematical algorithms in computers than we would without those techniques; but we don’t expect those forecasts to be entirely accurate. Similarly, supermarkets can use data about past purchases to make sufficiently accurate predictions about future spending patterns to boost their profits, without needing to predict exactly what each individual customer will buy.

We underestimate the limitations and flaws of these approaches at our peril. Whilst Tim O’Reilly cites several automated financial systems as good examples of “algorithmic regulation”, the financial crash of 2008 showed the terrible consequences of the thoroughly inadequate risk management systems used by the world’s financial institutions compared to the complexity of the system that they sought to profit from. The few institutions that realised that market conditions had changed and that their models for risk management were no longer valid relied instead on the expertise of their staff, and avoided the worst affects. Others continued to rely on models that had started to produce increasingly misleading guidance, leading to the recession that we are only now emerging from six years later, and that has damaged countless lives around the world.

Every day in their work, scientists, engineers and statisticians draw conclusions from data and analytics, but they temper those conclusions with an awareness of their limitations and any uncertainties inherent in them. By taking and communicating such a balanced and informed approach to applying similar techniques in cities, we will create more trust in these technologies than by overstating their capabilities.

What follows is a description of some of the scientific, philosophical and practical issues that lead inevitability to uncertainty in data, and to limitations in our ability to draw conclusions from it:

But I’ll finish with an explanation of why we can still draw great value from data and analytics if we are aware of those issues and take them properly into account.

Three reasons why we can’t measure data perfectly

(How Heisenberg’s Uncertainty Principle results from the dual wave/particle nature of matter. Explanation by HyperPhysics at Georgia State University)

1. Heisenberg’s Uncertainty Principle and the fundamental impossibility of knowing everything about anything

Heisenberg’s Uncertainty Principle is a cornerstone of Quantum Mechanics, which, along with General Relativity, is one of the two most fundamental theories scientists use to understand our world. It defines a limit to the precision with which certain pairs of properties of the basic particles which make up the world – such as protons, neutrons and electrons – can be known at the same time. For instance, the more accurately we measure the position of such particles, the more uncertain their speed and direction of movement become.

The explanation of the Uncertainty Principle is subtle, and lies in the strange fact that very small “particles” such as electrons and neutrons also behave like “waves”; and that “waves” like beams of light also behave like very small “particles” called “photons“. But we can use an analogy to understand it.

In order to measure something, we have to interact with it. In everyday life, we do this by using our eyes to measure lightwaves that are created by lightbulbs or the sun and that then reflect off objects in the world around us.

But when we shine light on an object, what we are actually doing is showering it with billions of photons, and observing the way that they scatter. When the object is quite large – a car, a person, or a football – the photons are so small in comparison that they bounce off without affecting it. But when the object is very small – such as an atom – the photons colliding with it are large enough to knock it out of its original position. In other words, measuring the current position of an object involves a collision which causes it to move in a random way.

This analogy isn’t exact; but it conveys the general idea. (For a full explanation, see the figure and link above). Most of the time, we don’t notice the effects of Heisenberg’s Uncertainty Principle because it applies at extremely small scales. But it is perhaps the most fundamental law that asserts that “perfect knowledge” is simply impossible; and it illustrates a wider point that any form of measurement or observation in general affects what is measured or observed. Sometimes the effects are negligible,  but often they are not – if we observe workers in a time and motion study, for example, we need to be careful to understand the effect our presence and observations have on their behaviour.

2. Accuracy, precision, noise, uncertainty and error: why measurements are never fully reliable

Outside the world of Quantum Mechanics, there are more practical issues that limit the accuracy of all measurements and data.

(A measurement of the electrical properties of a superconducting device from my PhD thesis. Theoretically, the behaviour should appear as a smooth, wavy line; but the experimental measurement is affected by noise and interference that cause the signal to become "fuzzy". In this case, the effects of noise and interference - the degree to which the signal appears "fuzzy" - are relatively small relative to the strength of the signal, and the device is usable)

(A measurement of the electrical properties of a superconducting device from my PhD thesis. Theoretically, the behaviour should appear as a smooth, wavy line; but the experimental measurement is affected by noise and interference that cause the signal to become “fuzzy”. In this case, the effects of noise and interference – the degree to which the signal appears “fuzzy” – are relatively small compared to the strength of the signal, and the device is usable)

We live in a “warm” world – roughly 300 degrees Celsius above what scientists call “absolute zero“, the coldest temperature possible. What we experience as warmth is in fact movement: the atoms from which we and our world are made “jiggle about” – they move randomly. When we touch a hot object and feel pain it is because this movement is too violent to bear – it’s like being pricked by billions of tiny pins.

This random movement creates “noise” in every physical system, like the static we hear in analogue radio stations or on poor quality telephone connections.

We also live in a busy world, and this activity leads to other sources of noise. All electronic equipment creates electrical and magnetic fields that spread beyond the equipment itself, and in turn affect other equipment – we can hear this as a buzzing noise when we leave smartphones near radios.

Generally speaking, all measurements are affected by random noise created by heat, vibrations or electrical interference; are limited by the precision and accuracy of the measuring devices we use; and are affected by inconsistencies and errors that arise because it is always impossible to completely separate the measurement we want to make from all other environmental factors.

Scientists, engineers and statisticians are familiar with these challenges, and use techniques developed over the course of more than a century to determine and describe the degree to which they can trust and rely on the measurements they make. They do not claim “perfect knowledge” of anything; on the contrary, they are diligent in describing the unavoidable uncertainty that is inherent in their work.

3. The limitations of measuring the natural world using digital systems

One of the techniques we’ve adopted over the last half century to overcome the effects of noise and to make information easier to process is to convert “analogue” information about the real world (information that varies smoothly) into digital information – i.e. information that is expressed as sequences of zeros and ones in computer systems.

(When analogue signals are amplified, so is the noise that they contain. Digital signals are interpreted using thresholds: above an upper threshold, the signal means “1”, whilst below a lower threshold, the signal means “0”. A long string of “0”s and “1”s can be used to encode the same information as contained in analogue waves. By making the difference between the thresholds large compared to the level of signal noise, digital signals can be recreated to remove noise. Further explanation and image by Science Aid)

This process involves a trade-off between the accuracy with which analogue information is measured and described, and the length of the string of digits required to do so – and hence the amount of computer storage and processing power needed.

This trade-off can be clearly seen in the difference in quality between an internet video viewed on a smartphone over a 3G connection and one viewed on a high definition television using a cable network. Neither video will be affected by the static noise that affects weak analogue television signals, but the limited bandwidth of a 3G connection dramatically limits the clarity and resolution of the image transmitted.

The Nyquist–Shannon sampling theorem defines this trade-off and the limit to the quality that can be achieved in storing and processing digital information created from analogue sources. It determines the quality of digital data that we are able to create about any real-world system – from weather patterns to the location of moving objects to the fidelity of sound and video recordings. As computers and communications networks continue to grow more powerful, the quality of digital information will improve,  but it will never be a perfect representation of the real world.

Three limits to our ability to analyse data and draw insights from it

1. Gödel’s Incompleteness Theorem and the inconsistency of algorithms

Kurt Gödel’s Incompleteness Theorem sets a limit on what can be achieved by any “closed logical system”. Examples of “closed logical systems” include computer programming languages, any system for creating algorithms – and mathematics itself.

We use “closed logical systems” whenever we create insights and conclusions by combining and extrapolating from basic data and facts. This is how all reporting, calculating, business intelligence, “analytics” and “big data” technologies work.

Gödel’s Incompleteness Theorem proves that any closed logical system can be used to create conclusions that  it is not possible to show are true or false using the same system. In other words, whilst computer systems can produce extremely useful information, we cannot rely on them to prove that that information is completely accurate and valid. We have to do that ourselves.

Gödel’s theorem doesn’t stop computer algorithms that have been verified by humans using the scientific method from working; but it does mean that we can’t rely on computers to both generate algorithms and guarantee their validity.

2. The behaviour of many real-world systems can’t be reduced analytically to simple rules

Many systems in the real-world are complex: they cannot be described by simple rules that predict their behaviour based on measurements of their initial conditions.

A simple example is the “three body problem“. Imagine a sun, a planet and a moon all orbiting each other. The movement of these three objects is governed by the force of gravity, which can be described by relatively simple mathematical equations. However, even with just three objects involved, it is not possible to use these equations to directly predict their long-term behaviour – whether they will continue to orbit each other indefinitely, or will eventually collide with each other, or spin off into the distance.

(A computer simulation by Hawk Express of a Belousov–Zhabotinsky reaction,  in which reactions between liquid chemicals create oscillating patterns of colour. The simulation is carried out using “cellular automata” a technique based on a grid of squares which can take different colours. In each “turn” of the simulation, like a turn in a board game, the colour of each square is changed using simple rules based on the colours of adjacent squares. Such simulations have been used to reproduce a variety of real-world phenomena)

As Stephen Wolfram argued in his controversial book “A New Kind of Science” in 2002, we need to take a different approach to understanding such complex systems. Rather than using mathematics and logic to analyse them, we need to simulate them, often using computers to create models of the elements from which complex systems are composed, and the interactions between them. By running simulations based on a large number of starting points and comparing the results to real-world observations, insights into the behaviour of the real-world system can be derived. This is how weather forecasts are created, for example. 

But as we all know, weather forecasts are not always accurate. Simulations are approximations to real-world systems, and their accuracy is restricted by the degree to which digital data can be used to represent a non-digital world. For this reason, conclusions and predictions drawn from simulations are usually “average” or “probable” outcomes for the system as a whole, not precise predictions of the behaviour of the system or any individual element of it. This is why weather forecasts are often wrong; and why they predict likely levels of rain and windspeed rather than the shape and movement of individual clouds.

(Hello)

(A simple and famous example of a computer programme that never stops running because it calls itself. The output continually varies by printing out characters based on random number generation. Image by Prosthetic Knowledge)

3. Some problems can’t be solved by computing machines

If I consider a simple question such as “how many letters are in the word ‘calculation’?”, I can easily convince myself that a computer programme could be written to answer the question; and that it would find the answer within a relatively short amount of time. But some problems are much harder to solve, or can’t even be solved at all.

For example, a “Wang Tile” (see image below) is a square tile formed from four triangles of different colours. Imagine that you have bought a set of tiles of various colour combinations in order to tile a wall in a kitchen or bathroom. Given the set of tiles that you have bought, is it possible to tile your wall so that triangles of the same colour line up to each other, forming a pattern of “Wang Tile” squares?

In 1966 Robert Berger proved that no algorithm exists that can answer that question. There is no way to solve the problem – or to determine how long it will take to solve the problem – without actually solving it. You just have to try to tile the room and find out the hard way.

One of the most famous examples of this type of problem is the “halting problem” in computer science. Some computer programmes finish executing their commands relatively quickly. Others can run indefinitely if they contain a “loop” instruction that never ends. For others which contain complex sequences of loops and calls from one section of code to another, it may be very hard to tell whether the programme finishes quickly, or takes a long time to complete, or never finishes its execution at all.

Alan Turing, one of the most important figures in the development of computing, proved in 1936 that a general algorithm to determine whether or not any computer programme finishes its execution does not exist. In other words, whilst there are many useful computer programmes in the world, there are also problems that computer programmes simply cannot solve.

(A set of Wang Tiles, and a pattern created by tiling them so that tiles are placed next to other tiles so that their edges have the same colour. Given any particular set of tiles, it is impossible to determine whether such a pattern can be created by any means other than trial and error)

(A set of Wang Tiles, and a pattern of coloured squares created by tiling them. Given any random set of tiles of different colour combinations, there is no set of rules that can be relied on to determine whether a valid pattern of coloured squares can be created from them. Sometimes, you have to find out by trial and error. Images from Wikipedia)

Five reasons why the human world is messy, unpredictable, and can’t be perfectly described using data and logic

1. Our actions create disorder

The 2nd Law of Thermodynamics is a good candidate for the most fundamental law of science. It states that as time progresses, the universe becomes more disorganised. It guarantees that ultimately – in billions of years – the Universe will die as all of the energy and activity within it dissipates.

An everyday practical consequence of this law is that every time we act to create value – building a shed, using a car to get from one place to another, cooking a meal – our actions eventually cause a greater amount of disorder to be created as a consequence – as noise, pollution, waste heat or landfill refuse.

For example, if I spend a day building a shed, then to create that order and value from raw materials, I consume structured food and turn it into sewage. Or if I use an electric forklift to stack a pile of boxes, I use electricity that has been created by burning structured coal into smog and ash.

So it is literally impossible to create a “perfect world”. Whenever we act to make a part of the world more ordered, we create disorder elsewhere. And ultimately – thankfully, long after you and I are dead – disorder is all that will be left.

2. The failure of Logical Atomism: why the human world can’t be perfectly described using data and logic

In the 20th Century two of the most famous and accomplished philosophers in history, Bertrand Russell and Ludwig Wittgenstein, invented “Logical Atomism“, a theory that the entire world could be described by using “atomic facts” – independent and irreducible pieces of knowledge – combined with logic.

But despite 40 years of work, these two supremely intelligent people could not get their theory to work: “Logical Atomism” failed. It is not possible to describe our world in that way.

One cause of the failure was the insurmountable difficulty of identifying truly independent, irreducible atomic facts. “The box is red” and “the circle is blue”, for example, aren’t independent or irreducible facts for many reasons. “Red” and “blue” are two conventions of human language used to describe the perceptions created when electro-magnetic waves of different frequencies arrive at our retinas. In other words, they depend on and relate to each other through a number of sophisticated systems.

Despite centuries of scientific and philosophical effort, we do not have a complete understanding of how to describe our world at its most basic level. As physicists have explored the world at smaller and smaller scales, Quantum Mechanics has emerged as the most fundamental theory for describing it – it is the closest we have come to finding the “irreducible facts” that Russell and Wittgenstein were looking for. But whilst the mathematical equations of Quantum Mechanics predict the outcomes of experiments very well, after nearly a century, physicists still don’t really agree about what those equations mean. And as we have already seen, Heisenberg’s Uncertainty Principle prevents us from ever having perfect knowledge of the world at this level.

Perhaps the most important failure of logical atomism, though, was that it proved impossible to use logical rules to turn “facts” at one level of abstraction – for example, “blood cells carry oxygen”, “nerves conduct electricity”, “muscle fibres contract” – into facts at another level of abstraction – such as “physical assault is a crime”. The human world and the things that we care about can’t be described using logical combinations of “atomic facts”. For example, how would you define the set of all possible uses of a screwdriver, from prising the lids off paint tins to causing a short-circuit by jamming it into a switchboard?

Our world is messy, subjective and opportunistic. It defies universal categorisation and logical analysis.

(A Pescheria in Bari, Puglia, where a fish-market price information service makes it easier for local fisherman to identify the best buyers and prices for their daily catch. Photo by Vito Palmi)

3. The importance and inaccessibility of “local knowledge” 

Because the tool we use for calculating and agreeing value when we exchange goods and services is money, economics is the discipline that is often used to understand the large-scale behaviour of society. We often quantify the “growth” of society using economic measures, for example.

But this approach is notorious for overlooking social and environmental characteristics such as health, happiness and sustainability. Alternatives exist, such as the Social Progress Index, or the measurement framework adopted by the United Nations 2014 Human Development Report on world poverty; but they are still high level and abstract.

Such approaches struggle to explain localised variations, and in particular cannot predict the behaviours or outcomes of individual people with any accuracy. This “local knowledge problem” is caused by the fact that a great deal of the information that determines individual actions is personal and local, and not measurable at a distance – the experienced eye of the fruit buyer assessing not just the quality of the fruit but the quality of the farm and farmers that produce it, as a measure of the likely consistency of supply; the emotional attachments that cause us to favour one brand over another; or the degree of community ties between local businesses that influence their propensity to trade with each other.

Sharing economy” business models that use social media and reputation systems to enable suppliers and consumers of goods and services to find each other and transact online are opening up this local knowledge to some degree. Local food networks, freecycling networks, and land-sharing schemes all use this technology to the benefit of local communities whilst potentially making information about detailed transactions more widely available. And to some degree, the human knowledge that influences how transactions take place can be encoded in “expert systems” which allow computer systems to codify the quantitative and heuristic rules by which people take decisions.

But these technologies are only used in a subset of the interactions that take place between people and businesses across the world, and it is unlikely that they’ll become ubiquitous in the foreseeable future (or that we would want them to become so). Will we ever reach the point where prospective house-buyers delegate decisions about where to live to computer programmes operating in online marketplaces rather than by visiting places and imagining themselves living there? Will we somehow automate the process of testing the freshness of fish by observing the clarity of their eyes and the freshness of their smell before buying them to cook and eat?

In many cases, while technology may play a role introducing potential buyers and sellers of goods and services to each other, it will not replace – or predict – the human behaviours involved in the transaction itself.

(Medway Youth Trust use predictive and textual analytics to draw insight into their work helping vulnerable children. They use technology to inform expert case workers, not to take decisions on their behalf.)

4. “Wicked problems” cannot be described using data and logic

Despite all of the challenges associated with problems in mathematics and the physical sciences, it is nevertheless relatively straightforward to frame and then attempt to solve problems in those domains; and to determine whether the resulting solutions are valid.

As the failure of Logical Atomism showed, though, problems in the human domain are much more difficult to describe in any systematic, complete and precise way – a challenge known as the “frame problem” in artificial intelligence. This is particularly true of “wicked problems” – challenges such as social mobility or vulnerable families that are multi-faceted, and consist of a variety of interdependent issues.

Take job creation, for example. Is that best accomplished through creating employment in taxpayer-funded public sector organisations? Or by allowing private-sector wealth to grow, creating employment through “trickle-down” effects? Or by maximising overall consumer spending power as suggested by “middle-out” economics? All of these ideas are described not using the language of mathematics or other formal logical systems, but using natural human language which is subjective and inconsistent in use.

The failure of Logical Atomism to fully represent such concepts in formal logical systems through which truth and falsehood can be determined with certainty emphasises what we all understand intuitively: there is no single “right” answer to many human problems, and no single “right” action in many human situations.

(An electricity bill containing information provided by OPower comparing one household’s energy usage to their neighbours. Image from Grist)

5. Behavioural economics and the caprice of human behaviour

Behavioural economics” attempts to predict the way that humans behave when taking choices that have a measurable impact on them – for example, whether to put the washing machine on at 5pm when electricity is expensive, or at 11pm when it is cheap.

But predicting human behaviour is notoriously unreliable.

For example, in a smart water-meter project in Dubuque, Iowa, households that were told how their water conservation compared to that of their near neighbours were found to be twice as likely to take action to improve their efficiency as those who were only told the details of their own water use. In other words, people who were given quantified evidence that they were less responsible water user than their neighbours changed their behaviour. OPower have used similar techniques to help US households save 1.9 terawatt hours of power simply by including a report based on data from smart meters in a printed letter sent with customers’ electricity bills.

These are impressive achievements; but they are not always repeatable. A recycling scheme in the UK that adopted a similar approach found instead that it lowered recycling rates across the community: households who learned that they were putting more effort into recycling than their neighbours asked themselves “if my neighbours aren’t contributing to this initiative, then why should I?”

Low carbon engineering technologies like electric vehicles have clearly defined environmental benefits and clearly defined costs. But most Smart Cities solutions are less straightforward. They are complex socio-technical systems whose outcomes are emergent. Our ability to predict their performance and impact will certainly improve as more are deployed and analysed, and as University researchers, politicians, journalists and the public assess them. But we will never predict individual actions using these techniques, only the average statistical behaviour of groups of people. This can be seen from OPower’s own comparison of their predicted energy savings against those actually achieved – the predictions are good, but the actual behaviour of OPower’s customers shows a high degree of apparently random variation. Those variations are the result of the subjective, unpredictable and sometimes irrational behaviour of real people.

We can take insight from Behavioural Economics and other techniques for analysing human behaviour in order to create appropriate strategies, policies and environments that encourage the right outcomes in cities; but none of them can be relied on to give definitive solutions to any individual person or situation. They can inform decision-making, but are always associated with some degree of uncertainty. In some cases, the uncertainty will be so small as to be negligible, and the predictions can be treated as deterministic rules for achieving the desired outcome. But in many cases, the uncertainty will be so great that predictions can only be treated as general indications of what might happen; whilst individual actions and outcomes will vary greatly.

(Of course it is impossible to predict individual criminal actions as portrayed in the film “Minority Report”. But is is very possible to analyse past patterns of criminal activity, compare them to related data such as weather and social events, and predict the likelihood of crimes of certain types occurring in certain areas. Cities such as Memphis and Chicago have used these insights to achieve significant reductions in crime)

Learning to value insight without certainty

Mathematics and digital technology are incredibly powerful; but they will never perfectly and completely describe and predict our world in human terms. In many cases, our focus for using them should not be on automation: it should be on the enablement of human judgement through better availability and communication of information. And in particular, we should concentrate on communicating accurately the meaning of information in the context of its limitations and uncertainties.

There are exceptions where we automate systems because of a combination of a low-level of uncertainty in data and a large advantage in acting autonomously on it. For example, anti-lock braking systems save lives by using automated technology to take thousands of decisions more quickly than most humans would realise that even a single decision needed to be made; and do so based on data with an extremely low degree of uncertainty.

But the most exciting opportunity for us all is to learn to become sophisticated users of information that is uncertain. The results of textual analysis of sentiment towards products and brands expressed in social media are far from certain; but they are still of great value. Similar technology can extract insights from medical research papers, case notes in social care systems, maintenance logs of machinery and many other sources. Those insights will rarely be certain; but properly assessed by people with good judgement they can still be immensely valuable.

This is a much better way to understand the value of technology than ideas like “perfect knowledge” and “algorithmic regulation”. And it is much more likely that people will trust the benefits that we claim new technologies can bring if we are open about their limitations. People won’t use technologies that they don’t trust; and they won’t invest their money in them or vote for politicians who say they’ll spend their taxes on it.

Thankyou to Richard Brown and Adrian McEwen for discussions on Twitter that helped me to prepare this article. A more in-depth discussion of some of the scientific and philosophical issues I’ve described, and an exploration of the nature of human intelligence and its non-deterministic characteristics, can be found in the excellent paper “Answering Descartes: Beyond Turing” by Stuart Kauffman published by MIT press.

12 simple technologies for cities that are Smart, open and fair

(Fritz Lang’s 1927 dystopian film Metropolis pictured a city that exploited futuristic technologies, but only on behalf of a minority of its citizens. Image by Breve Storia del Cinema)

Efficiency; resilience; growth; vitality. These are all characteristics that cities desire, and that are regularly cited as the objectives of Smarter City programmes and other forward-looking initiatives.

But, though it is less frequently stated, a more fundamental objective underlies all of these: fairness.

The Nobel Prize-winning economist Joseph Stiglitz has written extensively about the need to prioritise fairness as a policy and investment objective in a world that in many areas – and in many cities – is becoming more unequal. That inequality is demonstrated by the difference in life expectancy of 20 years or so that exists between the poorest and richest parts of many UK cities.

I think the Smart Cities movement will only be viewed as a success by the wider world if it contributes to redressing that imbalance.

So how do we design Smart City systems that employ technology to make cities more successful, resilient and efficient; in a way that distributes resources and creates opportunities more fairly than today?

One answer to that question is that the infrastructures and institutions of such cities should be open to citizens and businesses: accessible, understandable, adaptable and useful.

Why do we need open cities?

In the wonderful “Walkable City“, Jeff Speck describe’s the epidemiologist Richard Jackson’s stark realisation of the life-and-death significance of good urban design. Jackson was driving along a notorious 2 mile stretch of Atlanta’s 7-lane Buford highway with no pavements or junctions:

There, by the side of the road, in the ninety-five degree afternoon, he saw a woman in her seventies, struggling under the burden of two shopping bags. He tried to relate her plight to his own work as an epidemiologist. “If that poor woman had collapsed from heat stroke, we docs would have written the cause of death as heat stroke and not lack of trees and public transportation, poor urban form, and heat-island effects. If she had been killed by a truck going by the cause of death would have been “motor vehicle trauma”, and not lack of sidewalks and transit, poor urban planning and failed political leadership.”

(Pedestrian’s attempting to cross Atlanta’s notorious Buford Highway; a 7-lane road with no pavements and 2 miles between junctions and crossings. Photo by PBS)

Buford Highway is an infrastructure fit only for vehicles, not for people. It allows no safe access along or across it for the communities it passes through – it is closed to them, unless they risk their lives.

At the same time that city leaders are realising more and more that better planning is needed to create more equal cities, so it  is imperative that the digital infrastructures we deploy in cities are accessible and useful to citizens, not as dangerous to them as Buford Highway.

Unfortunately, there are already examples of city infrastructures using technologies that are poorly designed, that fail to serve the needs of  communities, or that fail in operation.

For instance, a network of CCTV cameras in Birmingham were eventually dismantled after it was revealed they had been erected to gather evidence of terrorist activities in Birmingham’s Muslim communities, rather than in support of their safety. And there have been many examples of the failure of both public sector agencies and private companies to properly safeguard the data they hold about citizens.

Market failures can result in the benefits of technology being more accessible to wealthier communities than poorer communities. For example,  private sector network providers will not deploy connectivity in areas which are insufficiently economically active for them to make a profit, and Government funding is not yet sufficient to close the gap. And community lenders, who typically offer loans at one-tenth to one-hundredth the cost of payday lenders, have so far lacked the resources to invest in the online technology that makes some payday loans so easy to take out – though this is starting to change.

One of the technology industry’s most notorious failures, the Greyhound Lines bus company’s 1993 “Trips” reservations system, made a city service – bus transport – unusable. The system was intended to make it quicker and easier for ticket agents to book customers onto Greyhound’s buses. But it was so poorly designed and operated so slowly that passengers missed their buses whilst they stood in line waiting for their tickets; were separated from their luggage; and in some cases were stranded overnight in bus terminals.

In the 21st Century, badly applied digital technology will create bad cities, just as badly designed roads and buildings did in the last century.

(The SMS for Life project uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicines between pharmacies in Africa. Photo by Novartis AG)

Smart Cities for the digitally disconnected

It’s possible to benefit from Smart city infrastructures without being connected to the internet or having skills in digital technology – Stockholm’s road-use charging scheme reduces congestion and pollution for everyone in the city, for example.

But the benefits of many Smart systems are dependent on being connected to the internet and having the skills to use it. From the wealth of educational material now available online (from the most sophisticated Harvard University courses to the most basic tutorials on just about any subject available on YouTube), to the increasing role of technology in high-paid careers, it’s absolutely obvious that the ability to access and use the internet and digital technologies in the future will be a crucial component of a successful life.

Smart cities won’t be fair cities if we take connectivity and skills for granted. Worldwide, fully one-third of the population has never been online; and even in as rich and advanced a country as the United Kingdom, 18% of adults – a fifth of the voting population – have never used the internet. At the risk of generalising a complex issue, many of those people will be those that Smart City services should create benefits for if they are to contribute to making cities fairer.

After legal challenges from private sector providers, the UK Government’s plan to assist cities in funding the deployment of ubiquitous broadband connectivity has been replaced by a voucher scheme that subsidises businesses connecting to existing networks. The scheme will not now directly help to improve broadband coverage in those areas that are poorly served because they are economically relatively inactive – precisely the areas that need the most help.

There’s been a lot of discussion of “net neutrality” recently – the principle that on the Internet, all traffic is equal, and that there is no way to pay for certain data to be treated preferentially. The principle is intended to ensure that the benefits of the internet are equally available to everyone.

But net neutrality is irrelevant to those who can’t access the internet at all; and the free market is already bypassing it in some ways. Network providers who control the local infrastructures that connect homes and businesses to the internet are free to charge higher prices for faster connections. Wealthy corporations and governments can bypass parts of the internet entirely with their own international cable networks through which they can route traffic between users on one continent and content on another.

Governments in emerging economies are building new cities to house their rapidly urbanising populations with ubiquitous, high-speed connectivity from the start. The Australian government is investing the profits from selling raw materials to support that construction boom in providing broadband coverage across the entire country. The least wealthy areas of European cities will be further disadvantaged compared to them unless we can find ways to invest in their digital infrastructure without contravening the European Union’s “State aid” law.

Technology as if people mattered

The UK’s Government Digital Service employ an excellent set of agile, user-centric design principles that are intended to promote the development of Smarter, digitally-enabled services that can be accessed by anyone anywhere who needs them, regardless of their level of skill with digital technology or ability to access the Internet.

The principles include: “Start with needs”; “Do the hard work to make it simple”; “Build for inclusion”; “Understand context”; and “Build digital services, not websites”.

(An electricity bill containing information provided by OPower comparing one household’s energy usage to their neighbours. Image from Grist)

A good example of following these principles and designing excellent, accessible digital services using common sense is the London Borough of Newham. By concentrating on the delivery of services through mobile telephones – which are much more widely owned than PCs and laptops – and on contexts in which a friend or family member assists the ultimate service user, Newham have achieved a remarkable shift to online services in one of London’s least affluent boroughs, home to many communities and citizens without access to broadband connectivity or traditional computers.

Similar, low-tech innovations in designing systems that people find useful can be found in some smart meter deployments.

In principle, the analytic technology in smart meters can provide insights that helps households and businesses reduce energy usage – identifying appliances that are operating inefficiently, highlighting leaks, and comparing households’ energy usage to that of their neighbours.

But most people don’t want to look at smart meter displays or consult a computer before they put the washing on or have a shower.

In one innovative project in the village of Chale, these issues were overcome by connecting analytic technology to a glow globe in the lounge – the globe simply glows red, orange or green depending on whether too much energy is being used compared to that expected for the time of day and year. A similarly effective but even more down-to-earth approach was adopted by OPower in the US who reported that they have helped households save 1.9 terawatt hours of power simply by including a report based on data from smart meters in a printed letter sent with customers’ electricity bills.

There are countless other examples. During peak traffic periods, Dublin’s “Live Drive” radio station plays a mixture of 80s pop music and traffic information derived from sophisticated analytics developed by IBM’s Smarter Cities Research team based on data from road sensors and GPS beacons in the city’s buses. And in India’s rural Karnataka region, which lacks internet infrastructure and where many workers lack literacy skills, let alone access to computers and smartphones, the benefits of online job portals have been recreated using “spoken web” technology using the existing traditional analogue telephone network.

(The inspirational Kilimo Salama scheme that uses "appropriate technology" to make crop insurance affordable to subsistence farmers. Photo by Burness Communications)

(The inspirational Kilimo Salama scheme that uses “appropriate technology” to make crop insurance affordable to subsistence farmers. Photo by Burness Communications)

In Kenya, Kilimo Salama has made crop insurance affordable for subsistence farmers by using remote weather monitoring to trigger payouts via Safaricom’s M-Pesa mobile payments service, rather than undertaking expensive site visits to assess claims. And the SMS for Life project in Tanzania uses the cheap and widely used SMS infrastructure to create a dynamic, collaborative supply chain for medicine between rural pharmacists.

These are all examples of what was originally described as “Intermediate Technology” by the economist Ernst Friedrich “Fritz” Schumacher in his influential work, “Small is Beautiful: Economics as if People Mattered“, and is now known as Appropriate Technology.

12 “appropriate technologies” for Smart Cities

Schumacher’s views on technology were informed by his belief that our approach to economics should be transformed “as if people mattered”. He asked:

What happens if we create economics not on the basis of maximising the production of goods and the ability to acquire and consume them – which ends up valuing automation and profit – but on the Buddhist definition of the purpose of work: “to give a man a chance to utilise and develop his faculties; to enable him to overcome his ego-centredness by joining with other people in a common task; and to bring forth the goods and services needed for a becoming existence.”

Schumacher pointed out that the most advanced technologies, to which we often look to create value and growth, are in fact only effective in the hands of those with the resources and skills required to use them- i.e. those who are already wealthy; and that by emphasising efficiency, output and profit they tend to further concentrate economic value in the hands of the wealthy – often specifically by reducing the employment of people with less advanced skills and roles.

In contrast, Schumacher felt that the most genuine “development ” of our society would occur when the most possible people were employed in a way that gave them the practical ability to earn a living ; and that also offered a level of human reward – much as Maslow’s “Hierarchy of Needs” first identifies our most basic requirements for food, water, shelter and security; but next relates the importance of family, friends and “self-actualisation” (which can crudely be described as the process of achieving things that we care about).

This led him to ask:

What is that we really require from the scientists and technologists? I should answer:

We need methods and equipment which are:

    • Cheap enough so that they are accessible to virtually everyone;
    • Suitable for small-scale application; and
    • Compatible with man’s need for creativity

(Maslow’s Hierarchy of Needs, image by Factoryjoe via Wikimedia Commons)

I can’t think of a more powerful set of tools that reflect these characteristics than the digital technologies that have emerged over the past decade, such as social media, smartphones, Cloud computing and Open Data. They provide a digital infrastructure of appropriate technologies that are accessible to everyone, but that connect with the large scale city infrastructures that support millions of urban lives; and they give citizens, communities and businesses the ability to adapt city infrastructures to their own needs.

I can think of at least 12 such technologies that are particularly important; and that fall into the categories of “Infrastructures that matter”; “Technologies for everyone”; and “The keys to the city”.

Infrastructures that matter

1.Broadband connectivity

I’ve covered the importance of broadband connectivity, and the challenges involved in providing it ubiquitously, already, so I won’t go into detail again here. But whether it’s fixed-line, mobile or wi-fi, its benefits are becoming so significant that it can’t be omitted.

2. Cloud computing

Before Cloud computing, anyone who wanted to develop a computing system for others to use had to invest up-front in an infrastructure capable of operating the service to a reasonable level of reliability. Cloud computing provides a much easier, cheaper alternative: rent a little bit of someone else’s infrastructure. And if your service becomes popular, don’t worry about carrying out complex and costly upgrades, just rent a little more.

Cloud computing has helped to democratise digital services by making it  it dramatically easier and cheaper for anyone to create and offer them.

Technologies for everyone

3. Mobile and Smart phones

In 2013, the number of cellphone subscriptions worldwide surpassed the number of people who have ever owned fixed line telephones.

In the developed world, we’re conscious of the increasing power of Smartphones; and Councils such as Newham are exploiting the fact that many people who lack the desire or resources to purchase a computer and a broadband connection possess and use relatively sophisticated Smartphones through which they access digital services and content.

But in some countries in the developing world, the real story is simply the availability of the first basic infrastructure – voice calls and SMS – that’s available to almost everyone, everywhere. According to one report, access to a basic mobile phone is more common than access to a toilet with proper drainage. In his TEDGlobal 2013 talk, Toby Shapshak described how entire business infrastructures and supply chains are being built upon SMS and similiarly “appropriate” technologies – to the extent that 4o% of Kenya’s GDP now passes through the M-Pesa mobile payments service offered by Safaricom. Banks, technology entrepreneurs, governments and others in the developed world are looking to this wave of innovation as a source of new ideas.

4. Social media

In his 2011 book “Civilization“, Niall Fergusson comments that news of the Indian Mutiny in 1857 took 46 days to reach London, travelling in effect at 3.8 miles an hour. By Jan 2009 when US Airways flight 1549 crash landed in the Hudson river, Jim Hanrahan’s message on Twitter communicated the news to the entire world four minutes later; it reached Perth, Australia at more than 170,000 miles an hour.

Social media is the tool that around a quarter of the world’s population now simply uses to stay in touch with friends and family at this incredible speed.

At a recent Mayoral debate on Smarter Cities, Ridwan Kamil, Mayor of Bandung, Indonesia, described how he has nurtured an atmosphere of civic engagement, trust and transparency by encouraging his staff to connect with the city’s 2.3 million Twitter-using citizens through social media. By encouraging citizens to report issues online and by publishing details of city spending, Mayor Kami has helped to combat corruption and improve public services. Montpellier in France is engaging with citizens through social media in a similar way, asking them to explore data about their city and suggest ways to improve it. And the ambitious control room set up in Rio de Janeiro by Mayor Eduardo Paes to help manage the city during the current World Cup uses social media not just as one of the information feeds that provides insight into what is happening in the city, but to keep citizens as well informed as possible.

The “Community Lovers Guide“, of which 60 editions have now been published across the world, contains stories of people and projects that have improved their communities. The guide is not concerned directly with technology; but many of the initiatives that it describes have used social media as a tool for engaging with stakeholders and supporters.

And we increasingly use social media to conduct business. From e-Bay to Uber, social media is being used to create “sharing economy” business models that replace traditional sales channels and supply chains with networks of peer-to-peer transactions in industries from financial services to agriculture to distribution to retail. Nearly 2 billion of us now regularly use the technologies that allow us to participate in those trading networks.

5. The touchscreen

Three years ago, I watched my then 2-year-old son teach himself how to use a touchscreen tablet to watch cartoons from around the world. He is a member of the first generation to grow up with the world’s information literally at their fingertips before they can read and write.

The simplicity of the touchscreen has already led to the adoption of tablet computers by huge numbers of people who would never have so willingly chosen to use a laptop computer and keyboard. As touchscreens and the devices that use them become cheaper and cheaper, many more people who currently don’t choose to access online content and services will do so without realising it, simply by interacting with the world around them.

We will rapidly develop even more intimate interfaces to technology. Three years ago, scientists at the University of Berkely used computers attached to an MRI scanner to recreate moving images from the magnetic field created by the brain of a person inside the scanner watching a film on a pair of goggles. And last year, scientists at the University of Washington used similar technology to allow one of them to move the other’s arm simply by thinking about it. Whilst it will take time for these technologies to become widely available – and there are certainly ethical issues concerning their use that must be addressed in the process – eventually they will make an important contribution to making information and the ability to communicate widely even more accessible than today.

6. Open Source software

Open Source software is one of the very few technologies that is free in principle to anyone with the time to understand how to use it. It is not free in the medium or long-term – most organisations that use it pay for some form of support or maintenance to be carried out on their Open Source systems. But it is free to get started, and the Open Source community is a great place to get help and advice whilst doing so.

My colleagues around the world work very hard to ensure that IBM’s technologies support open source technology, from interoperating with the MySQL database and CKAN open data portal; to donating IBM-developed technologies such as Eclipse, MQTT and Node-RED to the Open Source community; to IBM’s new “BlueMix” Cloud computing platform for developers which is built from Open Source technology and offers developers 50 pre-built services for inclusion in their Apps, many of which are open source.

Not all technology is Open Source, and there are good reasons why many technology companies large and small invest in developing products and services for cities that use proprietary software – often, simply to protect their investment. For as long as those products and services offer valuable capabilities that are not available as open source software, cities will use them.

But it is vital that city systems incorporating those technologies are nevertheless open for use by open source software, simply to make them as widely accessible as possible for people who need to adapt them to their own needs.

7. Intelligent hardware

The emergence of the internet as a platform for enabling sales, marketing and logistics over the last decade has enabled small and micro-businesses to reach markets across the world that were previously accessible only to much larger organisations with international sales and distribution networks.

More recently, the emergence and maturation of technologies such as 3D printingopen-source manufacturing and small-scale energy generation are enabling small businesses and community initiatives to succeed in new sectors by reducing the scale at which it is economically viable to carry out what were previously industrial activities – a trend recently labelled by the Economist magazine as the “Third Industrial Revolution“.

Arduino, an Open Source electronics prototyping platform, and the Raspberry Pi, a cheap and simple computer intended to simplify the process of teaching programming skills, provide very easy introductions to these technologies; and organisations such as Hub Launchpad and TechShop make it possible for entrepreneurs and small businesses to explore them in more depth.

The keys to the city

8. Open APIs 

An “API” is an “Application Programming Interface“: it is a tool that allows one computer system – such as an Open Source “app” written by an entrepreneur or social innovator – to use the information and capabilities of another computer system – such as a traffic information system for a city’s transport network.

For example, Amazon make an API available to developers that exposes all of the capabilities of Amazon Marketplace – from listing products, to changing prices to despatching goods to customers. Whilst these features are not free to use, they offer one way for businesses to create new online shops extremely quickly,  linked to a fulfilment operation to support them.

Open APIs are a tool that can make digital city infrastructures open to local innovation, and allow citizens, businesses and communities to adapt them to their own needs. For instance, Birmingham’s Droplet, a SmartPhone payment service that encourages local economic growth by making it easy to pay for goods and services from local merchants, offer a developer API to allow their fast, cheap payments system to be included in other city services.

A Smarter City infrastructure whose IT systems offer APIs to citizens, communities and businesses can be accessed and adapted by them. It is the very opposite of Atlanta’s Buford Highway.

(The UK’s Open Data Institute’s 2013 Summit. The ODI promotes open data in the UK and shares best practise internationally. Photo by the ODI)

9. Open Data

The Open Data movement champions the principle that any non-sensitive data from public services and infrastructures should be freely and openly available. Most such data is not currently available in this form – either because the organisations operating those services have yet to adopt the principle, or because the computer systems they use simply were not designed to make data available.

There are many reasons to support the idea of Open Data. McKinsey estimate its economic value to be at least $3 trillion per year, for example.

But perhaps more importantly, Open Data is a fundamental tool for democracy and transparency in a digital age. Niall Firth’s November 2013 editorial for the New Scientist magazine describes how citizens of developing nations are using open data to hold their governments to account, from basic information about election candidates to the monitoring of government spending.

The “Dublinked” information sharing partnership, in which Dublin City Council, three surrounding local authorities and  service providers to the city share information and make it available to their communities as “open data”, is a good example of the benefits that openness can bring. Dublinked now makes 3,000 datasets available to local authority analysts; to researchers from IBM Research and the National University of Ireland; and to businesses, entrepreneurs and citizens. The partnership is identifying new ways for the city’s public services and transport, energy and water systems to work; and enabling the formation of new, information-based businesses with the potential to export the solutions they develop in Dublin to cities internationally. It is putting the power of technology and of city information not only at the disposal of the city authority and its agencies, but also into the hands of communities and innovators.

10. Open Standards

Open Data and Open APIs will only be widely used and effective in cities across the world if they conform to Open Standards that mean that everyone, everywhere can use them in the same way.

In order to do something as simple as changing a lightbulb, we rely on open standards for the levels of voltage and power from our electricity supply; the physical dimensions of the socket and bulb and the characteristics of their fastenings; specifications of the bulb’s light and heat output; and the tolerance of the bulb and the fitting for the levels of moisture found in bathrooms and kitchens. Cities are much more complicated than lightbulbs; and many more standards will be required on order for us to connect to and re-configure their systems easily and reliably.

Open standards are also an important tool in avoiding city systems becoming “locked-in” to any particular supplier. By specifying common characteristics that all systems are required to demonstrate, it becomes more straightforward to exchange one supplier’s implementation for another.

Some standards that Smarter City infrastructures can use are already in place – for example, Web services and REST that specify the general ways in which computer systems interact, and the Common Alerting Protocol which is more specific to interactions between systems that monitor and control the physical world. But many others will need to be invented and encouraged to spread. The City Protocol Society is one organisation seeking to develop those new standards; and the British Standards Institute recently published the first set of national standards for Smarter Cities in the UK, including a standard for the interoperability of data between Smart City systems.

(Photo of the Brixton Pound by Charlie Waterhouse)

11. Local and virtual currencies and trading systems

Local trading systems use paper or electronic currencies that are issued and accepted within a particular place or region. They influence people and businesses to spend the money that they earn locally, thereby promoting regional economic synergies.

Examples include the Bristol Pound; the Droplet smartphone payment scheme in Birmingham; and schemes based on the bartering of goods, money, time and services, such as time banking. Some schemes combine both elements – in Switzerland, a complementary currency, the Wir , has contributed to economic stability over the last century by allowing some debt repayments to be bartered locally when they cannot be repaid in universal currency.

As these schemes develop – and in particular as they adopt technologies such as smartphones and Open APIs – they are increasingly being used as an infrastructure for Smarter City projects in domains such as transport, food supply and energy.

Smarter Cities will succeed at scale when we discover the business models that convert financial payments and investments into social, economic and environmental improvements in the places where we live and work. I can’t think of a more directly applicable tool for designing those business models than flexible, locally focussed currencies and payment infrastructures.

12. Identity stores

In order to use digital services, we have to provide personal information online. What happens to that personal information once we have finished using the service?

Social networks such as Facebook regularly cause controversy when they experiment with new ways to use the data that we freely share with them; often granting them extensive rights over that data in the process.

Our use of technologies such as social media, Smartphones and APIs creates a mass of data about us that is often retained by the operators of the services we use. Sometimes this is as a result of deliberate actions:  when we share geo-tagged photos through social media, for example. In other cases, it is incidental. The location and movement of GPS sensors in our smartphones is anonymised by our network providers and aggregated with that of others nearby who are moving similarly. It is then sold to traffic information services, so that they can sell it back to us through the satellite navigation systems in our cars to help us to avoid traffic congestion.

Organisations of all types and sizes are competing for the new markets and opportunities of the information economy that are created, in part, by this increased availability of personal information. That is simply the natural consequence of the emergence of a new resource in a competitive economy. But it is also true that as the originators of much of that information, and as the ultimate stakeholders in that economy, we should seek to establish an equitable consensus between us for how our information is used.

A different approach is being taken by organisations such as MyDex. MyDex are a Community Interest Company (CIC) who have created a platform that allows users to securely share personal information with digital service providers when they need to; but to revoke access when they have finished using the service.

Incorporation as a Community Interest Company allows MyDex:

“… to be sustainable and requires it be run for community benefit. Crucially, the CIC assets and the majority of any profits must be used for the community purposes for which Mydex is established. Its assets cannot be acquired by another party to which such restrictions do not apply.”

(From the MyDex website, http://mydex.org/about/ensuring-trust/).

As a result of both the security of their technology solution and the clarity with which personal and community interests are reflected in their business model, MyDex’s platform is now being used by a variety of public sector and community organisations to offer a personal data store to the people they support.

MyDex’s approach to creating trust in the use of personal data is not the only one, but it is a good example of a business model that explicitly addresses and prioritises the interests of the individual.

(The town plan for Edinburgh’s New Town, clearly showing the grid structure that gives rise to the adaptability that it is famous for showing for the past 250 years. Image from the JR James archive)

Smart Digital Urbanism

Architects and city planners such as Kelvin Campbell, founder of the Smart Urbanism movement and Jan Gehl, who inspired the “human-scale cities” movement have been identifying the fine-grained physical characteristics of large-scale urban environments that encourage vibrant communities and successful economies through the daily activities of people, families, communities and businesses.

A good example is provided by Edinburgh’s “New Town”, regarded as a masterpiece of urban planning that has proved adaptable and successful through the economic and social changes of the past 250 years. It has frequent road crossings, junctions and side-streets that slow down traffic; provides stopping opportunities for traffic and crossing opportunities for people, encouraging businesses to thrive; and has a mixture of small and large premises for a variety of businesses to occupy.

Smarter cities will not be fairer cities unless we identify and employ technologies for building them that create similar openness and accessibility for digital services and information. That’s precisely what I think Open Data, mobile phones, virtual currencies and the other technologies I’ve described in this article can achieve.

I can’t think of a more exciting idea than using them to address the economic, social and environmental challenge of our time and to build better cities and communities for tomorrow.

What’s the risk of investing in a Smarter City?

(The two towers of the Bosco Verticale in Milan will be home to more than 10,000 plants that create shade and improve air quality. But to what degree do such characteristics make buildings more attractive to potential tenants than traditional structures, creating the potential to create financial returns to reward more widespread investment in this approach? Photo by Marco Trovo)

(Or “how to buy a Smarter City that won’t go bump in the night”)

There are good reasons why the current condition and future outlook of the world’s cities have been the subject of great debate in recent years. Their population will double from 3 billion to 6 billion by 2050; and while those in the developing world are growing at such a rate that they are challenging our ability to construct resilient, efficient infrastructure, those in developed countries often have significant levels of inequality and areas of persistent poverty and social immobility.

Many people involved in the debate are convinced that new approaches are needed to transport, food supply, economic development, water and energy management, social and healthcare, public safety and all of the other services and infrastructures that support cities.

As a consequence, analysts such as Frost & Sullivan have estimated that the market for “Smart City” solutions that exploit technology to address these issues will be $1.5trillion by 2020.

But anyone who has tried to secure investment in an initiative to apply “smart” technology in a city knows that it is not always easy to turn that theoretical market value into actual investment in projects, technology, infrastructure and expertise.

It’s not difficult to see why this is the case. Most investments are made in order to generate a financial return, but profit is not the objective of “Smart Cities” initiatives: they are intended to create economic, environmental or social outcomes. So some mechanism – an investment vehicle, a government regulation or a business model – is needed to create an incentive to invest in achieving those outcomes.

Institutions, Business, Infrastructure and Investment

Citizens expect national and local governments to use their tax revenues to deliver these objectives, of course. But they are also very concerned that the taxes they pay are spent wisely on programmes with transparent, predictable, deliverable outcomes, as the current controversy over the UK’s proposed “HS2″ high speed train network and previous controversies over the effectiveness of public sector IT programmes show.

Nevertheless, the past year has seen a growing trend for cities in Europe and North America to invest in Smart Cities technologies from their own operational budgets, on the basis of their ability to deliver cost savings or improvements in outcomes.

For example, some cities are replacing traditional parking management and enforcement services with “smart parking” schemes that are reducing congestion and pollution whilst paying for themselves through increased enforcement revenues. Others are investing their allocation of central government infrastructure funds in Smart solutions – such as Cambridge, Ontario’s use of the Canadian government’s Gas Tax Fund to invest in a sensor network and analytics infrastructure to manage the city’s physical assets intelligently.

The providers of Smart Cities solutions are investing too, by implementing their services on Cloud computing platforms so that cities can pay incrementally for their use of them, rather than investing up-front in their deployment. Minneapolis, Minnesota and Montpelier, France, recently announced that they are using IBM’s Cloud-based solutions for smarter water, transport and emergency management in this way. And entrepreneurial businesses, backed by Venture Capital investment, are also investing in the development of new solutions.

However, we have not yet tapped the largest potential investment streams: property and large-scale infrastructure. The British Property Federation, for example, estimates that £14 billion is invested in the development of new property in the UK each year. For the main part, these investment streams are not currently investing  in “Smart City” solutions.

To understand why that is the case – and how we might change it – we need to understand the difference in three types of risk involved in investing in smart infrastructures compared with traditional infrastructures: construction risk; the impact of operational failures; and confidence in outcomes.

(A cyclist’s protest in 2012 about the disruption caused in Edinburgh by the overrunning construction of the city’s new tram system. Photo by Andy A)

Construction Risk

At a discussion in March of the financing of future city initiatives held within the Lord Mayor of the City of London’s “Tommorrow’s Cities” programme, Daniel Wong, Head of Infrastructure and Real Estate for Macquarie Capital Europe, said that only a “tiny fraction” – a few percent – of the investable resources of the pension and sovereign wealth funds often referred to as the “wall of money” seeking profitable long-term investment opportunities in infrastructure were available to invest in infrastructure projects that carry “construction risk” – the risk of financial loss or cost overruns during construction.

For conventional infrastructure, construction risk is relatively well understood. At the Tomorrow’s Cities event, Jason Robinson, Bechtel’s General Manager for Urban Development, said that the construction sector was well able to manage that risk on behalf of investors. There are exceptions – such as the delays, cost increases and reduction in scale of Edinburgh’s new tram system – but they are rare.

So are we similarly well placed to manage the additional “construction risk” created when we add new technology to infrastructure projects?

Unfortunately, research carried out in 2013 by the Standish Group on behalf of Computerworld suggests not. Standish Group used data describing 3,555 IT projects between 2003 and 2012 that had labour costs of at least $10 million, and found that only 6.4% were wholly successful. 52% were delivered, but cost more than expected, took longer than expected, or failed to deliver everything that was expected of them. The rest – 41.4% – either failed completely or had to be stopped and re-started from scratch. Anecdotally, we are familiar with the press coverage of high profile examples of IT projects that do not succeed.

We should not be surprised that it is so challenging to deliver IT projects. They are almost always driven by requirements that represent an aspiration to change the way that an organisation or system works: such requirements are inevitably uncertain and often change as projects proceed. In today’s interconnected world, many IT projects involve the integration of several existing IT systems operated by different organisations: most of those systems will not have been designed to support integration. And because technology changes so quickly, many projects use technologies that are new to the teams delivering them. All of these things will usually be true for the technology solutions required for Smart City projects.

By analogy, then, an IT project often feels like an exercise in building an ambitiously new style of building, using new materials whose weight, strength and stiffness isn’t wholly certain, and standing on a mixture of sand, gravel and wetland. It is not surprising that only 6.4% deliver everything they intend to, on time and on budget – though it is also disappointing that as many as 41.4% fail so completely.

However, the real insight is that the characteristics of uncertainty, risk, timescales and governance for IT projects are very different from construction and infrastructure projects. All of these issues can be managed; but they are managed in very different ways. Consequently, it will take time and experience for the cultures of IT and construction to reconcile their approaches to risk and project management, and consequently to present a confident joint approach to investors.

The implementation of Smart Cities IT solutions on Cloud Computing platforms  by their providers mitigates this risk to an extent by “pre-fabricating” these components of smart infrastructure. But there is still risk associated with the integration of these solutions with physical infrastructure and engineering systems. As we gain further experience of carrying out that integration, IT vendors, investors, construction companies and their customers will collectively increase their confidence in managing this risk, unlocking investment at greater scale.

(The unfortunate consequence of a driver who put more trust in their satellite navigation and GPS technology than its designers expected. Photo by Salmon Assessors)

Operational Risk

We are all familiar with IT systems failing.

Our laptops, notebooks and tablets crash, and we lose work as a consequence. Our television set-top boxes reboot themselves midway through recording programmes. Websites become unresponsive or lose data from our shopping carts.

But when failures occur in IT systems that monitor and control physical systems such as cars, trains and traffic lights, the consequences could be severe: damage to property, injury; and death. Organisations that invest in and operate infrastructure are conscious of these risks, and balance them against the potential benefits of new technologies when deciding whether to use them.

The real-world risks of technology failure are already becoming more severe as all of us adopt consumer technologies such as smartphones and social media into every aspect of our lives (as the driver who followed his satellite navigation system off the roads of Paris onto the pavement, and then all the way down the steps into the Paris Metro, discovered).

The noted urbanist Jane Jacobs defined cities by their ability to provide privacy and safety amongst citizens who are usually strangers to each other; and her thinking is still regarded today by many urbanists as the basis of our understanding of cities. As digital technology becomes more pervasive in city systems, it is vital that we evolve the policies that govern digital privacy to ensure that those systems continue to support our lives, communities and businesses successfully.

Google’s careful exploration of self-driving cars in partnership with driver licensing organisations is an example of that process working well; the discovery of a suspected 3D-printing gun factory in Manchester last year is an example of it working poorly.

These issues are already affecting the technologies involved in Smart Cities solutions. An Argentinian researcher recently demonstrated that traffic sensors used around the world could be hacked into and caused to create misleading information. At the time of installation it was assumed that there would never be a motivation to hack into them and so they were configured with insufficient security. We will have to ensure that future deployments are much more secure.

Conversely, we routinely trust automated technology in many aspects of our lives – the automatic pilots that land the planes we fly in, and the anit-lock braking systems that slow and stop our cars far more effectively than we are able to ourselves.

If we are to build the same level of trust and confidence in Smart City solutions, we need to be open and honest about their risks as well as their benefits; and clear how we are addressing them.

(Cars from the car club “car2go” ready to hire in Vancouver. Despite succeeding in many cities around the world, the business recently withdrew from the UK after failing to attract sufficient customers to two pilot deployments in London and Birmingham. The UK’s cultural attraction of private car ownership has proved too strong at present for a shared ownership business model to succeed. Photo by Stephen Rees).

Outcomes Risk

Smart infrastructures such as Stockholm’s road-use charging scheme and London’s congestion charge were constructed in the knowledge that they would be financially sustainable, and with the belief that they would create economic and environmental benefits. Subsequent studies have shown that they did achieve those benefits, but data to predict them confidently in advance did not exist because they were amongst the first of their kind in the world.

The benefits of “Smart” schemes such as road-use charging and smart metering cannot be calculated deterministically in advance because they depend on citizens changing their behaviour – deciding to ride a bus rather than to drive a car; or deciding to use dishwashers and washing machines overnight rather than during the day.

There are many examples of Smart Cities projects that have successfully used technology to encourage behaviour change. In a smart water meter project in Dubuque, for example, households were given information that told them whether their domestic appliances were being used efficiently, and alerted to any leaks in their supply of water. To a certain extent, households acted on this information to improve the efficiency of their water usage. But a control group who were also given a “green points” score telling them how their water conservation compared to that of their near neighbours were found to be twice as likely to take action to improve their efficiency.

However, these techniques are notoriously difficult to apply successfully. A recycling scheme that adopted a similar approach found instead that it lowered recycling rates across the community: households who learned that they were putting more effort into recycling than their neighbours asked themselves “if my neighbours aren’t contributing to this initiative, then why should I?”

The financial vehicles that enable investment in infrastructure and property are either government-backed instruments that reward economic and social outcomes such as reductions in carbon footprint or the creation of jobs ; or market-based instruments  based on the creation of direct financial returns.

So are we able to predict those outcomes confidently enough to enable investment in Smart Cities solutions?

I put that question to the debating panel at the Tomorrow’s Cities meeting. In particular, I asked whether investors would be willing to purchase bonds in smart metering infrastructures with a rate of return dependent on the success of those infrastructures in encouraging consumers to  reduce their use of water and energy.

The response was a clear “no”. The application of those technologies and their effectiveness in reducing the use of water and electricity by families and businesses is too uncertain for such investment vehicles to be used.

Smart Cities solutions are not straightforward engineering solutions such as electric vehicles whose cost, efficiency and environmental impacts can be calculated in a deterministic way. They are complex socio-technical systems whose outcomes are emergent and uncertain.

Our ability to predict their performance and impact will certainly improve as more are deployed and analysed, and as University researchers, politicians, journalists and the public assess them. As that happens, investors will be more willing to fund them; or, with government support, to create new financial vehicles that reward investment in initiatives that use smart technology to create social, environmental and economic improvements – just as the World Bank’s Green Bonds, launched in 2008, support environmental schemes today.

(Recycling bins in Curitiba, Brazil. As Mayor of Curitaba Jaime Lerner started one of the world’s earliest and most effective city recycling programmes by harnessing the enthusiasm of children to influence the behaviour of their parents. Lerner’s many initiatives to transform Curitaba have the characteristic of entrepreneurial leadership. Photo by Ana Elisa Ribeiro)

Evidence and Leadership

The evidence base need to support new investment vehicles is already being created. In Canada, for example, a collaboration between Canadian insurers and cities has developed a set of tools to create a common understanding of the financial risk created by the effects of climate change on the resilience of city infrastructures.

More internationally, the “Little Rock Accord” between the Madrid Club of former national Presidents and Prime Ministers and the P80 group of pension funds agreed to create a task force to increase the degree to which pension and sovereign wealth funds invest in the deployment of technology to address climate change issues, shortages in resources such as energy, water and food, and sustainable, resilient growth. My colleague the economist Mary Keeling has been working for IBM’s Institute for Business Value to more clearly analyse and express the benefits of Smart approaches – in water management and transportation, for example. And Peter Head’s Ecological Sequestration Trust and Robert Bishop’s International Centre for Earth Simulation are both pooling international data and expertise to create models that explore how more sustainable cities and societies might work.

But the Smart City programmes which courageously drive the field forward will not always be those that demand a complete and detailed cost/benefit analysis in advance. Writing in “The Plundered Planet”, the economist Paul Collier asserts that any proposed infrastructure of reasonable novelty and significant scale is effectively so unique – especially when considered in its geographic, political, social and economic context – that an accurate cost/benefit case simply cannot be constructed.

Instead, initiatives such as London’s congestion charge and bicycle hire scheme, Sunderland’s City Cloud and Bogota’s bikeways and parks were created by courageous leaders with a passionate belief that they could make their cities better. As more of those leaders come to trust technology and the people who deliver it, their passion will be another force behind the adoption of technology in city systems and infrastructure.

What’s the risk of not investing in a Smarter City?

For at least the last 50 years, we have been observing that life is speeding up and becoming more complicated. In his 1964 work “Notes on the Synthesis of Form“, the town planner Christopher Alexander wrote:

“At the same time that the problems increase in quantity, complexity and difficulty, they also change faster than ever before. New materials are developed all the time, social patterns alter quickly, the culture itself is changing faster than it has ever changed before … To match the growing complexity of problems, there is a growing body of information and specialist experience … [but] not only is the quantity of information itself beyond the reach of single designers, but the various specialists who retail it are narrow and unfamiliar with the form-makers’ peculiar problems.”

(Alexander’s 1977 work “A Pattern Language: Towns, Buildings, Construction” is one of the most widely read books on urban design; it was also an enormous influence on the development of the computer software industry).

The physicist Geoffrey West has shown that this process is alive and well in cities today. As the world’s cities grow, life in them speeds up, and they create ideas and wealth more rapidly, leading to further growth. West has observed that, in a world with constrained resources, this process will lead to a catastrophic failure when demand for fresh water, food and energy outstrips supply – unless we change that process, and change the way that we consume resources in order to create rewarding lives for ourselves.

There are two sides to that challenge: changing what we value; and changing how we create what we value from the resources around us.

(...)

(“Makers” at the Old Print Works in Balsall Heath, Birmingham, sharing the tools, skills, contacts and ideas that create successful small businesses in local communities)

The Transition movement, started by Rob Hopkins in Totnes in 2006, is tackling both parts of that challenge. “Transition Towns” are communities who have decided to act collectively to transition to a way of life which is less resource-intensive, and to value the characteristics of such lifestyles in their own right – where possible trading regionally, recycling and re-using materials and producing and consuming food locally.

The movement does not advocate isolation from the global industrial economy, but it does advocate that local, alternative products and services in some cases can be more sustainable than mass-produced commodities; that the process of producing them can be its own reward; and that acting at community level is for many people the most effective way to contribute to sustainability. From local currencies, to food-trading networks to community energy schemes, many “Smart” initiatives have emerged from the transition movement.

We will need the ideas and philosophy of Transition to create sustainable cities and communities – and without them we will fail. But those ideas alone will not create a sustainable world. With current technologies, for example, one hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency. And Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America.

Cities depend on vast infrastructures and supply-chains, and they create complex networks of transactions supported by transportation and communications. Community initiatives will adapt these infrastructures to create local value in more sustainable, resilient ways, and by doing so will reduce demand. But they will not affect the underlying efficiency of the systems themselves. And I do not personally believe that in a world of 7 billion people in which resources and opportunity are distributed extremely unevenly that community initiatives alone will reduce demand significantly enough to achieve sustainability.

We cannot simply scale these systems up as the world’s population grows to 9 billion by 2050, we need to change the way they work. That means changing the technology they use, or changing the way they use technology. We need to make them smarter.

Follow

Get every new post delivered to your Inbox.

Join 4,705 other followers

%d bloggers like this: