What’s the risk of investing in a Smarter City?

(The two towers of the Bosco Verticale in Milan will be home to more than 10,000 plants that create shade and improve air quality. But to what degree do such characteristics make buildings more attractive to potential tenants than traditional structures, creating the potential to create financial returns to reward more widespread investment in this approach? Photo by Marco Trovo)

(Or “how to buy a Smarter City that won’t go bump in the night”)

There are good reasons why the current condition and future outlook of the world’s cities have been the subject of great debate in recent years. Their population will double from 3 billion to 6 billion by 2050; and while those in the developing world are growing at such a rate that they are challenging our ability to construct resilient, efficient infrastructure, those in developed countries often have significant levels of inequality and areas of persistent poverty and social immobility.

Many people involved in the debate are convinced that new approaches are needed to transport, food supply, economic development, water and energy management, social and healthcare, public safety and all of the other services and infrastructures that support cities.

As a consequence, analysts such as Frost & Sullivan have estimated that the market for “Smart City” solutions that exploit technology to address these issues will be $1.5trillion by 2020.

But anyone who has tried to secure investment in an initiative to apply “smart” technology in a city knows that it is not always easy to turn that theoretical market value into actual investment in projects, technology, infrastructure and expertise.

It’s not difficult to see why this is the case. Most investments are made in order to generate a financial return, but profit is not the objective of “Smart Cities” initiatives: they are intended to create economic, environmental or social outcomes. So some mechanism – an investment vehicle, a government regulation or a business model – is needed to create an incentive to invest in achieving those outcomes.

Institutions, Business, Infrastructure and Investment

Citizens expect national and local governments to use their tax revenues to deliver these objectives, of course. But they are also very concerned that the taxes they pay are spent wisely on programmes with transparent, predictable, deliverable outcomes, as the current controversy over the UK’s proposed “HS2” high speed train network and previous controversies over the effectiveness of public sector IT programmes show.

Nevertheless, the past year has seen a growing trend for cities in Europe and North America to invest in Smart Cities technologies from their own operational budgets, on the basis of their ability to deliver cost savings or improvements in outcomes.

For example, some cities are replacing traditional parking management and enforcement services with “smart parking” schemes that are reducing congestion and pollution whilst paying for themselves through increased enforcement revenues. Others are investing their allocation of central government infrastructure funds in Smart solutions – such as Cambridge, Ontario’s use of the Canadian government’s Gas Tax Fund to invest in a sensor network and analytics infrastructure to manage the city’s physical assets intelligently.

The providers of Smart Cities solutions are investing too, by implementing their services on Cloud computing platforms so that cities can pay incrementally for their use of them, rather than investing up-front in their deployment. Minneapolis, Minnesota and Montpelier, France, recently announced that they are using IBM’s Cloud-based solutions for smarter water, transport and emergency management in this way. And entrepreneurial businesses, backed by Venture Capital investment, are also investing in the development of new solutions.

However, we have not yet tapped the largest potential investment streams: property and large-scale infrastructure. The British Property Federation, for example, estimates that £14 billion is invested in the development of new property in the UK each year. For the main part, these investment streams are not currently investing  in “Smart City” solutions.

To understand why that is the case – and how we might change it – we need to understand the difference in three types of risk involved in investing in smart infrastructures compared with traditional infrastructures: construction risk; the impact of operational failures; and confidence in outcomes.

(A cyclist’s protest in 2012 about the disruption caused in Edinburgh by the overrunning construction of the city’s new tram system. Photo by Andy A)

Construction Risk

At a discussion in March of the financing of future city initiatives held within the Lord Mayor of the City of London’s “Tommorrow’s Cities” programme, Daniel Wong, Head of Infrastructure and Real Estate for Macquarie Capital Europe, said that only a “tiny fraction” – a few percent – of the investable resources of the pension and sovereign wealth funds often referred to as the “wall of money” seeking profitable long-term investment opportunities in infrastructure were available to invest in infrastructure projects that carry “construction risk” – the risk of financial loss or cost overruns during construction.

For conventional infrastructure, construction risk is relatively well understood. At the Tomorrow’s Cities event, Jason Robinson, Bechtel’s General Manager for Urban Development, said that the construction sector was well able to manage that risk on behalf of investors. There are exceptions – such as the delays, cost increases and reduction in scale of Edinburgh’s new tram system – but they are rare.

So are we similarly well placed to manage the additional “construction risk” created when we add new technology to infrastructure projects?

Unfortunately, research carried out in 2013 by the Standish Group on behalf of Computerworld suggests not. Standish Group used data describing 3,555 IT projects between 2003 and 2012 that had labour costs of at least $10 million, and found that only 6.4% were wholly successful. 52% were delivered, but cost more than expected, took longer than expected, or failed to deliver everything that was expected of them. The rest – 41.4% – either failed completely or had to be stopped and re-started from scratch. Anecdotally, we are familiar with the press coverage of high profile examples of IT projects that do not succeed.

We should not be surprised that it is so challenging to deliver IT projects. They are almost always driven by requirements that represent an aspiration to change the way that an organisation or system works: such requirements are inevitably uncertain and often change as projects proceed. In today’s interconnected world, many IT projects involve the integration of several existing IT systems operated by different organisations: most of those systems will not have been designed to support integration. And because technology changes so quickly, many projects use technologies that are new to the teams delivering them. All of these things will usually be true for the technology solutions required for Smart City projects.

By analogy, then, an IT project often feels like an exercise in building an ambitiously new style of building, using new materials whose weight, strength and stiffness isn’t wholly certain, and standing on a mixture of sand, gravel and wetland. It is not surprising that only 6.4% deliver everything they intend to, on time and on budget – though it is also disappointing that as many as 41.4% fail so completely.

However, the real insight is that the characteristics of uncertainty, risk, timescales and governance for IT projects are very different from construction and infrastructure projects. All of these issues can be managed; but they are managed in very different ways. Consequently, it will take time and experience for the cultures of IT and construction to reconcile their approaches to risk and project management, and consequently to present a confident joint approach to investors.

The implementation of Smart Cities IT solutions on Cloud Computing platforms  by their providers mitigates this risk to an extent by “pre-fabricating” these components of smart infrastructure. But there is still risk associated with the integration of these solutions with physical infrastructure and engineering systems. As we gain further experience of carrying out that integration, IT vendors, investors, construction companies and their customers will collectively increase their confidence in managing this risk, unlocking investment at greater scale.

(The unfortunate consequence of a driver who put more trust in their satellite navigation and GPS technology than its designers expected. Photo by Salmon Assessors)

Operational Risk

We are all familiar with IT systems failing.

Our laptops, notebooks and tablets crash, and we lose work as a consequence. Our television set-top boxes reboot themselves midway through recording programmes. Websites become unresponsive or lose data from our shopping carts.

But when failures occur in IT systems that monitor and control physical systems such as cars, trains and traffic lights, the consequences could be severe: damage to property, injury; and death. Organisations that invest in and operate infrastructure are conscious of these risks, and balance them against the potential benefits of new technologies when deciding whether to use them.

The real-world risks of technology failure are already becoming more severe as all of us adopt consumer technologies such as smartphones and social media into every aspect of our lives (as the driver who followed his satellite navigation system off the roads of Paris onto the pavement, and then all the way down the steps into the Paris Metro, discovered).

The noted urbanist Jane Jacobs defined cities by their ability to provide privacy and safety amongst citizens who are usually strangers to each other; and her thinking is still regarded today by many urbanists as the basis of our understanding of cities. As digital technology becomes more pervasive in city systems, it is vital that we evolve the policies that govern digital privacy to ensure that those systems continue to support our lives, communities and businesses successfully.

Google’s careful exploration of self-driving cars in partnership with driver licensing organisations is an example of that process working well; the discovery of a suspected 3D-printing gun factory in Manchester last year is an example of it working poorly.

These issues are already affecting the technologies involved in Smart Cities solutions. An Argentinian researcher recently demonstrated that traffic sensors used around the world could be hacked into and caused to create misleading information. At the time of installation it was assumed that there would never be a motivation to hack into them and so they were configured with insufficient security. We will have to ensure that future deployments are much more secure.

Conversely, we routinely trust automated technology in many aspects of our lives – the automatic pilots that land the planes we fly in, and the anit-lock braking systems that slow and stop our cars far more effectively than we are able to ourselves.

If we are to build the same level of trust and confidence in Smart City solutions, we need to be open and honest about their risks as well as their benefits; and clear how we are addressing them.

(Cars from the car club “car2go” ready to hire in Vancouver. Despite succeeding in many cities around the world, the business recently withdrew from the UK after failing to attract sufficient customers to two pilot deployments in London and Birmingham. The UK’s cultural attraction of private car ownership has proved too strong at present for a shared ownership business model to succeed. Photo by Stephen Rees).

Outcomes Risk

Smart infrastructures such as Stockholm’s road-use charging scheme and London’s congestion charge were constructed in the knowledge that they would be financially sustainable, and with the belief that they would create economic and environmental benefits. Subsequent studies have shown that they did achieve those benefits, but data to predict them confidently in advance did not exist because they were amongst the first of their kind in the world.

The benefits of “Smart” schemes such as road-use charging and smart metering cannot be calculated deterministically in advance because they depend on citizens changing their behaviour – deciding to ride a bus rather than to drive a car; or deciding to use dishwashers and washing machines overnight rather than during the day.

There are many examples of Smart Cities projects that have successfully used technology to encourage behaviour change. In a smart water meter project in Dubuque, for example, households were given information that told them whether their domestic appliances were being used efficiently, and alerted to any leaks in their supply of water. To a certain extent, households acted on this information to improve the efficiency of their water usage. But a control group who were also given a “green points” score telling them how their water conservation compared to that of their near neighbours were found to be twice as likely to take action to improve their efficiency.

However, these techniques are notoriously difficult to apply successfully. A recycling scheme that adopted a similar approach found instead that it lowered recycling rates across the community: households who learned that they were putting more effort into recycling than their neighbours asked themselves “if my neighbours aren’t contributing to this initiative, then why should I?”

The financial vehicles that enable investment in infrastructure and property are either government-backed instruments that reward economic and social outcomes such as reductions in carbon footprint or the creation of jobs ; or market-based instruments  based on the creation of direct financial returns.

So are we able to predict those outcomes confidently enough to enable investment in Smart Cities solutions?

I put that question to the debating panel at the Tomorrow’s Cities meeting. In particular, I asked whether investors would be willing to purchase bonds in smart metering infrastructures with a rate of return dependent on the success of those infrastructures in encouraging consumers to  reduce their use of water and energy.

The response was a clear “no”. The application of those technologies and their effectiveness in reducing the use of water and electricity by families and businesses is too uncertain for such investment vehicles to be used.

Smart Cities solutions are not straightforward engineering solutions such as electric vehicles whose cost, efficiency and environmental impacts can be calculated in a deterministic way. They are complex socio-technical systems whose outcomes are emergent and uncertain.

Our ability to predict their performance and impact will certainly improve as more are deployed and analysed, and as University researchers, politicians, journalists and the public assess them. As that happens, investors will be more willing to fund them; or, with government support, to create new financial vehicles that reward investment in initiatives that use smart technology to create social, environmental and economic improvements – just as the World Bank’s Green Bonds, launched in 2008, support environmental schemes today.

(Recycling bins in Curitiba, Brazil. As Mayor of Curitaba Jaime Lerner started one of the world’s earliest and most effective city recycling programmes by harnessing the enthusiasm of children to influence the behaviour of their parents. Lerner’s many initiatives to transform Curitaba have the characteristic of entrepreneurial leadership. Photo by Ana Elisa Ribeiro)

Evidence and Leadership

The evidence base need to support new investment vehicles is already being created. In Canada, for example, a collaboration between Canadian insurers and cities has developed a set of tools to create a common understanding of the financial risk created by the effects of climate change on the resilience of city infrastructures.

More internationally, the “Little Rock Accord” between the Madrid Club of former national Presidents and Prime Ministers and the P80 group of pension funds agreed to create a task force to increase the degree to which pension and sovereign wealth funds invest in the deployment of technology to address climate change issues, shortages in resources such as energy, water and food, and sustainable, resilient growth. My colleague the economist Mary Keeling has been working for IBM’s Institute for Business Value to more clearly analyse and express the benefits of Smart approaches – in water management and transportation, for example. And Peter Head’s Ecological Sequestration Trust and Robert Bishop’s International Centre for Earth Simulation are both pooling international data and expertise to create models that explore how more sustainable cities and societies might work.

But the Smart City programmes which courageously drive the field forward will not always be those that demand a complete and detailed cost/benefit analysis in advance. Writing in “The Plundered Planet”, the economist Paul Collier asserts that any proposed infrastructure of reasonable novelty and significant scale is effectively so unique – especially when considered in its geographic, political, social and economic context – that an accurate cost/benefit case simply cannot be constructed.

Instead, initiatives such as London’s congestion charge and bicycle hire scheme, Sunderland’s City Cloud and Bogota’s bikeways and parks were created by courageous leaders with a passionate belief that they could make their cities better. As more of those leaders come to trust technology and the people who deliver it, their passion will be another force behind the adoption of technology in city systems and infrastructure.

What’s the risk of not investing in a Smarter City?

For at least the last 50 years, we have been observing that life is speeding up and becoming more complicated. In his 1964 work “Notes on the Synthesis of Form“, the town planner Christopher Alexander wrote:

“At the same time that the problems increase in quantity, complexity and difficulty, they also change faster than ever before. New materials are developed all the time, social patterns alter quickly, the culture itself is changing faster than it has ever changed before … To match the growing complexity of problems, there is a growing body of information and specialist experience … [but] not only is the quantity of information itself beyond the reach of single designers, but the various specialists who retail it are narrow and unfamiliar with the form-makers’ peculiar problems.”

(Alexander’s 1977 work “A Pattern Language: Towns, Buildings, Construction” is one of the most widely read books on urban design; it was also an enormous influence on the development of the computer software industry).

The physicist Geoffrey West has shown that this process is alive and well in cities today. As the world’s cities grow, life in them speeds up, and they create ideas and wealth more rapidly, leading to further growth. West has observed that, in a world with constrained resources, this process will lead to a catastrophic failure when demand for fresh water, food and energy outstrips supply – unless we change that process, and change the way that we consume resources in order to create rewarding lives for ourselves.

There are two sides to that challenge: changing what we value; and changing how we create what we value from the resources around us.

(...)

(“Makers” at the Old Print Works in Balsall Heath, Birmingham, sharing the tools, skills, contacts and ideas that create successful small businesses in local communities)

The Transition movement, started by Rob Hopkins in Totnes in 2006, is tackling both parts of that challenge. “Transition Towns” are communities who have decided to act collectively to transition to a way of life which is less resource-intensive, and to value the characteristics of such lifestyles in their own right – where possible trading regionally, recycling and re-using materials and producing and consuming food locally.

The movement does not advocate isolation from the global industrial economy, but it does advocate that local, alternative products and services in some cases can be more sustainable than mass-produced commodities; that the process of producing them can be its own reward; and that acting at community level is for many people the most effective way to contribute to sustainability. From local currencies, to food-trading networks to community energy schemes, many “Smart” initiatives have emerged from the transition movement.

We will need the ideas and philosophy of Transition to create sustainable cities and communities – and without them we will fail. But those ideas alone will not create a sustainable world. With current technologies, for example, one hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency. And Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America.

Cities depend on vast infrastructures and supply-chains, and they create complex networks of transactions supported by transportation and communications. Community initiatives will adapt these infrastructures to create local value in more sustainable, resilient ways, and by doing so will reduce demand. But they will not affect the underlying efficiency of the systems themselves. And I do not personally believe that in a world of 7 billion people in which resources and opportunity are distributed extremely unevenly that community initiatives alone will reduce demand significantly enough to achieve sustainability.

We cannot simply scale these systems up as the world’s population grows to 9 billion by 2050, we need to change the way they work. That means changing the technology they use, or changing the way they use technology. We need to make them smarter.

No-one wants top-down, technology-driven cities. They’d be dumb, not smart.

("Visionary City" by William Robinson Leigh)

(William Robinson Leigh’s 1908 painting “Visionary City” envisaged future cities constructed from mile-long buildings of hundreds of storeys connected by gas-lit skyways for trams, pedestrians and horse-drawn carriages. A century later we’re starting to realise not only that developments in transport and power technology have eclipsed Leigh’s vision, but that we don’t want to live in cities constructed from buildings on this scale.)

But “bottom up” is not enough; in order to succeed at scale, grass-roots innovation and localism need support from a new environment of policy, finance, infrastructure and technology.

I took part in a panel discussion last week with Leo Johnson, co-author of “Turnaround Challenge: Business and the City of the Future” (and, coincidentally, the brother of London’s Mayor, Boris Johnson). Leo argued in an impassioned speech that we should avoid overly deterministic “top-down” approaches to developing sustainable cities, and should instead encourage “bottom-up” innovation. His points echoed some of the criticisms levelled at parts of the Smart Cities movement by writers such as Adam Greenfield and Richard Sennett.

But these are arguments against a proposition that I simply don’t think anyone is advocating today.

In all of my contacts across the world, in technology, government and urban design, I don’t know anyone who thinks it would be “smart” for cities to be run wholly by technological systems; who believes that digital data can provide “perfect knowledge” about city systems; or who thinks that cities built and run entirely by deterministic plans driven from the top down would be healthy, vibrant places to live (or indeed are possible at all).

Smart cities are not about putting machines in control, and they are not about imposing an idealistic, corporate way of life. They are simply about harnessing the ever-advancing capabilities of technology in our efforts to create a more sustainable, equitable, resilient world in the cities in which more and more of us are living.

The ultimate purpose of cities is to enable the people who live and work in them to lead safe and rewarding lives with their families. The raw material from which the life of cities is built is therefore small-scale – it is the activity of individual people in their personal and family life or going about their work. Consequently, there is an enormous focus in smart cities and smart urbanism on “bottom-up” thinking : how can we enable private businesses, community innovators and citizen-led initiatives to be successful, and to create sustainable wealth and social value? If the opportunities to do that are widely available, then cities as a whole will be more successful, and, when economic or climate events affect their circumstances, they will be more adaptable and resilient.

But let’s be frank: that’s an awfully big “if”.

There’s nothing new about “bottom-up” creativity – that’s simply what people do as they get on with life, using whatever resources are available to them to craft a living, support their families and build successful businesses. But the truth is that we are not very good at all at creating environments in which everybody has an equal chance of succeeding in those efforts.

For bottom-up creativity to be broadly successful, citizens, communities and businesses must be able to adapt the city infrastructures that provide food, water, energy, transport and resources to serve their specific needs and opportunities. Those infrastructures are vast – they support 3 billion urban lives worldwide today, and will need to scale to support 3 billion more by 2050. Communities and neighbourhoods with persistently low levels of economic activity and social mobility – those most in need of innovative answers to their challenges – are often those who have the least access to those infrastructures, and whose issues can include poor schools, disconnection from transport networks, exclusion from mainstream financial systems, fuel poverty and so on. Those problems will not solve themselves: we will only adapt city infrastructures and institutions to serve these communities better through significant effort from the businesses and governments that control and govern them.

(When planning policy and other regulations allow, urban farms can adapt the physical infrastructure of cities to create new sources of food. A similar combination of policy innovation and grass-roots creativity could enable similarly creative uses of digital infrastructure and information in cities. Photo by ToadLickr)

From the governance of cities, to the policies that affect investment, to the oversight, administration and operation of city infrastructures – these processes work top-down; and in order for us to rely on “bottom-up” creativity improving cities for all of their citizens, we must adapt and improve them to better support that creativity.

Technology plays three roles in this context. Firstly, smartphones, tablets, 3D printers and social media are examples of new consumer and citizen tools that we could barely imagine as recently as a decade ago. They make immense power available to bottom-up, small-scale activity and local innovations, and have resulted in the emergence of significant economic trends such as the “sharing economy” of business models based on peer-to-peer transactions.

Secondly, though, many of those technologies depend fundamentally on the availability of connectivity infrastructure; and that infrastructure is not available everywhere. Some 18% of adults in the UK have never been online; and children today without access to the internet at home and in school are at an enormous disadvantage. Most cities and countries have not yet addressed this challenge. Private sector network providers will not deploy connectivity in areas which are insufficiently economically active for them to make a profit, and Government funding is not yet sufficient to close the gap. This challenge has not and will not be addressed by bottom-up creativity; it requires top-down legislation and investment.

Thirdly, technology can help to open up the operations and infrastructures of big institutions and companies to local innovation – from the provision of “open data” and API interfaces that allow these systems to be adapted to new uses; to the use of technology to measure and trace the social and environmental impact of goods and services in order to inform consumer choice so that it can become a lever to improve the impact of the vast supply chains that supply cities. Unilever and Tesco are just two examples of businesses pursuing this business strategy.

These are the roles of technology that enable a meeting or balance between top-down and bottom-up forces in cities – a balance that Anthony Townsend, author of “Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia” has advocated in our online exchanges.

Smart cities is not a prescriptive, top-down, corporate movement. The perception that it was arose because a handful of early and highly visible examples such as Masdar and Songdo were new, large-scale developments financed by strong economic growth in emerging markets; or because some of the rapid urbanisation taking place today is in countries with strongly hierarchical governance. These examples also gave emphasis to the importance of efficiently and intelligently operating large-scale city infrastructures – without which we’ll never sustainably and resiliently support the 6 billion city inhabitants predicted by the United Nations’ World Urbanisation Prospects report by 2050.

(Delegates at Gov Camp 2013 at IBM’s Southbank office, London. Gov Camp is an annual conference which brings together anyone interested in creating new uses of digital technology in public services. Photo by W N Bishop)

But we must give equal recognition to the vast amount of bottom-up creativity that took place throughout this period; that continues today; and which has exploited technology in strikingly innovative ways.

The “open data” movement has become a force for transparency in government and for addressing social and environmental issues. “Civic hacking” communities have sprung up around the world, using this data to create novel new public services. Many of my colleagues have contributed to that movement, either representing IBM, or simply as personal contributions to the cities in which they live – as have the employees of many other businesses. And community initiatives everywhere now routinely exploit technologies such as social media and crowdfunding; or co-create schemes to apply commercial technologies for their own purposes. For example, in the village of Chale on the Isle of Wight, a community with significant levels of fuel poverty worked together to use smart energy meters to reduce their energy bills by up to 50%.

There are two serious challenges in how we apply these ideas more broadly that demand debate:

And:

The Economist magazine reminded us of the importance of those questions in a recent article describing the enormous investments made in public institutions in the past in order to distribute the benefits of the Industrial Revolution to society at large rather than concentrate them on behalf of business owners and the professional classes.

We have only partially been successful in those efforts. As one measure, it’s common for life expectancy to vary by around 20 years between the poorest and richest parts of the same city in the UK. Scandinavian cities do not show that disparity – their culture and system of taxation, benefits and collective insurance create a more equal opportunity to live. In the UK, the US and other societies that emphasise greater retention of private wealth and the distribution of opportunity through flexible market economies, how can we better approach Scandinavia’s level of equality?

These questions are much more important than perpetuating an adversarial debate between “top down” and “bottom up” thinking. No-one wants top-down, technology driven cities. They’d be dumb, not smart. And no-one believes that digital data can provide “perfect knowledge” – we all understand that perfect knowledge is neither possible nor desirable.

Digital data and technology do much more realistic and exciting things. They allow us to uncover the hidden opportunity to transact locally with people and businesses in our community. They reveal patterns in the messy complexity of social, economic, physical and environmental systems that help us to look ahead to likely outcomes, take proactive measures and do more with less. And they make it possible for us to connect to people around the world who we’ve never met but with whom we share an interest or can create a new opportunity.

A smart city creates an environment in which technology, infrastructure, policies and culture make people safe, and provide the resources and opportunities they need – including better access to technology and information – to create safer and more rewarding lives.

That’s not top-down or bottom-up. It’s common sense. Let’s stop arguing and start applying it.

Six ways to design humanity and localism into Smart Cities

(Birmingham’s Social Media Cafe, where individuals from every part of the city share their experience using social media to promote their businesses and community initiatives. Photograph by Meshed Media)

The Smart Cities movement is sometimes criticised for appearing to focus mainly on the application of technology to large-scale city infrastructures such as smart energy grids and intelligent transportation.

It’s certainly vital that we manage and operate city services and infrastructure as intelligently as possible – there’s no other way to deal with the rapid urbanisation taking place in emerging economies; or the increasing demand for services such as health and social care in the developed world whilst city budgets are shrinking dramatically; and the need for improved resilience in the face of climate change everywhere.

But to focus too much on this aspect of Smart Cities and to overlook the social needs of cities and communities risks forgetting what the full purpose of cities is: to enable a huge number of individual citizens to live not just safe, but rewarding lives with their families.

Maslow’s Hierarchy of Needs identifies our most basic requirements to be food, water, shelter and security. The purpose of many city infrastructures is to answer those needs, either directly (buildings, utility infrastructures and food supply chains) or indirectly (the transport systems that support us and the businesses that we work for).

Important as those needs are, though – particularly to the billions of people in the world for whom they are not reliably met – life would be dull and unrewarding if they were all that we aspired to.

Maslow’s hierarchy next relates the importance of family, friends and “self-actualisation” (which can crudely be described as the process of achieving things that we care about). These are the more elusive qualities that it’s harder to design cities to provide. But unless cities provide them, they will not be successful. At best they will be dull, unrewarding places to live and work, and will see their populations fall as those can migrate elsewhere. At worst, they will create poverty, poor health and ultimately short, unrewarding lives.

A Smart City should not only be efficient, resilient and sustainable; it should improve all of these qualities of life for its citizens.

So how do we design and engineer them to do that?

(Maslow’s Hierarchy of Needs, image by Factoryjoe via Wikimedia Commons)

Tales of the Smart City

Stories about the people whose lives and businesses have been made better by technology tell us how we might answer that question.

In the Community Lover’s Guide to Birmingham, for example, Nick Booth describes the way his volunteer-led social media surgeries helped the Central Birmingham Neighbourhood Forum, Brandwood End Cemetery and Jubilee Debt Campaign to benefit from technology.

Another Birmingham initiative, the Northfield Ecocentre, crowdfunded £10,000 to support their “Urban Harvest” project. The funds helped the Ecocentre pick unwanted fruit from trees in domestic gardens in Birmingham and distribute it between volunteers, children’s centres, food bank customers and organisations promoting healthy eating; and to make some of it into jams, pickles and chutneys to raise money so that in future years the initiative can become self-sustaining.

In the village of Chale on the Isle of Wight, a community not served by the national gas power network and with significant levels of fuel poverty, my colleague Andy Stanford-Clark has helped an initiative not only to deploy smart meters to measure the energy use of each household; but to co-design with residents how they will use that technology, so that the whole community feels a sense of ownership and inclusion in the initiative. The project has resulted in a significant drop in rent arrears as residents use the technology to reduce their utility bills, in some cases by up to 50 percent. Less obviously, the sense of shared purpose has extended to the creation of a communal allotment area in the village and a successful compaign to halve bus fares in the area.

There are countless other examples. Play Fitness “gamify” exercise to persuade children to get fit, and work very hard to ensure that their products are accessible to children in communities of any level of wealth.  Casserole Club use social media to introduce people who can’t cook for themselves to people who are prepared to volunteer to cook for others. The West Midlands Collaborative Commerce Marketplace uses analytics technology to help it’s 10,000 member businesses win more than £4billion in new contracts each year. … and so on.

None of these initiatives are purely to do with technology. But they all use technologies that simply were not available and accessible as recently as a few years ago to achieve outcomes that are important to cities and communities. By understanding how the potential of technology was apparent to the stakeholders in such initiatives, why it was affordable and accessible to them, and how they acquired the skills to exploit it, we can learn how to design Smart Cities in a way that encourages widespread grass-roots, localised innovation.

(Top: Birmingham's Masshouse Circus roundabout, part of the inner-city ringroad that famously impeded the city's growth. Bottom: This pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

(Top: Birmingham’s Masshouse Circus roundabout, part of the inner-city ringroad that famously impeded the city’s growth until it was demolished. Photo by Birmingham City Council. Bottom: Pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

A tale of two roundabouts

History tells us that we should not assume that it will be straightforward to design Smart Cities to achieve that objective, however.

A measure of our success in building the cities we know today from the generations of technology that shaped them – concrete, cars and lifts – is the variation in life expectancy across them. In the UK, it’s common for life expectancy to vary by around 20 years between the poorest and richest parts of the same city.

That staggering difference is the outcome of a complex set of issues including the availability of education and opportunity, lifestyle factors such as diet and exercise, and the accessibility of city services. But a significant influence on many of those issues is the degree to which the large-scale infrastructures built to support our physiological needs and the demands of the economy also create a high-quality environment for daily life.

The photograph on the right shows two city transport infrastructures that are visually similar, but that couldn’t be more different in their influence on the success of the cities that they are part of.

The picture at the top shows Masshouse Circus in Birmingham in 2001 shortly before it was demolished. It was constructed in the 1960s as part of the city’s inner ring-road, intended to improve connectivity to the national economy through the road network. However, the impact of the physical barrier that it created to pedestrian traffic can be seen by the stark difference in land value inside and outside the “concrete collar” of the ring-road. Inside the collar, land is valuable enough for tall office blocks to be constructed on it; whilst outside it is of such low value that it is used as a ground-level carpark.

In contrast, the pedestrian roundabout in Lujiazui, China pictured at the bottom, constructed over a busy road junction, balances the need to support traffic flows through the city with the need for people to walk freely about the areas in which they live and work. As can be seen from the people walking all around it, it preserves the human vitality of an area that many busy roads flow through. 

We should take insight from these experiences when considering the design of Smart City infrastructures. Unless those infrastructures are designed to be accessible to and usable by citizens, communities and local businesses, they will be as damaging as poorly constructed buildings and poorly designed transport networks. If that sounds extreme, then consider the dangers of cyber-stalking, or the implications of the gun-parts confiscated from a suspected 3D printing gun factory in Manchester last year that had been created on general purpose machinery from digital designs shared through the internet. Digital technology has life and death implications in the real world.

For a start, we cannot take for granted that city residents have the basic ability to access the internet and digital technology. Some 18% of adults in the UK have never been online; and children today without access to the internet at home and in school are at an enormous disadvantage. As digital technology becomes even more pervasive and important, the impact of this digital divide – within and between people, cities and nations – will become more severe. This is why so many people care passionately about the principle of “Net Neutrality” – that the shared infrastructure of the internet provides the same service to all of its users; and does not offer preferential access to those individuals or corporations able to pay for it.

These issues are very relevant to cities and their digital strategies and governance. The operation of any form of network requires physical infrastructure such as broadband cables, wi-fi and 4G antennae and satellite dishes. That infrastructure is regulated by city planning policies. In turn, those planning policies are tools that cities can and should use to influence the way in which technology infrastructure is deployed by private sector service providers.

(Photograph of Aesop’s fable “The Lion and the Mouse” by Liz West)

Little and big

Cities are enormous places in which what matters most is that millions of individually small matters have good outcomes. They work well when their large scale systems support the fine detail of life for every one of their very many citizens: when “big things” and “little things” work well together.

A modest European or US city might have 200,000 to 500,000 inhabitants; a large one might have between one and ten million. The United Nations World Urbanisation Prospects 2011 revision recorded 23 cities with more than 10 million population in 2011 (only six of them in the developed world); and predicted that there would be nearly 40 by 2025 (only eight of them in the developed world – as we define it today). Overall, between now and 2050 the world’s urban population will double from 3 billion to 6 billion. 

A good example of the challenges that this enormous level of urbanisation is already creating is the supply of food. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency; and Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America Feeding the 7 to 10 billion people who will inhabit the planet between now and 2050, and the 3 to 6 billion of them that will live in dense cities, is certainly a challenge on an industrial scale. 

In contrast, Casserole Club, the Northfield Eco-Centre, the Chale Project and many other initiatives around the world have demonstrated the social, health and environmental benefits of producing and distributing food locally. Understanding how to combine the need to supply food at city-scale with the benefits of producing it locally and socially could make a huge difference to the quality of urban lives.

The challenge of providing affordable broadband connectivity throughout cities demonstrates similar issues. Most cities and countries have not yet addressed that challenge: private sector network providers will not deploy connectivity in areas which are insufficiently economically active for them to make a profit, and Government funding is not yet sufficient to close the gap.

In his enjoyable and insightful book “Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia“, Anthony Townsend describes a grass-roots effort by civic activists to provide New York with free wi-fi connectivity. I have to admire the vision and motivation of those involved, but – rightly or wrongly; and as Anthony describes – wi-fi has ultimately evolved to be dominated by commercial organisations.  

As technology continues to improve and to reduce in price, the balance of power between large, commercial, resource-rich institutions and small, agile, resourceful  grassroots innovators will continue to changeTechnologies such as Cloud Computing, social media, 3D printing and small-scale power generation are reducing the scale at which many previously industrial technologies are now economically feasible; however, it will remain the case for the foreseeable future that many city infrastructures – physical and digital – will be large-scale, expensive affairs requiring the buying power and governance of city-scale authorities and the implementation resources of large companies.

But more importantly, neither small-scale nor large-scale solutions alone will meet all of our needs. Many areas in cities – usually those that are the least wealthy – haven’t yet been provided with wi-fi or broadband connectivity by either.  

(Cars in Frederiksberg, Copenhagen wishing to join a main road must give way to cyclists and pedestrians)

(A well designed urban interface between people and infrastructure. Cars in Frederiksberg, Copenhagen wishing to join a main road must give way to cyclists and pedestrians passing along it)

We need to find the middle ground between the motivations, abilities and cultures of large companies and formal institutions on one hand; and those of agile, local innovators and community initiatives on the other. The pilot project to provide broadband connectivity and help using the internet to Castle Vale in Birmingham is a good example of finding that balance.

And I am optimistic that we can find it more often. Whilst Anthony is rightly critical of approaches to designing and building city systems that are led by technology, or that overlook the down-to-earth and sometimes downright “messy” needs of people and communities for favour of unrealistic technocratic and corporate utopias; the reality of the people I know that are employed by large corporations on Smart City projects is that they are acutely aware of the limitations as well as the value of technology, and are passionately committed to the human value of their work. That passion is often reflected in their volunteered commitment to “civic hacking“, open data initiatives, the teaching of technology in schools and other activities that help the communities in which they live to benefit from technology.

But rather than relying on individual passion and integrity, how do we encourage and ensure that large-scale investments in city infrastructures and technology enable small-scale innovation, rather than stifle it?

Smart urbanism and massive/small innovation

I’ve taken enormous inspiration in recent years from the architect Kelvin Campbell whose “Massive / Small” concept and theory of “Smart Urbanism” are based on the belief that successful cities emerge from physical environments that encourage “massive” amounts of “small”-scale innovation – the “lively, diversified city, capable of continual, close- grained improvement and change” that Jane Jacobs described in “The Death and Life of Great American Cities“.

We’ll have to apply similar principles in order for large-scale city technology infrastructures to support localised innovation and value-creation. But what are the practical steps that we can take to put those principles into practise?

Step 1: Make institutions accessible

There’s a very basic behaviour that most of us are quite bad at – listening. In particular, if the institutions of Smart Cities are to successfully create the environment in which massive amounts of small-scale innovation can emerge, then they must listen to and understand what local activists, communities, social innovators and entrepreneurs want and need.

Many large organisations – whether they are local authorities or private sector companies – are poor at listening to smaller organisations. Their decision-makers are very busy; and communications, engagement and purchasing occur through formally defined processes with legal, financial and confidentiality clauses that can be difficult for small or informal organisations to comply with. The more that we address these barriers, the more that our cities will stimulate and support small-scale innovation. One way to do so is through innovations in procurement; another is through the creation of effective engagements programmes, such as the Birmingham Community Healthcare Trust’s “Healthy Villages” project which is listening to communities expressing their need for support for health and wellbeing. This is why IBM started our “Smarter Cities Challenge” which has engaged hundreds of IBM’s Executives and technology experts in addressing the opportunities and challenges of city communites; and in so doing immersed them in very varied urban cultures, economies, and issues.

But listening is also a personal and cultural attitude. For example, in contrast to the current enthusiasm for cities to make as much data as possible available as “open data”, the Knight Foundation counsel a process of engagement and understanding between institutions and communities, in order to identify the specific information and resources that can be most usefully made available by city institutions to individual citizens, businesses and social organisations.

(Delegates at Gov Camp 2013 at IBM’s Southbank office, London. Gov Camp is an annual conference which brings together anyone interested in the use of digital technology in public services. Photo by W N Bishop)

In IBM, we’ve realised that it’s important to us to engage with, listen to and support small-scale innovation in its many forms when helping our customers and partners pursue Smarter City initiatives; from working with social enterprises, to supporting technology start-ups through our Global Entrepreneur Programme, to engaging with the open data and civic hacking movements.

More widely, it is often talented, individual leaders who overcome the barriers to engagement and collaboration between city institutions and localised innovation. In “Resilience: why things bounce back“, Andrew Zolli describes many examples of initiatives that have successfully created meaningful change. A common feature is the presence of an individual who shows what Zolli calls”translational leadership“: the ability to engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.

Step 2: Make infrastructure and technology accessible

Whilst we have a long way to go to address the digital divide, Governments around the world recognise the importance of access to digital technology and connectivity; and many are taking steps to address it, such as Australia’s national deployment of broadband internet connectivity and the UK’s Urban Broadband Fund. However, in most cases, those programmes are not sufficient to provide coverage everywhere.

Some businesses and social initiatives are seeking to address this shortfall. CommunityUK, for example, are developing sustainable business models for providing affordable, accessible connectivity, and assistance using it, and are behind the Castle Vale project in Birmingham. And some local authorities, such as Sunderland and Birmingham, have attempted to provide complete coverage for their citizens – although just how hard it is to achieve that whilst avoiding anti-competition issues is illustrated by Birmingham’s subsequent legal challenges.

We should also tap into the enormous sums spent on the physical regeneration of cities and development of property in them. As I first described in June last year, while cities everywhere are seeking funds for Smarter City initiatives, and often relying on central government or research grants to do so, billions of Pounds, Euros, and Dollars are being spent on relatively conventional property development and infrastructure projects that don’t contribute to cities’ technology infrastructures or “Smart” objectives.

Local authorities could use planning regulations to steer some of that investment into providing Smart infrastructure, basic connectivity, and access to information from city infrastructures to citizens, communities and businesses. Last year, I developed a set of “Smart City Design Principles” on behalf a city Council considering such an approach, including:

Principle 4: New or renovated buildings should be built to contain sufficient space for current and anticipated future needs for technology infrastructure such as broadband cables; and of materials and structures that do not impede wireless networks. Spaces for the support of fixed cabling and other infrastructures should be easily accessible in order to facilitate future changes in use.

Principle 6: Any development should ensure wired and wireless connectivity is available throughout it, to the highest standards of current bandwidth, and with the capacity to expand to any foreseeable growth in that standard.

(The Birmingham-based Droplet smartphone payment service, now also operating in London, is a Smart City start-up that has won backing from Finance Birmingham, a venture capital company owned by Birmingham City Council)

Step 3: Support collaborative innovation

Small-scale, local innovations will always take place, and many of them will be successful; but they are more likely to have significant, lasting, widespread impact when they are supported by city institutions with resources.

That support might vary from introducing local technology entrepreneurs to mentors and investors through the networks of contacts of city leaders and their business partners; through to practical assistance for social enterprises, helping them to put in place very basic but costly administration processes to support their operations.

City institutions can also help local innovations to thrive simply by becoming their customers. If Councils, Universities and major local employers buy services from innovative local providers – whether they be local food initiatives such as the Northfield Ecocentre or high-tech innovations such as Birmingham’s Droplet smartphone payment service – then they provide direct support to the success of those businesses.

In Birmingham,for example, Finance Birmingham (a Council-owned venture capital company) and the Entrepreneurs for the Future (e4F) scheme provide real, material support to the city’s innovative companies; whilst Bristol’s Mayor George Ferguson and Lambeth’s Council both support their local currencies by allowing salaries to be paid in them.

It becomes more obvious  why stakeholders in a city might become involved in collaborative innovation when they have the opportunity to co-create a clear set of shared priorities. Those priorities can be compared to the objectives of innovative proposals seeking support, whether from social initiatives or businesses; used as the basis of procurement criteria for goods, services and infrastructure; set as the objectives for civic hacking and other grass-roots creative events; or even used as the criteria for funding programmes for new city services, such as the “Future Streets Incubator” that will shortly be launched in London as a result of the Mayor of London’s Roads Task Force.

In this context, businesses are not just suppliers of products and services, but also local institutions with significant supply chains, carbon and economic footprints, purchasing power and a huge number of local employees. There are many ways such organisations can play a role in supporting the development of an open, Smarter, more sustainable city.

The following “Smart City Design Principles” promote collaborative innovation in cities by encouraging support from development and regeneration initiatives:

Principle 12: Consultations on plans for new developments should fully exploit the capabilities of social media, virtual worlds and other technologies to ensure that communities affected by them are given the widest, most immersive opportunity possible to contribute to their design.

Principle 13: Management companies, local authorities and developers should have a genuinely engaging presence in social media so that they are approachable informally.

Principle 14: Local authorities should support awareness and enablement programmes for social media and related technologies, particularly “grass roots” initiatives within local communities.

Step 4: Promote open systems

A common principle between the open data movement; civic hacking; localism; the open government movement; and those who support “bottom-up” innovations in Smart Cities is that public systems and infrastructure – in cities and elsewhere – should be “open”. That might mean open and transparent in their operation; accessible to all; or providing open data and API interfaces to their technology systems so that citizens, communities and businesses can adapt them to their own needs. Even better, it might mean all of those things.

The “Dublinked” information sharing partnership, in which Dublin City Council, three surrounding County Councils and  service providers to the city share information and make it available to their communities as “open data”, is a good example of the benefits that openness can bring. Dublinked now makes 3,000 datasets available to local authority analysts; to researchers from IBM Research and the National University of Ireland; and to businesses, entrepreneurs and citizens. The partnership is identifying new ways for the city’s public services and transport, energy and water systems to work; and enabling the formation of new, information-based businesses with the potential to export the solutions they develop in Dublin to cities internationally. It is putting the power of technology and of city information not only at the disposal of the city authority and its agencies, but also into the hands of communities and innovators.

(I was delighted this year to join Innovation Birmingham as a non-Executive Director in addition to my role with IBM. Technology incubators – particularly those, like Innovation Birmingham and Sunderland Software City, that are located in city centres – are playing an increasingly important role in making the support of city institutions and major technology corporations available to local communities of entrepreneurs and technology activists)

In a digital future, the more that city infrastructures and services provide open data interfaces and APIs, the more that citizens, communities and businesses will be able to adapt the city to their own needs. This is the modern equivalent of the grid system that Jane Jacobs promoted as the most adaptable urban form. A grid structure is the basis of Edinburgh’s “New Town”, often regarded as a masterpiece of urban planning that has proved adaptable and successful through the economic and social changes of the past 250 years, and is also the starting point for Kelvin Campbell’s work.

But open data interfaces and APIs will only be widely exploitable if they conform to common standards. In order to make it possible to do something as simple as changing a lightbulb, we rely on open standards for the levels of voltage and power from our electricity supply; the physical dimensions of the socket and bulb and the characteristics of their fastenings; specifications of the bulb’s light and heat output; and the tolerance of the bulb and the fitting for the levels of moisture found in bathrooms and kitchens. Cities are much more complicated than lightbulbs; and many more standards will be required on order for us to connect to and re-configure their systems easily and reliably.

Open standards are also an important tool in avoiding city systems becoming “locked-in” to any particular supplier. By specifying common characteristics that all systems are required to demonstrate, it becomes more straightforward to exchange one supplier’s implementation for another.

Some standards that Smarter City infrastructures can use are already in place – for example, Web services and REST that specify the general ways in which computer systems interact, and the Common Alerting Protocol which is more specific to interactions between systems that monitor and control the physical world. But many others will need to be invented and encouraged to spread. The City Protocol Society is one organisation seeking to develop those new standards; and the British Standards Institute recently published the first set of national standards for Smarter Cities in the UK, including a standard for the interoperability of data between Smart City systems.

Some open source technologies will also be pivotal; open source (software whose source code is freely available to anyone, and which is usually written by unpaid volunteers) is not the same as open standards (independently governed conventions that define the way that technology from any provider behaves). But some open source technologies are so widely used to operate the internet infrastructures that we have become accustomed to – the “LAMP” stack of operating system, web server, database and web progamming language, for example – that they are “de facto” standards that convey some of the benefits of wide usability and interoperability of open standards. For example, IBM recently donated MQTT, a protocol for connecting information between small devices such as sensors and actuators in Smart City systems to the open source community, and it is becoming increasingly widely adopted as a consequence.

Once again, local authorities can contribute to the adoption of open standards through planning frameworks and procurement practises:

Principle 7: Any new development should demonstrate that all reasonable steps have been taken to ensure that information from its technology systems can be made openly available without additional expenditure. Whether or not information is actually available will be dependent on commercial and legal agreement, but it should not be additionally subject to unreasonable expenditure. And where there is no compelling commercial or legal reason to keep data closed, it should actually be made open.

Principle 8: The information systems of any new development should conform to the best available current standards for interoperability between IT systems in general; and for interoperability in the built environment, physical infrastructures and Smarter Cities specifically.

(The town plan for Edinburgh’s New Town, clearly showing the grid structure that gives rise to the adaptability that it is famous for showing for the past 250 years. Image from the JR James archive)

Finally, design skills will be crucial both to creating interfaces to city infrastructures that are truly useful and that encourage innovation; and in creating innovations that exploit them that in turn are useful to citizens.

At the technical level, there is already a rich corpus of best practise in the design of interfaces to technology systems and in the architecture of technology infrastructures that provide them.

But the creativity that imagines new ways to use these capabilities in business and in community initiatives will also be crucial. The new academic discipline of “Service Science” describes how designers can use technology to create new value in local contexts; and treats services such as open data and APIs as “affordances” – capabilities of infrastructure that can be adapted to the needs of an individual. In the creative industries, “design thinkers” apply their imagination and skills to similar subjects.

Step 5: Provide common services

At the 3rd EU Summit on Future Internet, Juanjo Hierro, Chief Architect for the FI-WARE “future internet platform” project, identified the specific tools that local innovators need in order to exploit city information infrastructures. They include real-time access to information from physical city infrastructures; tools for analysing “big data“; and access to technologies to ensure privacy and trust.

The Dublinked information sharing partnership is already putting some of these ideas into practise. It provides assistance to innovators in using, analysing and visualising data; and now makes available realtime data showing the location and movements of buses in the city. The partnership is based on specific governance processes that protect data privacy and manage the risk associated with sharing data.

As we continue to engage with communities of innovators in cities, we will discover further requirements of this sort. Imperial College’s “Digital Cities Exchange” research programme is investigating the specific digital services that could be provided as enabling infrastructure to support innovation and economic growth in cities, for example. And the British Standards Institute’s Smart Cities programme includes work on standards that will enable small businesses to benefit from Smart City infrastructure.

Local authorities can adapt planning frameworks to encourage the provision of these services:

Principle 9: New developments should demonstrate that they have considered the commercial viability of providing the digital civic infrastructure services recommended by credible research sources.

Step 6: Establish governance of the information economy

From the exponential growth in digital information we’ve seen in recent years, to the emergence of digital currencies such as Bitcoin, to the disruption of traditional industries by digital technology; it’s clear that we are experiencing an “information revolution” just as significant as the “industrial revolution” of the 18th and 19th centuries. We often refer to the resulting changes to business and society as the development of an “information economy“.

But can we speak in confidence of an information economy when the basis of establishing the ownership and value of its fundamental resource – digital information – is not properly established?

(Our gestures when using smartphones may be directed towards the phones, or the people we are communicating with through them; but how are they interpreted by the people around us? “Oh, yeah? Well, if you point your smartphone at me, I’m gonna point my smartphone at you!” by Ed Yourdon)

A great deal of law and regulation already applies to information, of course – such as the European Union’s data privacy legislation. But practise in this area is far less established than the laws governing the ownership of physical and intellectual property and the behaviour of the financial system that underlie the rest of the economy. This is evident in the repeated controversies concerning the use of personal information by social media businesses, consumer loyalty schemes, healthcare providers and telecommunications companies.

The privacy, security and ownership of information, especially personal information, are perhaps the greatest challenges of the digital age. But that is also a reflection of their importance to all aspects of our lives. Jane Jacobs’ description of urban systems in terms of human and community behaviour was based on those concepts, and is still regarded as the basis of our understanding of cities. New technologies for creating and using information are developing so rapidly that it is not only laws specifically concerning them that are failing to keep up with progress; laws concerning the other aspects of city systems that technology is transforming are failing to adapt quickly enough too.

A start might be to adapt city planning regulations to reflect and enforce the importance of the personal information that will be increasingly accessed, created and manipulated by city systems:

Principle 21: Any information system in a city development should provide a clear policy for the use of personal information. Any use of that information should be with the consent of the individual.

The triumph of the commons

I wrote last week that Smarter Cities should be a “middle-out” economic investment – in other words, an investment in common interests – and compared them to the Economist’s report on the efforts involved in distributing the benefits of the industrial revolution to society at large rather than solely to business owners and the professional classes.

One of the major drivers for the current level of interest in Smarter Cities and technology is the need for us to adapt to a more sustainable way of living in the face of rising global populations and finite resources. At large scale, the resources of the world are common; and at local scale, the resources of cities are common too.

For four decades, it has been widely assumed that those with access to common resources will exploit them for short term gain at the expense of long term sustainability – this is the “tragedy of the commons” first described by the economist Garrett Hardin. But in 2009, Elinor Ostrum won the Nobel Prize for economics by demonstrating that the “tragedy” could be avoidedand that a community could manage and use shared resources in a way that was sustainable in the long-term.

Ostrum’s conceptual framework for managing common resources successfully is a set of criteria for designing “institutions” that consist of people, processes, resources and behaviours. These need not necessarily be formal political or commercial institutions, they can also be social structures. It is interesting to note that some of those criteria – for example, the need for mechanisms of conflict resolution that are local, public, and accessible to all the members of a community – are reflected in the development over the last decade of effective business models for carrying out peer-to-peer exchanges using social media, supported by technologies such as reputation systems.

Of course, there are many people and communities who have championed and practised the common ownership of resources regardless of the supposed “tragedy” – not least those involved in the Transition movement founded by Rob Hopkins, and which has developed a rich understanding of how to successfully change communities for the better using good ideas; or the translational leaders described by Andrew Zolli. But Elinor Ostrum’s ideas are particularly interesting because they could help us to link the design, engineering and governance of Smarter Cities to the achievement of sustainable economic and social objectives based on the behaviour of citizens, communities and businesses.

Combined with an understanding of the stories of people who have improved their lives and communities using technology, I hope that the work of Kelvin Campbell, Rob Hopkins, Andrew Zolli, Elinor Ostrum and many others can inspire technologists, urban designers, architects and city leaders to develop future cities that fully exploit modern technology to be efficient, resilient and sustainable; but that are also the best places to live and work that we can imagine, or that we would hope for for our children.

Cities created by people like that really would be Smart.

Creating successful Smart Cities in 2014 will be an economic, financial and political challenge, not an engineering accomplishment

Why insurers, pension funds and politics will be more important to Smart Cities in 2014 than “Living Labs” or technology.

(The 2nd Futurama exhibition at the 1964 New York World’s Fair. In 50 years’ time, how will we perceive today’s visions of Smart Cities? Photo by James Vaughan)

I hope that 2014 will be the year in which we see widespread and large-scale investments in future city technology infrastructures that enable sustainable, equitably distributed economic and social growth. The truth is that we are still in the very early stages of that process.

In 2012 I spoke with a Director at a financial consultancy who’d performed a survey of European Smart City initiatives. She confirmed something that I suspected at the time: that the great majority of Smart City initiatives up to that point in the mature markets of Europe and North America had been financed by research funding, rather than on a commercial basis.

Four trends characterised the subsequent development of Smart Cities throughout 2013. Firstly, emerging markets continued to invest in supporting the rapid urbanisation they are experiencing; and businesses, Universities and national governments in developed nations recognised the commercial opportunity for them to supply that market with “Smart” solutions.

Secondly, it remains the case that the path to growth for undeveloped nations is still extremely slow and complex; so whilst there is private sector and national government interest in investing in those nations – IBM’s new Research centre in Nairobi being an example – many “smart” initiatives are carried out at small scale by local innovators, the third sector or development agencies.

In Europe and North America, a third trend was the continuing announcement of investments by the European Union and national governments in the applied research and innovation agenda in cities – such as the EU’s Horizon 2020 programme, for example.

Perhaps most importantly, though, the final trend was for cities in Europe and North America to start to make investments in the underlying technology platforms for Smart Cities from their own operational budgets, on the basis of their ability to deliver cost savings or improvements in outcomes. For example, some cities are replacing traditional parking management and enforcement services with “smart parking” schemes that are reducing congestion and pollution whilst paying for themselves through improved revenues. Others are investing their allocation of central government infrastructure funds in Smart solutions – such as Cambridge, Ontario’s use of the Canadian government’s Gas Tax Fund to invest in a sensor network and analytics infrastructure to manage the city’s physical assets intelligently.

This trend to create business cases for investment from normal operating budgets or infrastructure investment programmes is important not only because it shows that these cities are developing the business models to support investment in “Smart” solutions locally, where the finances associated with rapid economic growth and urbanisation are not present; but also because (at the risk of simplifying a challenging and complex issue) some of those business models might serve as a template for self-sustainable adoption in less developed nations.

(Downtown Cambridge, Ontario. Photo by Justin Scott Campbell)

Whilst the idea of a “Smart City” has been capturing the imagination for several years now, the reality is that many cities are still deciding what that idea might mean for them. For example, London’s “Smart London Board” published it’s Smart London plan in December, following Birmingham’s Smart City Commission report earlier in the year. And most cities who are considering such plans now or who have recently published them are still determining how to put the finance in place to carry them out.

Will “Living Labs” be the death of Smart Cities?

A concept that I see in many such plans that is intended to assist in securing finance, but that I think risks being a distraction from addressing it properly, is the “Living Lab”. 

Living labs emerged as a set of best practises for carrying out applied research into consumer or citizen services with a focus on collaborative, user-centred design and co-creation. Many cities are now seeking to win funding for their Smarter Cities initiatives by offering themselves as “Living Labs” in which consortia constructing proposals for applied research funding can carry out their activities.

The issue is not that Living Lab’s aren’t a good idea – on the contrary, they are undoubtably a very good set of prescriptions for carrying out such research and design successfully. The problem is that there are now so many cities intending to follow this approach that it no longer makes them stand out as particularly effective environments in which to perform research.

Research programmes will continue to fund the first deployments of new Smart City ideas and technology; but competition for those funds will be fierce. Cities, universities and companies that bid for them will invest many months – often more than a year – in developing their proposals; and in competitions, most entrants do not win.

The real need in cities is for the development and regeneration of infrastructure. There are certainly research topics concerning infrastructure that will attract funding from national and international government bodies; but those funds will not support the rollout of citywide infrastructure to every city in every country.

(Birmingham's new city-centre tram)

(Birmingham’s new city-centre tram is an infrastructure investment that will contribute to the same objectives as the city’s Smart City vision.)

The big questions for European and American cities in 2014 are then:

Will they continue to invest resources competing for applied research and innovation funding, limiting the speed at which the widespread deployment of new infrastructure will take place?

Or will they focus on developing independently viable business cases for investment in the infrastructure to support their
Smarter City visions?

There’s a real need for clarity about these issues. Whilst the enormous level of innovation funding being made into smart buildings, smart transport and smart cities by the EU Horizon 2020 programme and national equivalents such as the UK’s Technology Strategy Board will stimulate the field and fund important demonstration projects that deliver real value, these bodies will not pay for all of our cities to become Smarter.

The same is true for the research investments made by commercial organisations including technology companies such as IBM. Commercial research investments fund the first attempts to apply technology to solve problems or achieve objectives in new ways; those that succeed are subsequently deployed elsewhere on a commercial basis.

The risk is that in seeking investment from research programmes, we become distracted from addressing the real challenge: how to make the case for private sector investment in new technology infrastructures based on the economic and social improvements they will enable; or on the direct financial returns that they will generateIn the UK, for example, a specialist body in Government, Infrastructure UK, coordinates private sector funding for public infrastructure. And if we can persuade property developers of the value of “Smart” technologies, then cities could benefit from the enormous investments made in property every year that currently don’t result in the deployment of technology – the British Property Federation, for example, estimate that £14 billion is invested in the development of new space in the UK each year.

(This pedestrian roundabout in Lujiazui, China, constructed over a busy road junction, is a large-scale city infrastructure that balances the need to support traffic flows through the city with the importance that Jane Jacobs first described of allowing people to walk freely about the areas where they live and work. Photo by ChrisUK)

This is an opportunity we should treat with urgency. Whilst public sector finances are under immense pressure, the vast wealth held in private investment funds is seeking new opportunities following the poor returns that many traditional forms of investment have yielded over the last few years. There is a lot of work to do between the stakeholders in cities, government and finance before these investment sources can be exploited by Smart Cities – not least in agreeing reasonable expectations for how the risks and returns will be measured and shared. But I personally believe that until we do so, we will not be able to properly finance the development of our next generation of cities.

As Jane Jacobs wrote in her seminal 1961 work “The Death and Life of Great American Cities“:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close-grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

Overcoming these challenges won’t be easy, and doing so will require each of the various stakeholder organisations facing them to take bold steps this year.

Local Government

Whilst their finances throughout the developed world have been under severe pressure for a long time now, local government bodies are still responsible for procuring a significant volume of goods and services. Smart Cities will only become a reality when local authority visions for the future are reflected in procurement practises and scoring criteria for contracts issued today. It’s only very recently that procurements for contracts to build, update and manage physical infrastructures such as roads and pavements have been based on outcomes such as minimising congestion or increasing the overall quality of performance throughout the lifetime of the asset within the contract value, rather than on securing the maximum volume of concrete (or number of traffic wardens).

Outcomes-based procurements are challenging to be sure, both for the purchaser and the provider; especially so when they are for such new solutions. But service and infrastructure providers will only be motivated to propose and deliver innovative, smart solutions when they’re rewarded for doing so.

Local authorities can also exploit indirect mechanisms such as planning and development frameworks. I worked last year with one authority which asked how its planning framework should evolve in order to promote the development of a “Smart City”, and published a set of 23 “Design principles for a Smarter City” as a result. They require that investments in property also deliver technology infrastructures such as wi-fi, broadband, open-data, and multi-channel self-service access.

(An analysis based on GPS data from mobile phones of end-to-end journeys undertaken by users of Abidjan’s bus services. By comparing existing bus routes to end-to-end journey requirements, the analysis identified four new bus routes and led to changes in many others. As a result, 22 routes now show increased ridership, and city-wide journey times have decreased by 10%. The techniques and technologies behind the project build on those developed for projects in Dubuque, Istanbul and Dublin.)

Private Sector

The technology companies associated with Smart Cities have sometimes been criticised for focussing too much on the technology that can be applied to city infrastructures, and not enough on the improvements to people’s work and lives that technology can enable, or on the business cases for investing in it.

To make the business case clearer, my colleague the economist Mary Keeling has been working for IBM’s Institute for Business Value to more clearly analyse and express the benefits of Smart approaches – in water management and transportation, for example. And I’ll be contributing along with representatives from many of the other companies that provide technology and infrastructure for Smart Cities to the TSB’s Future Cities Catapult’s finance initiative.

But we also need to respect the principles of Living Labs and the experience of urban designers – not least the writing of Jane Jacobs – which reflect that our starting point for thinking about Smart Cities should be the everyday lives and experiences of individual citizens in their family lives; at work; and moving through cities. In one sense, this is business as usual in the technology industry – “user-centered design“, “use cases” and “user stories” have been at the heart of software development since the 1980s. So one of our challenges is simply to communicate that approach more clearly within our descriptions of Smart Cities. This is a topic I’ve written about in many articles on this blog that you can find described in “7 Steps to a Smarter City“; and that I tried to address in IBM’s new Smarter Cities video.

The other challenge is for technology companies to become more familiar and expert in the disciplines associated with good quality urban design – town planning, architecture, social science and the psychology of human behaviour, for example. This is one of the reasons why IBM started the “Smarter Cities Challenge” programme through which we have donated our technology expertise to 100 cities worldwide to help them address the opportunities and challenges they face; and in so doing become more familiar with their very varied cultures, economies, issues and capabilities. It’s also why I joined the Academy of Urbanism, along with representatives of several other technology companies.

We also need to embrace the “Smart Urbanism” thinking exemplified by Kelvin Campbell. Kelvin’s “Massive / Small” approach is intended to design large-scale urban infrastructures that encourage and support “massive” amounts of “small-scale” innovation. I think that’s an extremely powerful idea that we should embrace in Smarter Cities; and that translates directly to the practise of providing open-standard, public interfaces to city technology infrastructures – open data feeds and APIs (“Application Programming Interfaces”), for example – that not only reduce the risk that city systems become “locked-in” to any proprietary provider; but that also open up the power of large scale technology systems and “big data” sources so that local businesses, innovators and communities are able to adapt public infrastructures to their own needs. I think of these interfaces as creating an “innovation boundary” between a city’s infrastructure and its stakeholders.

(George Ferguson, Mayor of Bristol, one of the few cities in the UK with an elected Mayor with significant authority and responsibility. His salary is paid in the city’s local currency, the Bristol Pound, rather than in the national currency. His red trousers are famous. Photo by PaulNUK)

Central Government

In most countries in the developed world – i.e. those which are not being driven by rapid urbanisation today because they urbanised during the Industrial Revolution – the majority of Smart City initiatives that have momentum are driven by Mayors convening city stakeholders and institutions to co-create, finance and deliver those initiatives. Correspondingly, in countries without strong mayoral systems – such as the UK – progress can be slower. Worryingly, Centre for Cities’ recent Outlook 2014 report pointed out that only 17% of funding for UK cities comes from locally administered taxation, as opposed to the OECD average of 55%.

To risk stating the obvious, every city is different, and different in very many important ways, from its geographical situation to its linkage to national and international transport infrastructure; from its economic and business capabilities to the skills and wealth of its population; from its social challenges and degree of social mobility to its culture and heritage. Successful Smart City initiatives are specific, not generic; and the greater degree of autonomy that cities are allowed in setting strategy and securing financing, the greater their capability to pursue those initiatives. Programmes such as “City Deals” and the recent reforms resulting from Lord Heseltine’s “No Stone Unturned” report are examples of progress towards greater autonomy for the UK’s cities, but they are not enough.

Central government will always have a significant role in funding the infrastructures that cities rely on, of course; whether that’s national infrastructures that connect cities (such as the planned “HS2” high-speed train network in the UK, or Australia’s national deployment of broadband internet connectivity), or specific infrastructures within cities, such as Birmingham’s new city-centre tram. And so just as local governments should consider how they can use procurement practises and planning frameworks to encourage investments in property and infrastructure that deliver “Smart” solutions, so central government should consider how the funding programmes that it administers can contribute to cities’ “Smart” objectives.

Financial Services

If the challenge is to unlock investment in new assets and outcomes, then we should turn to banks, insurers and investors to help us shape the new financial vehicles that we will require to do so. In Canada, for example, a collaboration between Canadian insurers and cities has developed a set of tools to create a common understanding of the financial risk created by the effects of climate change on the resilience of city infrastructures. These tools are the first step towards creating investment and insurance models for city infrastructures that will be exposed to new levels of risk; that will need to exhibit new levels of resilience; and that in turn may require Smart solutions to achieve them.

(Luciana Berger, Shadow Minister for Energy and Climate Change pictured talking to Northfield, Birmingham resident Abraham Weekes and James McKay, Birmingham City Council’s Cabinet Member for a Green, Safe and Smart city. Abraham lives in the house pictured, which has been fitted with exterior house covering, solar panels and energy efficient windows through the Birmingham Energy Savers scheme. Photo by Birmingham City Council)

More internationally, the “Little Rock Accord” between the Madrid Club of former national Presidents and Prime Ministers and the P80 group of pension funds agreed to create a task force to increase the degree to which pension and sovereign wealth funds invest in the deployment of technology to address climate change issues, shortages in resources such as energy, water and food, and sustainable, resilient growth. And more locally, I’m proud to note that my home city of Birmingham is a pioneer in this area through the Birmingham Energy Savers project, financed through a mixture of prudential borrowing and private sector investment.

It has taken us too long to get to this point, but I’m encouraged that several initiatives are now convening discussions between the traditionally understood stakeholders in Smart Cities – local authorities, technology companies, universities and built-environment companies – and the financial sector. For example, in addition to the Future Cities Catapult’s financing programme, on March 13th, I’ll be speaking at an event organised by the Lord Mayor of the City of London to encourage the City’s financial institutions and UK city authorities to undertake a similar collaboration to develop new financing models for future city infrastructures.

Are Smarter Cities a “middle out” economic intervention?

In his 2011 Presidential Campaign speech Barack Obama promised an economic strategy based on “middle-out” economics – the philosophy that equitable, sustainable growth is driven by the spending power of middle class consumers, as an alternative to “trickle-down” economics – the philosophy that growth is best created when very rich “wealth-creators” are free to become as successful as possible.

As this analysis in “The Atlantic” shows, job creation does depend on the investments of the wealthiest; but also on the spending power of the masses; and on a lot of very hard work making sure that a reasonable portion of the profits created by both of those activities are used to invest in making skills, education and opportunity available to all. The Economist magazine made the same point in a recent article by reminding us of the enormous investments made into public institutions in the past in order to distribute the benefits of the Industrial Revolution to society at large rather than concentrate them on behalf of business owners and the professional classes; though with only partial success.

(The discussion group at the #SmartHack event in Birmingham)

(The discussion group at the #SmartHack event in Birmingham, described in “Tea, trust and hacking – how Birmingham is getting Smarter“, photographed by Sebastian Lenton)

 Those ideas are reflected in what it takes to craft an investment in a technology-enabled Smart City initiative that successfully creates social and economic improvements in a city.

Whilst a huge number of effective “Smart” ideas will be created “bottom-up” by innovators and social entrepreneurs intimately familiar with specific local communities and context, those ideas will not succeed as well or rapidly as we need them to without significant investment in new infrastructures – such as wi-fi, broadband and realtime open data – that are deployed everywhere, not just in the most economically active areas of cities that reward commercial investment most quickly. Accessibility to these infrastructures creates the “innovation boundary” between city institutions and infrastructures, and local innovators and communities.

This is not an abstract concept; it is an idea that some cities are making very real today. For example, the “Dublinked” information-sharing partnership between Dublin County Council, three surrounding County Councils and the National University of Ireland now makes available 3,000 city datasets as “open data” – including a realtime feed showing the location of buses in the city. That’s a resource that local innovators can use to create their own new applications and services. Similarly, in Birmingham the “West Midlands Open Data Forum” has emerged as a community in which city local businesses and innovators can negotiate access to data held by city institutions and service providers.

(David Willets, MP, Minister for Universities and Science, launches the UK Government’s Smart Cities Forum)

At launch of the UK Government’s “Smart Cities Forum” last year, I remarked that we were not inviting key stakeholders to the Smarter Cities debate – specifically, banks, investors, insurers and entrepreneurs. Some of the initiatives I’ve described in this article are starting to address that omission; and to recognise that the most significant challenges are to do with finance, politics, social issues and economics, not engineering and technology.

And those are challenges that all of us should focus on. No-one is going to pay for our cities to become Smarter, more successful, more sustainable and fairer: we will have to figure out how to pay for  those things ourselves.

Information and choice: nine reasons our future is in the balance

(The Bandra pedestrian skywalk in Mumbai, photo taken from the Collaborative Research Initiative Trust‘s study of Mumbai, “Being Nicely Messy“, produced for the 2012 Audi Urban Futures awards)

The 19th and 20th centuries saw the flowering and maturation of the Industrial Revolution and the creation of the modern world. Standards of living worldwide increased dramatically as a consequence – though so did inequality.

The 21st century is already proving to be different. We are reaching the limits of supply of the natural resources and cheap energy that supported the last two centuries of development; and are starting to widely exploit the most powerful man-made resource in history: digital information.

Our current situation isn’t simply an evolution of the trends of the previous two centuries; nine “tipping points” in economics, society, technology and the environment indicate that our future will be fundamentally different to the past, not just different by degree.

Three of those tipping points represent changes that are happening as the ultimate consequences of the Industrial Revolution and the economic globalisation and population growth it created; three of them are the reasons I think it’s accurate to characterise the changes we see today as an Information Revolution; and the remaining three represent challenges for us to face in the future.

The difficulty faced in addressing those challenges internationally through global governance institutions is illustrated by the current status of world trade deal and climate change negotiations; but our ability to respond to them is not limited to national and international governments. It is in the hands of businesses, communities and each of us as individuals as new business models emerge.

The structure of the economy is changing

In 2012, the Collaborative Research Initiatives Trust were commissioned by the Audi Urban Futures Awards to develop a vision for the future of work and life in Mumbai. In the introduction to their report, “Being Nicely Messy“, they cite a set of statistics describing Mumbai’s development that nicely illustrate the changing nature of the city:

“While the population in Mumbai grew by 25% between 1991 and 2010, the number of people travelling by trains during the same years increased by 66% and the number of vehicles grew by 181%. At the same time, the number of enterprises in the city increased by 56%.

All of this indicates a restructuring of the economy, where the nature of work and movement has changed.”

(From “Being Nicely Messy“, 2011, Collaborative Research Initiatives Trust)

Following CRIT’s inspiration, over the last year I’ve been struck by several similar but more widely applicable sets of data that, taken together, indicate that a similar restructuring is taking place across the world.

ScreenHunter_223 Nov. 28 00.06

(Professor Robert Gordon’s analysis of historic growth in productivity, as discussed by the famous investor Jeremy Grantham, showing that the unusual growth experienced through the Industrial Revolution may have come to an end. Source: Gordon, Robert J., “Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six Headwinds,” NBER Working Paper 18315, August 2012)

The twilight of the Industrial Revolution

Tipping point 1: the slowing of economic growth

According to the respected investor Jeremy Grantham, Economic growth has slowed systemically and permanently. He states that: “Resource costs have been rising, conservatively, at 7% a year since 2000 … in a world growing at under 4% and [in the] developed world at under 1.5%”

Grantham’s analysis is that the rapid economic growth of the last century was a historical anomaly driven by the productivity improvements made possible through the Industrial Revolution; and before that revolution reached such a scale as to create global competition for resources and energy. Property and technology bubbles extended that growth into the early 21st Century, but it has now reduced to much more modest levels where Grantham expects it to remain. The economist Tyler Cowan came to similar conclusions in his 2011 book, “The Great Stagnation“.

This analysis was supported by the property developers I met at a recent conference in Birmingham. They told me that indicators in their market today are the most positive they have been since the start of the 1980s property boom; but none of them expect that boom to be repeated. The market is far more cautious concerning medium and long-term prospects for growth.

We have passed permanently into an era of more modest economic growth than we have become accustomed to; or at very least into an era whereby we need to restructure the relationship between economic growth and the consumption of resources and energy in ways that we have not yet determined before higher growth does return. We have passed a tipping point; the world has changed.

(Growth in the world's urban population as reported by World Urbanization Prospects”, 2007 Revision, Department of Economic and Social Affairs, United Nations)

(Growth in the world’s urban population as reported by “World Urbanization Prospects”, 2007 Revision, Department of Economic and Social Affairs, United Nations)

Tipping point 2: urbanisation and the industrialisation of food supply 

As has been widely quoted in recent years, more than half the world’s population has lived in cities since 2010 according to the United Nations Department of Economic and Social Affairs. That percentage is expected to increase to 70% by 2050.

The implications of those facts concern not just where we live, but the nature of the economy. Cities became possible when we industrialised the production and distribution of food, rather than providing it for ourselves on a subsistence basis; or producing it in collaboration with our neighbours. For this reason, many developing nations still undergoing urbanisation and industrialisation – such as Tanzania, Turkmenistan and Tajikstan – still formally define cities by criteria including “the pre-dominance of non-agricultural workers and their families” (as referenced in the United Nations’ “World Urbanization Prospects” 2007 Revision).

So for the first time more than half the world’s population now lives in cities; and is provided with food by industrial supply chains rather than by families or neighbours. We have passed a tipping point; the world has changed.

(Estimated damage in $US billion caused by natural disasters between 1900 and 2012 as reported by EM-DAT)

(Estimated damage in $US billion caused by natural disasters between 1900 and 2012 as reported by EM-DAT)

Tipping point 3: the frequency and impact of extreme weather conditions

As our climate changes, we are experiencing more unusual and extreme weather. In addition to the devastating impact recently of Typhoon Haiyan in the Philippines,  cities everywhere are regularly experiencing the effects to a more modest degree.

One city in the UK told me recently that inside the last 12 months they have dealt with such an increase in incidents of flooding severe enough to require coordinated cross-city action that it has become an urgent priority for local Councillors. We are working with other cities in Europe to understand the effect of rising average levels of flooding – historic building construction codes mean that a rise in average levels of a meter or more could put significant numbers of buildings at risk of falling down. The current prediction from the United Nations International Panel on Climate Change is that levels will rise somewhere between 26cm and 82cm by the end of this century – close enough for concern.

The EM-DAT International Disasters Database has calculated the financial impact of natural disasters over the past century. They have shown that in recent years the increased occurrence of unusual and extreme weather combined with the increasing concentration of populations and economic activity in cities has caused this impact to rise at previously unprecedented rates.

The investment markets have identified and responded to this trend. In their recent report “Global Investor Survey on Climate Change”, the Global Investor Coalition on Climate Change reported this year that 53% of fund managers collectively responsible for $14 trillion of assets indicated that they had divested stocks, or chosen not to invest in stocks, due to concerns over the impact of climate change on the businesses concerned. We have passed a tipping point; the world has changed.

(The prediction of exponential growth in digital information from EMC's Digital Universe report)

(The prediction of exponential growth in digital information from EMC’s Digital Universe report)

The dawn of the Information Revolution

Tipping point 4: exponential growth in the world’s most powerful man-made resource, digital information

Information has always been crucial to our world. Our use of language to share it is arguably a defining characteristic of what it means to be human; it is the basis of monetary systems for mediating the exchange of goods and services; and it is a core component of quantum mechanics, one of the most fundamental physical theories that describes how our universe behaves.

But the emergence of broadband and mobile connectivity over the last decade have utterly transformed the quantity of recorded information in the world and our ability to exploit it.

EMC’s Digital Universe report shows that in between 2010 and 2012 more information was recorded than in all of previous human history. They predict that the quantity of information recorded will double every 2 years, meaning that at any point in the next two decades it will be true to make the same assertion that “more information was recorded in the last two years than in all of previous history”. In 2011 McKinsey described the “information economy” that has emerged to exploit this information as a fundamental shift in the basis of the economy as a whole.

Not only that, but information has literally been turned into money. The virtual currency Bitcoin is based not on the value of a raw material such as gold whose availability is physically limited; but on the outcomes of extremely complex cryptographic calculations whose performance is limited by the speed at which computers can process information. The value of Bitcoins is currently rising incredibly quickly – from $20 to $1000 since January; although it is also subject to significant fluctuations. 

Ultimately, Bitcoin itself may succeed or fail – and it is certainly used in some unethical and dangerous transactions as well as by ordinary people and businesses. But its model has demonstrated in principle that a decentralised, non-national, information-based currency can operate successfully, as my colleague Richard Brown recently explained.

Digital information is the most valuable man-made resource ever invented; it began a period of exponential growth just three years ago and has literally been turned into money. We have passed a tipping point; the world has changed.

Tipping point 5: the disappearing boundary between humans, information and the physical world

In the 1990s the internet began to change the world despite the fact that it could only be accessed by using an expensive, heavy personal computer; a slow and inconvenient telephone modem; and the QWERTY keyboard that was designed in the 19th Century to prevent typists from typing faster than the levers in mechanical typewriters could move.

Three years ago, my then 2-year-old son taught himself how to use a touchscreen tablet to watch cartoons from around the world before he could read or write. Two years ago, Scientists at the University of California at Berkeley used a Magnetic Resonance Imaging facility to capture images from the thoughts of a person watching a film. A less sensitive mind-reading technology is already available as a headset from Emotiv, which my colleagues in IBM’s Emerging Technologies team have used to help a paralysed person communicate by thinking directional instructions to a computer.

Earlier this year, a paralysed woman controlled a robotic arm by thought; and prosthetic limbs, a working gun and living biological structures such as muscle fibre and skin are just some of the things that can be 3D printed on demand from raw materials and digital designs.

Our thoughts can control information in computer systems; and information in those systems can quite literally shape the world around us. The boundaries between our minds, information and the physical world are disappearing. We have passed a tipping point; the world has changed.

(A personalised prosthetic limb constructed using 3D printing technology. Photo by kerolic)

Tipping point 6: the miniaturisation of industry

The emergence of the internet as a platform for enabling sales, marketing and logistics over the last decade has enabled small and micro-businesses to reach markets across the world that were previously accessible only to much larger organisations with international sales and distribution networks.

More recently, the emergence and maturation of technologies such as 3D printingopen-source manufacturing and small-scale energy generation are enabling small businesses and community initiatives to succeed in new sectors by reducing the scale at which it is economically viable to carry out what were previously industrial activities – a trend recently labelled by the Economist magazine as the “Third Industrial Revolution“. The continuing development of social media and pervasive technology enable them to rapidly form and adapt supply and exchange networks with other small-scale producers and consumers.

Estimates of the size of the resulting “sharing economy“, defined by Wikipedia as “economic and social systems that enable shared access to goods, services, data and talent“, vary widely, but are certainly significant. The UK Economist magazine reports one estimate that it is a $26 billion economy already, whilst 2 Degrees Network report that just one aspect of it – small-scale energy generation – could save UK businesses £33 billion annually by 2030Air B’n’B – a peer-to-peer accommodation service – reported recently that they had contributed $632 million in value to New York’s economy in 2012 by enabling nearly 5,000 residents to earn an average of $7,500 by renting their spare rooms to travellers; and as a consequence of those travellers additionally spending an average of $880 in the city during their stay. Overall, there has been a significant rise in self-employment and “micro-entrepreneurial” enterprises over the last few years, which now account for 14% of the US economy.

Organisations participating in the sharing economy exhibit a range of motivations and ethics – some are aggressively commercial, whilst others are “social enterprises” with a commitment to reinvest profits in social growth. The social enterprise sector, comprised of mutuals, co-operatives, employee-owned businesses and enterprises who submit to “triple bottom line” accounting of financial, social and environmental capital, is about 15% of the value of most economies, and has been growing and creating jobs faster than traditional business since the 2008 crash.

In the first decade of the 21st Century, mobile and internet technologies caused a convergence between the technology, communications and media sectors of the economy. In this decade, we will see far more widespread disruptions and convergences in the technology, manufacturing, creative arts, healthcare and utilities industries; and enormous growth in the number of small and social enterprises creating innovative business models that cut across them. We have passed a tipping point; the world has changed.

Rebalancing the world

Tipping point 7: how we respond to climate change and resource constraints

There is now agreement amongst scientists, expressed most conclusively by the United Nations International Panel on Climate Change this year, that the world is undergoing a period of overall warming resulting from the impact of human activity. But there is not yet a consensus on how we should respond.

Views vary from taking immediate, sweeping measures to drastically cut carbon and greenhouse gas emissions,  to the belief that we should accept climate change as inevitable and focus investment instead on adapting to it, as suggested by the “Skeptical Environmentalist” Bjørn Lomborg and the conservative think-tank the American Enterprise Institute. As a result of this divergence of opinion, and of the challenge of negotiating between the interests of countries, communities and businesses across the world, the agreement reached by last year’s climate change negotiations in Doha was generally regarded as relatively weak.

Professor Chris Rogers of the University of Birmingham and his colleagues in the Urban Futures initiative have assessed over 450 proposed future scenarios and identified four archetypes (described in his presentation to Base Cities Birmingham) against which they assess the cost and effectiveness of environmental and climate interventions. The “Fortress World” scenario is divided between an authoritarian elite who control the world’s resources from their protected enclaves and a wider population living in poverty. In “Market Forces”, free markets encourage materialist consumerism to wholly override social and environmental values; whilst in “Policy Reform” a combination of legislation and citizen behaviour change achieve a balanced outcome. And in the “New Sustainability Paradigm” the pursuit of wealth gives way to a widespread aspiration to achieve social equality and environmental sustainability. (Chris is optimistic enough that his team dismissed another scenario, “Breakdown”, as unrealistic).

Decisions that are taken today affect the degree to which our world will evolve to resemble those scenarios. As the impact of weather and competition for resources affect the stability of supply of energy and foodmany cities are responding to the relative lack of national and international action by taking steps themselves. Some businesses are also building strategies for long-term success and profit growth  around sustainability; in part because investing in a resilient world is a good basis for a resilient business, and in part because they believe that a genuine commitment to sustainability will appeal to consumers. Unilever demonstrated that they are following this strategy recently by committing to buy all of their palm oil – of which they consume one third of the world’s supply – from traceable sources by the end of 2014.

At some point, we will all – individuals, businesses, communities, governments – be forced to change our behaviour to account for climate change and the limits of resource availability: as the prices of raw materials, food and energy rise; and as we are more and more directly affected by the consequences of a changing environment.

The questions are: to what extent have these challenges become urgent to us already; and how and when will we respond?

(“Makers” at the Old Print Works in Balsall Heath, Birmingham, sharing the tools, skills and ideas that create successful small businesses)

Tipping point 8: the end of the average career

In “The End of Average“, the economist Tyler Cowen observed that about 60% of the jobs lost during the 2008 recession were in mid-wage occupations; and the UK Economist magazine reported that many jobs lost from professional industries had been replaced in artisan trades and small-scale industry such as food, furniture and design.

Echoing Jeremy Grantham, Cowen further observes that these changes take place within a much longer term 28% decline in middle-income wages in the US between 1969 and 2009 which has no identifiable single cause. Cowen worries that this is a sign that the economy is beginning to diverge into the authoritarian elite and the impoverished masses of Chris Rogers’ “Fortress World” scenario.

Other evidence points to a more complex picture. Jake Dunagan, Research Director of the Institute for the Future, believes that the widespread availability of digital technology and information is extending democracy and empowerment – just as the printing press and education did in the last millennium as they dramatically increased the extent to which people were informed and able to make themselves heard. Dunagan notes that through our reliance on technology and social media to find and share information, our thoughts and beliefs are already formed by, and having an effect on, society in a way that is fundamentally new.

The miniaturisation of industry (tipping point 6 above) and the disappearance of the boundary between our minds and bodies, information and the physical world (tipping point 5 above) are changing the ways in which resources and value are exchanged and processed out of all recognition. Just imagine how different the world would be if a 3D-printing service such as Shapeways transformed the manufacturing industry as dramatically as iTunes transformed the music industry 10 years ago. Google’s futurologist Thomas Frey recently described 55 “jobs of the future” that he thought might appear as a result.

(Activities comprising the “Informal Economy” and their linkages to the mainstream economy, by Claro Partners)

In both developed and emerging countries, informal, social and micro-businesses are significant elements of the economy, and are growing more quickly than traditional sectorsClaro partners estimate that the informal economy (in which they include alternative currencies, peer-to-peer businesses, temporary exchange networks and micro-businesses – see diagram, right) is worth $10 trillion worldwide, and that it employs up to 80% of the workforce in emerging markets. 

In developed countries, the Industrial Revolution drove a transformation of such activity into a more formal economy – a transformation which may now be in part reversing. In developing nations today, digital technology may make part of that transformation unnecessary. 

To be successful in this changing economy, we will need to change the way we learn, and the way we teach our children. Cowen wrote that “We will move from a society based on the pretense that everyone is given an okay standard of living to a society in which people are expected to fend for themselves much more than they do now”; and expressed a hope that online education offers the potential for cheaper and more widespread access to new skills to enable people to do so. This thinking echoes a finding of the Centre for Cities report “Cities Outlook 1901” that the major factor driving the relative success or failure of UK cities throughout the 20th Century was their ability to provide their populations with the right skills at the right time as technology and industry developed.

The marketeer and former Yahoo Executive Seth Godin’s polemic “Stop Stealing Dreams” attacked the education system for continuing to prepare learners for stable, traditional careers rather than the collaborative entrepreneurialism that he and other futurists expect to be required. Many educators would assert that their industry is already adapting and will continue to do so – great change is certainly expected as the ability to share information online disrupts an industry that developed historically to share it in classrooms and through books.

Many of the businesses, jobs and careers of 2020, 2050 and 2100 will be unrecognisable or even unimaginable to us today; as are the skills that will be needed to be successful in them. Conversely, many post-industrial cities today are still grappling with challenges created by the loss of jobs in manufacturing, coalmining and shipbuilding industries in the last century.

The question for our future is: will we adapt more comfortably to the sweeping changes that will surely come to the industries that employ us today?

("Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(“Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

Tipping point 9: inequality

The benefits of living in cities are distributed extremely unevenly.

The difference in life expectancy of children born into the poorest and wealthiest areas of UK cities today is often as much as 20 years – for boys in Glasgow the difference is 28 years. That’s a deep inequality in the opportunity to live.

There are many causes of that inequality, of course: health, diet, wealth, environmental quality, peace and public safety, for example. All of them are complex, and the issues that arise from them to create inequality – social deprivation and immobility, economic disengagement, social isolation, crime and lawlessness – are notoriously difficult to address.

But a fundamental element of addressing them is choosing to try to do so. That’s a trite observation, but it is nonetheless the case that in many of our activities we do not make that choice – or, more accurately, as individuals, communities and businesses we take choices primarily in our own interests rather than based on their wider impact.

Writing about cities in the 1960s, the urbanist Jane Jacobs observed that:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

In many respects, we have not shaped the financial machinery of the world to achieve equality. Nobel Laureate Joseph Stiglitz wrote recently that in fact the financial machinery of the United States and the UK in particular create considerable inequality in those countries; and the Economist magazine reminds us of the enormous investments made into public institutions in the past in order to distribute the benefits of the Industrial Revolution to society at large rather than concentrate them on behalf of business owners and the professional classes – with only partial success.

New legislation in banking has been widely debated and enacted since the 2008 financial crisis – enforcing the separation of commercial and investment banking, for example. But addressing inequality is a much broader challenge than the regulation of banking, and will not only be addressed by legislation. Business models such as social enterprise, cross-city collaborations and the sharing economy are emerging to develop sustainable businesses in industries such as food, energy, transportation and finance, in addition to the contribution made by traditional businesses building sustainability into their strategies.

Whenever we vote, buy something or make a choice in business, we contribute to our overall choice to develop a fairer, more sustainable world in which everyone has a chance to participate. The question is not just whether we will take those choices; but the degree to which their impact on the wider world will be apparent to us so that we can do so in an informed way.

That is a challenge that technology can help with.

(A smartphone alert sent to a commuter in a San Francisco pilot project by IBM Research and Caltrans that provides personalised daily predictions of commuting journey times. The predictions gave commuters the opportunity to take a better-informed choice about their travel to work.)

Data and Choice

Like the printing press, the vote and education, access to data allows us to make more of a difference than we were able to without it.

Niall Firth’s November editorial for the New Scientist magazine describes how citizens of developing nations are using open data to hold their governments to account, from basic information about election candidates to the monitoring of government spending. In the UK, a crowd-sourced analysis of politicians’ expenses claims that had been leaked to the press resulted in resignations, the repayment of improperly claimed expenses, and in the most severe cases, imprisonment.

Unilever are committing to making their supply chain for palm oil traceable precisely because that data is what will enable them to next improve its sustainability; and in Almere, city data and analytics are being used to plan future development of the city in a way that doesn’t cause harmful impacts to existing citizens and residents. Neither initiative would have been possible or affordable without recent improvements in technology.

Data and technology, appropriately applied, give us an unprecedented ability to achieve our long-term objectives by taking better-informed, more forward-looking decisions every day, in the course of our normal work and lives. They tell us more than we could ever previously have known about the impact of those decisions.

That’s why the tipping points I’ve described in this article matter to me. They translate my general awareness that I should “do the right thing” into a specific knowledge that at this point in time, my choices in many aspects of daily work and life contribute to powerful forces that will shape the next century that we share on this planet; and that they could help to tip the balance in all of our favour.

The sharing economy and the future of movement in smart, human-scale cities

("Visionary City" by William Robinson Leigh)

(William Robinson Leigh’s 1908 painting “Visionary City” envisaged future cities constructed from mile-long buildings of hundreds of stories connected by gas-lit skyways for trams, pedestrians and horse-drawn carriages. A century later we’re starting to realise not only that developments in transport and power technology have eclipsed Leigh’s vision, but that we don’t want to live in cities constructed from buildings on this scale.)

One of the defining tensions throughout the development of cities has been between our desire for quality of life and our need to move ourselves and the things we depend on around.

The former requires space, peace, and safety in which to work, exercise, relax and socialise; the latter requires transport systems which, since the use of horsedrawn transport in medieval cities, have taken up space, created noise and pollution – and are often dangerous. Enrique Penalosa, whose mayorship of Bogota was defined by restricting the use of car transport, often refers to the tens of thousands of children killed by cars on the world’s roads every year and his astonishment that we accept this as the cost of convenient transport.

This tension will intensify rapidly in coming years. Not only are our cities growing larger and denser, but according to the analysis of city systems by Professors Geoffrey West and Louis Bettencourt of the Los Alamos National Laboratory and Professor Ian Robertson’s study of human behaviour, our interactions within them are speeding up and intensifying.

Arguably, over the last 50 years we have designed cities around large-scale buildings and transport structures that have supported – and encouraged – growth in transport and the size of urban economies and populations at the expense of some aspects of quality of life.

Whilst standards of living across the world have improved dramatically in recent decades, inequality has increased to an even greater extent; and many urbanists would agree that the character of some urban environments contributes significantly to that inequality. In response, the recent work of architects such as Jan Gehl and Kelvin Campbell, building on ideas first described by Jane Jacobs in the 1960s, has led to the development of the “human scale cities” movement with the mantra “first life, then space, then buildings”.

The challenge at the heart of this debate, though, is that the more successful we are in enabling human-scale value creation; the more demand we create for transport and movement. And unless we dramatically improve the impact of the systems that support that demand, the cities of the future could be worse, not better, places for us to live and work in.

Human scale technology creates complexity in transport

As digital technology pervades every aspect of our lives, whether in large-scale infrastructures such as road-use charging systems or through the widespread adoption of small-scale consumer technology such as smartphones and social media, we cannot afford to carry out the design of future cities without considering it; nor can we risk deploying it without concern for its affect on the quality of urban life.

Digital technologies do not just make it easier for us to communicate and share information wherever we are: those interactions create new opportunities to meet in person and to exchange goods and services; and so they create new requirements for transport. And as technologies such as 3D printing, open-source manufacturing and small-scale energy generation make it possible to carry out traditionally industrial activities at much smaller scales, some existing bulk movement patterns will be replaced by thousands of smaller, peer-to-peer interactions created by transactions in online marketplaces. We can already see the effects of this trend in the vast growth of traffic delivering goods that are purchased or exchanged online.

Estimates of the size of this “sharing economy“, defined by Wikipedia as “economic and social systems that enable shared access to goods, services, data and talent“, vary widely, but are certainly significant. The UK Economist magazine reports one estimate that it is a $26 billion economy already, whilst 2 Degrees Network report that just one aspect of it – small-scale energy generation – could save UK businesses £33 billion annually by 2030Air B’n’B – a peer-to-peer accommodation service – reported recently that they had contributed $632 million in value to New York’s economy in 2012 by enabling nearly 5,000 residents to earn an average of $7,500 by renting their spare rooms to travellers; and as a consequence of those travellers additionally spending an average of $880 in the city during their stay. The emergence in general of the internet as a platform for enabling sales, marketing and logistics for small and micro-businesses is partly responsible for a significant rise in self-employment and “micro-entrepreneurial” enterprises over the last few years, which now account for 14% of the US economy.

Digital technology will create not just great growth in our desire to travel and move things, but great complexity in the way we will do so. Today’s transport technologies are not only too inefficient to scale to our future needs; they’re not sophisticated and flexible enough to cope with the complexity and variety of demand.

Many of the future components of transport systems have already been envisaged, and deployed in early schemes: elevated cycleways; conveyor belts for freight; self-driving vehicles and convoys; and underground pneumatic networks for recycling. And to some extent, we have visualised the cities that they will create: Professor Miles Tight, for example, has considered the future living scenarios that might emerge from various evolutions of transport policy and human behavioural choices in the Visions 2030 project.

The task for the Smarter Cities movement should be to extend this thinking to envision the future of cities that are also shaped by emerging trends in digital technology and their effect on the wider economy and social systems. We won’t do that successfully by considering these subjects separately or in the abstract; we need to envision how they will collectively enable us to live and work from the smallest domestic scale to the largest city system.

(Packages from Amazon delivered to Google’s San Francisco office. Photo by moppet65535)

What we’ll do in the home of the future

Rather than purchasing and owning goods such as kitchen utensils, hobby and craft items, toys and simple house and garden equipment, we will create them on-demand using small-scale and open-source manufacturing technology and smart-materials. It will even be possible – though not all of us will choose to do so – to manufacture some food in this way.

Conversely, there will still be demand for handmade artisan products including clothing, gifts, jewellery, home decorations, furniture, and food. Many of us will earn a living producing these goods in the home while selling and marketing them locally or through online channels.

So we will leave our home of the future less often to visit shops; but will need not just better transport services to deliver the goods we purchase online to our doorsteps, but also a new utility to deliver the raw materials from which we will manufacture them ourselves; and new transport services to collect the products of our home industries and to deliver supplies to them.

We will produce an increasing amount of energy at home; whether from existing technologies such as solar panels or combined heat and power (CHP) systems; or through new techniques such as bio-energy. The relationships between households, businesses, utilities and transportation will change as we become producers of energy and consumers of waste material.

And whilst remote working means we will continue to be less likely to travel to and from the same office each day, the increasing pace of economic activity means that we will be more likely to need to travel to many new destinations as it becomes necessary to meet face to face with the great variety of customers, suppliers, co-workers and business partners with whom online technologies connect us.

What we’ll do in the neighbourhoods of the future

As we increasingly work remotely from within our homes or by travelling far away from them, less of us work in jobs and for businesses that are physically located within the communities in which we live; and some of the economic ties that have bound those communities in the past have weakened. But most of us still feel strong ties to the places we live in; whether they are historical, created by the character of our homes or their surrounding environment, or by the culture and people around us. These ties create a shared incentive to invest in our community.

Perhaps the greatest potential of social media that we’re only begin to exploit is its power to create more vibrant, sustainable and resilient local communities through the “sharing economy”.

The motivations and ethics of organisations participating in the sharing economy vary widely – some are aggressively commercial, whilst others are “social enterprises” with a commitment to reinvest profits in social growth. The social enterprise sector, comprised of mutuals, co-operatives, employee-owned businesses and enterprises who submit to “triple bottom line” accounting of financial, social and environmental capital, is about 15% of the value of most economies, and has been growing and creating jobs faster than traditional business since the 2008 crash. There is enormous potential for cities to achieve their “Smarter” objectives for sustainable, equitably distributed economic growth through contributions from social enterprises using technology to implement sharing economy business models within their region.

Sharing economy models which enable transactions between participants within a walkable or cyclable area can be a particularly efficient mechanism for collaboration, as the related transport can be carried out using human power. Joan Clos, Exective Director of UN-Habitat, has asserted that cities will only become sustainable when they are built at a sufficient population density that a majority of interactions within them can be carried out in this way (as reported informally by Tim Stonor from Dr. Clos’s remarks at the “Urban Planning for City Leaders” conference at the Crystal, London in 2012).

The Community Lovers’ Guide has published stories from across Europe of people who have collaborated to make the places that they share better, often using technology; and schemes such as Casserole Club and Land Share are linking the supply and demand of land, food, gardening and cooking skills within local communities, helping neighbours to help each other. At local, national and international levels, sharing economy ideas are creating previously unrealised social and economic value, including access to employment opportunities that replace some of those traditional professions that are shrinking as the technology used by industrial business changes.

Revenue-earning businesses are a necessary component of vibrant communities, at a local neighbourhood scale as well as city-wide. At the Academy of Urbanism Congress in Bradford this year, Michael Ward, Chair of the Centre for Local Economic Strategies, asserted that “the key task facing civic leaders in the 21st Century is this: how, in a period of profound and continuing economic changes, will our citizens earn a living and prosper?”

(“Makers” at the Old Print Works in Balsall Heath, Birmingham, sharing the tools, skills and ideas that create successful small businesses)

So whilst we work remotely from direct colleagues, we may chose to work in a collaborative workspace with near neighbours, with whom we can exchange ideas, make new contacts and start new enterprises and ventures. As the “maker” economy emerges from the development of sophisticated, small-scale manufacturing, and the resurgence in interest in artisan products, community projects such as the Old Print Works in Balsall Heath, Birmingham are emerging in low-cost ex-industrial space as people come together to share the tools and expertise required to make things and run businesses.

We will also manage and share our use of resources such as energy and water at neighbourhood scale. The scale and economics of movement of the raw materials for bio-energy generation, for example, currently dictate that neighbourhood-scale generation facilities – as opposed to city-wide, regional or domestic scale – are the most efficient. Aston University’s European Bio-Energy Research Institute is demonstrating these principles in the Aston district of Birmingham. And schemes from the sustainability pilot in Dubuque, Iowa to the Energy Sharing Co-operative in the West Midlands of the UK and the Chale community project on the Isle of Wight have shown that community-scale schemes can create shared incentives to use resources more efficiently.

One traditional centre of urban communities, the retail high street or main street, has fared badly in recent times. The shift to e-commerce, supermarkets and out-of-town shopping parks has led to many of them loosing footfall and trade, and seeing “payday lenders“, betting shops and charity shops take the place of traditional retailers.

High streets needs to be freed from the planning, policy and tax restrictions that are preventing their recovery. The retail-dominated highstreet of the 20th century emerged from a particular and temporary period in the evolution of the private car as the predominant form of transport supporting household-scale economic transactions. Developments in digital and transport technology as well as economy and society have made it non-viable in its current form; but legislation that prevents change in the use of highstreet property, and that keeps business taxes artificially high, is preventing highstreets from adapting in order to benefit from technology and the opportunities of the sharing economy.

Business Improvement Districts, already emerging in the UK and US to replace some local authority services, offer one way forward. They need to be given more freedom to allow the districts they manage to develop as best meets the economic and social needs of their area according to the future, not the past. And they need to become bolder: to invest in the same advanced technology to maximize footfall and spend from their customers as shopping malls do on behalf of their tenants, as recommended by a recent report to UK Government on the future of the high street.

The future high street will not be a street of clothes shops, bookshops and banks: some of those will still exist, but the high street will also be a place for collaborative workers; for makers; for sharing and exchanging; for local food produce and artisan goods; for socialising; and for starting new businesses. We will use social media to share our time and our resources in the sharing economy; and will meet on the high street when those transactions require the exchange of physical goods and services. We will walk and cycle to local shops and transport centres to collect and deliver packages for ourselves, or for our neighbours.

The future of work, life and transport at city-scale

Whilst there’s no universally agreed definition, an urban areas is generally agreed to be a continuously built-up area with a total population of between 2,000 and 40 million people; living at a density of around 1,000 per square kilometre; and employed primarily in non-agricultural activities (the appendices to the 2007 revision of the UN World Urbanisation Prospects summarise such criteria from around the world; 38.7 million is estimated to be the population of the world’s largest city, Tokyo, in 2025 by the UN World Urbanisation Prospects 2011).

(An analysis based on GPS data from mobile phones of end-to-end journeys undertaken by users of Abidjan’s bus services. By comparing existing bus routes to end-to-end journey requirements, the analysis identified four new bus routes and led to changes in many others. As a result, 22 routes now show increased ridership, and city-wide journey times have decreased by 10%.)

That is living at an industrial scale. The sharing economy may be a tremendously powerful force, but – at least for the foreseeable future – it will not scale to completely replace the supply chains that support the needs of such enormous and dense populations.

Take food, for example. One hectare of highly fertile, intensively farmed land can feed 10 people. Birmingham, my home city, has an area of 60,000 hectares of relatively infertile land, most of which is not available for farming at all; and a population of around 1 million. Those numbers don’t add up to food self-sufficiency; and Birmingham is a very low-density city – between one-half and one-tenth as dense as the growing megacities of Asia and South America.

Until techniques such as vertical farming and laboratory-grown food become both technically and economically viable, and culturally acceptable – if they ever do – cities will not feed themselves. And these techniques hardly represent locally-grown food exchanged between peers – they are highly technical and likely to operate initially at industrial scale. Sharing economy businesses such as Casserole Club, Kitchen Surfing, and Big Barn will change the way we distribute, process and prepare food within cities, but many of the raw materials will continue to be grown and delivered to cities through the existing industrial-scale distribution networks that import them from agricultural regions.

We are drawn to cities for the opportunities they offer: for work, for entertainment, and to socialise. As rapidly as technology has improved our ability to carry out all of those activities online, the world’s population is still increasingly moving to cities. In many ways, technology augments the way we carry out those activities in the real world and in cities, rather than replacing them with online equivalents.

Technology has already made cultural events in the real world more frequent, accessible and varied. Before digital technology, the live music industry depended on mass-marketing and mass-appeal to create huge stadium-selling tours for a relatively small number of professional musicians; and local circuits were dominated by the less successful but similar-sounding acts for which sufficiently large audiences could be reached using the media of the time. I attempted as an amateur musician in the pre-internet 1990s to find a paying audience for the niche music I enjoyed making: I was not successful. Today, social media can be used to identify and aggregate demand to make possible a variety of events and artforms that would never previously have reached an audience. Culture in the real-world is everywhere, all the time, as a result, and life is the richer for it. We discover much of it online, but often experience it in the real world.

(Birmingham’s annual “Zombie Walk” which uses social media to engage volunteers raising money for charity. Photo by Clare Lovell).

Flashmobs” use smartphones and social media to spontaneously bring large numbers of people together in urban spaces to celebrate; socialise or protest; and while we will play and tell stories in immersive 3D worlds in the future – whether we call them movies, interactive fiction or “massive multi-player online role-playing games” – we’ll increasingly do so in the physical world too, in “mixed reality” games. Technologies such as Google Glasscognitive computing and Brain/Computer Interfaces will accelerate these trends as they remove the barrier between the physical world and information systems.

We will continue to come to city centres to experience those things that they uniquely combine: the joy and excitement of being amongst large numbers of people; the opportunity to share ideas; access to leading-edge technologies that are only economically feasible at city-scale; great architecture, culture and events; the opportunity to shop, eat, drink and be entertained with friends. All of these things are possible anywhere; but it is only in cities that they exist together, all the time.

The challenge for city-scale living will be to support the growing need to transport goods and people into, out of and around urban areas in a way that is efficient and productive, and that minimises impact on the liveability of the urban environment. In part this will involve reducing the impact of existing modes of transport by switching to electric or hydrogen power for vehicles; by predicting and optimising the behaviour of traffic systems to prevent congestion; by optimising public transport as IBM have helped AbidjanDublin, Dubuque and Istanbul to do; and by improving the spatial organisation of transport through initiatives such as Arup’s Regent Street delivery hub.

We will also need new, evolved or rejuvenated forms of transport. In his lecture for the Centenary of the International Federation for Housing and Planning, Sir Peter Hall spoke eloquently of the benefits of Bus Rapid Transit systems, urban railways and trams. All can combine the speed and efficiency of rail for bringing goods and people into cities quickly from outlying regions, with the ability to stop frequently at the many places in cities which are the starting and finishing points of end-to-end journeys.

Vehicle journeys on major roads will be undertaken in the near future by automated convoys travelling safely at a combined speed and density beyond the capability of human drivers. Eventually the majority of journeys on all roads will be carried out by such autonomous vehicles. Whilst it is important that these technologies are developed and introduced in a way that emphasises safety, the majority of us already trust our lives to automated control systems in our cars – every time we use an anti-lock braking system, for example. We will still drive cars for fun, pleasure and sport in the future – but we will probably pay dearly for the privilege; and our personal transport may more closely resemble the rapid transit pods that can already be seen at Heathrow Terminal 5.

Proposals intended to accelerate the adoption of autonomous vehicles include the “Qwik lane” elevated highway for convoy traffic; or the “bi-modal glideway” and “tracked electric vehicle” systems which could allow cars and lorries to travel at great speed safely along railway networks or dedicated “tracked” roads. Alternative possibilities which could achieve similar levels of efficiency and throughput are to extend the use of conveyor belt technology – already recognised as far more efficient than lorries for transporting resources and goods over distances of tens of miles in quarries and factories – to bring freight in and out of cities; or to use pneumatically powered underground tunnel networks, which are already being used in early schemes for transporting recyclable waste in densely populated areas. Elon Musk, the inventor of the Tesla electric supercar, has even suggested that a similar underground “vacuum loop” could be used to replace long-distance train and air travel for humans, at speeds over 1000 kilometres per hour.

The majority of these transport systems won’t offer us as individuals the same autonomy and directness in our travel as we believe the private car offers us today – even though that autonomy is often severely restricted by traffic congestion and delays. Why will we chose to relinquish that control?

(Optimod's vision for integrated, predictive mobile, multi-modal transport information)

(Optimod‘s vision for integrated, predictive mobile, multi-modal transport information)

Some of us will simply prefer to, finding different value in other ways to get around.

Walking and cycling are gaining in popularity over driving in many cities. I’ve personally found it a revelation in recent years to walk around cities rather than drive around them as I might previously have done. Cities are interesting and exciting places, and walking is often an enjoyable as well as efficient way of moving about them. (And for urbanists, of course, walking offers unparalleled opportunities to understand cities). Many of us are also increasingly conscious of the health benefits of walking and cycling, particularly as recent studies in the UK and US have shown that adults today will be the first generation in recorded history to die younger than their parents because of our poor diets and sedentary lifestyles.

Alternatively, we may choose to travel by public transport in the interests of productivity – reading or working while we travel, especially as network coverage for telephony and the internet improves. As the world’s population and economies grow, competition and the need to improve productivity will lead more and more of us to this take this choice.

It is increasingly easy to walk, cycle, or use public or shared transport to travel into and around cities thanks to the availability of bicycle hire schemes, car clubs and walking route information services such as walkit.com. The emergence of services that provide instant access to travel information across all forms of transport – such as the Moovel service in Germany or the Optimod service in Lyon, France – will enhance this usability, making it easier to combine different forms of transport into a single journey, and to react to delays and changes in plans whilst en route.

Legislation will also drive changes in behaviour, from national and international initiatives such as the European Union legislation limiting carbon emissions of cars to local planning and transport policies – such as Birmingham’s recent Mobility Action Plan which announced a consultation to consider closing the city’s famous system of road tunnels.

(Protesters at Occupy Wallstreet using digital technology to coordinate their demonstration. Photo by David Shankbone)

Are we ready for the triumph of the digital city?

Regardless of the amazing advances we’re making in online technology, life is physical. Across the world we are drawn to cities for opportunity; for life-support; to meet, work and live.  The ways in which we interact and transport ourselves and the goods we exchange have changed out of all recognition throughout history, and will continue to do so. The ever increasing level of urbanisation of the world’s population demonstrates that there’s no sign yet that those changes will make cities redundant: far from it, they are thriving.

It is not possible to understand the impact on our lives of new ideas in transport, technology or cities in isolation. Unless we consider them together and in the context of changing lifestyles, working patterns and economics, we won’t design and build cities of the future to be resilient, sustainable, and equitable.  The limitation of our success in doing that in the past is illustrated by the difference in life expectancy of 20 years between the richest and poorest areas of UK cities; the limitation of our success in doing so today is illustrated by the fact that a huge proportion of the world’s population does not have access to the digital technologies that are changing our world.

I recently read the masterplan for a European city district regarded as a good example of Smart City thinking. It contained many examples of the clever and careful design of physical space for living and for today’s forms of transport, but did not refer at all to the changes in patterns of work, life and movement being driven by digital technology. It was certainly a dramatic improvement over some plans of the past; but it was not everything that a plan for the future needs to be. 

Across domains such as digital technology, urban design, public policy, low carbon engineering, economic development and transport we have great ideas for addressing the challenges that urbanisation, population growth, resource constraints and climate change will bring; but a lot of work to do in bringing them together to create good designs for the liveable cities of the future.

Three mistakes we’re still making about Smart Cities

(David Willets, MP, Minister for Universities and Science, launches the UK Government’s Smart Cities Forum)

(I was asked this week to contribute my view of the present state of the Smart Cities movement to the UK Government’s launch of it’s Smart Cities forum, which will report to the Government’s Information Economy Council. This article is based on my remarks at the event).

One measure of how successfully we have built today’s cities using the technologies that shaped them over the last century – concrete, steel and the internal combustion engine – is the variation of life expectancy within them. In the UK, people born in the poorest areas of our large cities can expect to live lives that are two decades shorter than those born in the wealthiest areas.

We need to do much better than that as we apply the next generation of technology that will shape our lives – digital technology.

The market for Smart Cities, which many define as the application of digital technology to city systems, is growing. Entrepreneurial businesses such as Droplet and Shutl are delivering new city services, enabled by technology. City Councils, service providers and transport authorities are investing in Smart infrastructures, such as Bradford’s City Park, whose fountains and lights react to the movements of people through it. Our cities are becoming instrumented, interconnected and intelligent, creating new opportunities to improve the performance and efficiency of city systems.

But we are still making three mistakes that limit the scale at which truly innovative Smart City projects are being deployed.

1. We don’t use the right mix of skills to define Smart City initiatives

Over the last year, I’ve seen a much better understanding develop between some of the creative professions in the Smart Cities domain: technologists, design thinkers, social innovators, entrepreneurs and urban designers. Bristol’s “Hello Lamppost” is a good example of a project that uses technology to encourage playful interaction with an urban environment, thereby bringing the life to city streets that the urbanist Jane Jacobs‘ taught us is so fundamental to healthy city communities.

Internationally, cities have a great opportunity to learn from each others’ successes: smart, collective, sustainable urbanism in Scandinavia, as exemplified by Copenhagen’s Nordhavnen district; intelligent city planning and management in Asia and increasingly in the United States, where cities such as Chicago have also championed the open data movement; and the phenomenal level of small-scale, non-institutional innovation in communities in UK cities.

But this debate does not extend to some important institutions that are also beginning to explore how they can contribute towards the social and environmental wellbeing of cities and communities. Banks and investors, for example, who have the funds to support large-scale initiatives, or the skills to access them; or supermarkets and other retailers who operate across cities, nations and continents; but whose operational and economic footprint in cities is significant, and whose supply chains support or contribute to billions of lives.

It’s important to engage with these institutions in defining Smart City initiatives which not only cut across traditional silos of responsibility and budgets in cities, but also cut across the traditional asset classes and revenue streams that investors understand. A Smart City initiative that is crafted without their involvement will be difficult for them to understand, and they will be unlikely to support it. Instead, we need to craft Smart initiatives with them.

(The masterplan for Copenhagen’s regeneration of Nordhavnen, which was co-created with local residents and communities. Photo by Thomas Angermann)

2. We ask researchers to answer the wrong challenges

University research is a great source of new technologies for creating Smart solutions. But our challenge is rarely the availability of new technology – we have plenty of that already.

The real challenge is that we are not nearly exploiting the full potential of the technology already available to us; and that’s because in many cases we do not have a quantified evidence base for the financial, social, economic and environmental benefits of applying technology in city systems. Without that evidence, it’s hard to create a business case to justify investment.

This is the really valuable contribution that research could make to the Smart Cities market today: quantify the benefits of applying technology in city systems and communities; identify the factors that determine the degree to which those benefits can be realised in specific cities and communities; align the benefits to the financial and operating models of the public and private institutions that operate city services and assets; and provide the detailed data from which clear businesses cases with quantified risks and returns can be constructed.

3. We don’t listen to the quiet voices that matter

It’s my experience that the most powerful innovations that make a difference to real lives and communities occur when “little things” and “big things” work well together.

Challenges such as transport congestion, social mobility, responsible energy usage or small business growth are often extremely specific to local contexts. Successful change in those contexts is usually created when the people, community groups and businesses involved create, or co-create, initiatives to improve them.

But often, the resources available locally to those communities are very limited. How can the larger resources of institutional organisations be made available to them?

In “Resilience: why things bounce back“, Andrew Zolli describes many examples of initiatives that have successfully created meaningful change; and characterises the unusual qualities of the “translational leaders” that drive them – people who can engage with both small-scale, informal innovation in communities and large-scale, formal institutions with resources.

It’s my hope that we can enable more widespread changes not by relying only on such rare individuals, but by changing the way that we think about the design of city infrastructures. Rather than designing the services that they deliver, we should design what Service Scientists call the “affordances” they offer. An affordance is a capability of an infrastructure that can be adapted to the needs of an individual.

An example might be a smart grid power infrastructure that provides an open API allowing access to data from the grid. Developers, working together with community groups, could create schemes specific to each community which use that information to encourage more responsible energy usage. My colleagues in IBM Research explored this approach in partnership with the Sustainable Dubuque partnership resulting in a scheme that improved water and energy conservation in the city.

We can also apply this approach to the way that food is supplied to cities. The growing and distribution of food will always be primarily a large-scale, industrial operation: with 7 billion people living on a planet with limited resources, and with more than half of them living in dense cities, there is no realistic alternative. An important challenge for the food production and distribution industry, and for the technology industry, is to find ways to make those systems more efficient and sustainable.

But we can also act locally to change the way that food is processed, prepared and consumed; and in doing so create social capital and economic opportunity in some of the places that need it most. A good example is “Casserole Club“, which uses social media as the basis of a peer-to-peer model which connects people who are unable to cook for themselves with people who are willing to cook for, and visit, others.

These two movements to improve our food systems in innovative ways currently act separately; what new value could we create by bringing them together?

We’re very poor at communicating effectively between such large-scale and small-scale activities. Their cultures are different; they use different languages, and those involved spend their working lives in systems focussed on very different objectives.

There’s a very simple solution. We need to listen more than we talk.

We all have strong opinions and great ideas. And we’re all very capable of quickly identifying the aspects of someone else’s idea that mean it won’t work. For all of those reasons, we tend to talk more than we listen. That’s a mistake; it prevents us from being open to new ideas, and focussing our attention on how we can help them to succeed.

New conversations

By coincidence, I was asked earlier this year to arrange the agenda for the annual meeting of IBM’s UK chapter of our global Academy of Technology. The Academy represents around 500 of IBM’s technology leaders worldwide; and the UK chapter brings 70 or so of our highest achieving technologists together every year to share insights and experience about the technology trends that are most important to our industry, and to our customers.

(Daden's visualisation of the new Library of Birmingham, created before construction started and used to familiarise staff with the new building they would be working in. Taken from Daden's brochure describing the work more fully).

(Daden’s visualisation of the new Library of Birmingham, created before construction started and used to familiarise staff with the new building they would be working in. Taken from Daden’s brochure describing the work more fully).

This year, I’m bringing them to Innovation Birmingham for two days next week to explore how technology is changing Britain’s second city. We’ll be hearing about Birmingham City Council’s Smart City Strategy and Digital Birmingham‘s plans for digital infrastructure; and from research initiatives such as the University of Birmingham’s Liveable Cities programme; Aston University’s European Bio-Energy Research Institute; and Birmingham City University’s European Platform for Intelligent Cities.

But we’ll also be hearing from local SMEs and entrepreneurs creating innovations in city systems using technology, such as Droplet‘s smartphone payment system; 3D visualisation and analytics experts Daden, who created a simulation of Birmingham’s new Library; and Maverick Television whose innovations in using technology to create social value include the programmes Embarrassing Bodies and How to Look Good Naked. And we’ll hear from a number of social innovators, such as Localise West Midlands, a not-for-profit think-tank which promotes localisation for social, environmental and economic benefit, and Hub Launchpad, a business-accelerator for social enterprise who are building their presence in the city. You can follow our discussions next week on twitter through the hashtag #IBM_TCG.

This is just one of the ways I’m trying to make new connections and start new conversations between stakeholders in cities and professionals with the expertise to help them achieve their goals. I’m also arranging to meet some of the banks, retailers and supply-chain operators who seem to be most focussed on social and environmental sustainability, in order to explore how those objectives might align with the interests of the cities in which they operate. The British Standards Institute is undertaking a similar project to explore the financing of Smart Cities as part of their Smart Cities programme. I’m also looking at the examples set by cities such as Almere whose collaborative approach to urban design, augmented by their use of analytics and technology, is inspirational.

This will not be a quick or easy process; but it will involve exciting conversations between people with passion and expertise. Providing we remember to listen as much as we talk, it’s the right place to start.

Smart City Design Principles

(Bradford’s City Park, winner of the Academy of Urbanism’s “Great Place” award for 2013. The park is a public space that has been reclaimed for city life from traffic, and which evolves from a daytime public square into an evening water-feature. The fountains and lighting can adapt to and follow individual or crowd movements. Photo by Chloe Blanchfield. )

At the same time that cities everywhere are seeking funds for Smarter City initiatives, and often relying on central government or research grants to do so, I know of literally billions of Pounds, Euros, and Dollars that are being spent on relatively conventional development and infrastructure projects that aren’t particularly “smart”.

Why is that?

One reason is that we have yet to turn our experience to date into prescriptive, re-usable guidance. Many examples of “Smarter City” projects have demonstrated that in principle technologies such as social media, information marketplaces and the “internet of things” can support city-level objectives such as wellbeing, social mobility, economic growth and infrastructure resilience. But these individual results do not yet constitute a normalised evidence base to indicate which approaches apply in which situations, and to predict in quantitative terms what the outcomes will be.

And whilst a handful of cities such as Portland and Dublin have implemented information platforms on which sophisticated research can be carried out to predict the effect that technology and other interventions will have on a specific city, elsewhere we are in the early stages of considering the strategic role that technology should play in the overall design, planning and governance of cities.

We have been in this position before. In her seminal 1961 work “The Death and Life of Great American Cities“, Jane Jacobs wrote of the extant planning regime that in her opinion was impeding, or even destroying, the growth of healthy, urban cities in favour of a misguided faith in the suburban “Garden City” vision and its derivatives:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

(The White Horse Tavern in Greenwich Village, New York. The rich urban life of the area was described by one of the Taverns’ many famous patrons, the urbanist Jane Jacobs. Photo by Steve Minor).

Similarly, today’s planning and procurement practises do not explicitly recognise the value of the Smart City vision, and therefore are not shaping the financial instruments to deliver it.

This is not because those practises are at fault; it is because technologists, urbanists, architects, procurement officers, policy-makers and planners need to work together to evolve those practises to take account of the new possibilities available to cities through technology.

I was recently asked by a city that I work closely with to contribute suggestions for how their next planning strategy could reflect the impact of the technology agenda. Drawing on experiences and conversations with cities, Universities, government bodies and professional organisations over the last year, including the “Digital Urbanism” workshop help at the Academy of Urbanism Congress 2013 in Bradford, UK on 16th May, I put together a set of intentionally provocative candidate “design principles” for them to consider.

I’ve reproduced those principles in this article. They will not be universally accepted, and it is not possible yet to provide a mature body of evidence to support them. Whilst some will seem obvious, some may be controversial – or simply naive. Many will change or be discarded in time; some will be found to be misguided or unworkable. Because the outcomes we are seeking are often qualitative – “vibrant communities”, for example – and because research into city systems and the work of standards bodies is still ongoing, many of them are aspirational and subjective. But by presenting active principles rather than passive observations, my hope is to stimulate a useful debate.

A final caveat: my profession is technology, not the architecture of buildings and structures, urban design or town-planning. I therefore lack the depth of background in urban thinking that will be shared by many of those who I hope to engage in this debate; and as a consequence, some of this material may duplicate well-established thinking; be unsophisticated in content or expression; or just plain wrong. I hope that you will forgive and accept the attempts of a passionate newcomer to contribute thinking from a new domain into one that is well established; and help me to improve on this first attempt.

Candidate Design Principles for Digital Urbanism

(Tina Saaby, Copenhagen's City Architect, addressing the Academy of Urbanism Congress in Bradford)

(Tina Saaby, Copenhagen’s City Architect, addressing the Academy of Urbanism Congress in Bradford)

The importance of “place” in town planning and urban design has come to encapsulate experience from a variety of domains about what makes urban environments successful from the perspective of the people, businesses and communities who use them. It was summarised by Copenhagen’s City Architect, Tina Saaby, in her address to the Academy of Urbanism Congress 2013 as “Consider urban life before urban space; consider urban space before buildings”.

In identifying “urban life” as the starting point, I think Tina was reminding us to begin always by considering the needs and behaviour of individual people, and then their interactions with each other. This was the basis of Jane Jacobs’ understanding of cities and systems such as their economies and governments; and more recently it has been used by Professor Geoffrey West of the Sante Fe Institute to perform detailed, quantitative analyses of the performance of city systems.

It’s equally important to use urban life and “place” as our starting points when guiding the application of technology in city systems, and so by analogy, a candidate principle for the digital agenda in cities could be:

Principle 1: Consider urban life before urban place; consider urban place before technology.

Recent scientific work has shown that the rate of change is increasing in modern society – and specifically in cities as they grow. For example, Geoffrey West’s work shows that larger cities create more wealth, more efficiently, than smaller cities. In doing so, they attract residents, grow bigger still, and accelerate wealth creation further. This self-reinforcing process results in an ever-increasing demand for resources. It powered the growth of cities in the developed world through the Industrial Revolution; it is powering the growth of cities in emerging markets today; and it is driving the overall growth in global population. Professor Ian Robertson of Trinity College Dublin has even shown that as cities get bigger, people in them walk faster.

So in the many cities which are growing both organically and by continuing to attract immigration, two further candidate principles could be:

Principle 2: Demonstrate sustainability, scalability and resilience over an extended timeframe.

Principle 3: Demonstrate flexibility over an extended timeframe.

Physical Infrastructures and Construction

A difficulty in most existing buildings is to adapt them to support new technology infrastructures – to update wiring, or to add cabling for new network technologies, for example. Any specific prediction concerning our needs for such infrastructures in the future will likely be wrong; but it is certain that those needs will be different from today; and so:

Principle 4: New or renovated buildings should be built to contain sufficient space for current and anticipated future needs for technology infrastructure such as broadband cables; and of materials and structures that do not impede wireless networks. Spaces for the support of fixed cabling and other infrastructures should be easily accessible in order to facilitate future changes in use.

Furthermore, broader trends that are influenced by technology – such as mobile working, collaborative working spaces, pop-up shops and the demise of some traditional retail enterprises – are evidence that the rate of change in the uses to which we want to put buildings and urban spaces is increasing. This leads to another candidate principle:

Principle 5: New or renovated buildings should be constructed so as to be as functionally flexible as possible, especially in respect to their access, infrastructure and the configuration of interior space; in order to facilitate future changes in use.

Connectivity and Information Accessibility

Sources as respected as McKinsey and Imperial College have asserted that we are entering an age in which economic value will be created through the use of the digital information that is increasingly ubiquitous not just in our online activities but in the systems that operate physical services such as transport, utilities and buildings.

A fundamental requirement to participate in the information economy is to be connected to digital networks, leading to candidate design principle six:

Principle 6: Any development should ensure wired and wireless connectivity is available throughout it, to the highest standards of current bandwidth, and with the capacity to expand to any foreseeable growth in that standard.

(An analysis based on GPS data from mobile phones of end-to-end journeys undertaken by users of Abidjan’s bus services. By comparing existing bus routes to end-to-end journey requirements, the analysis identified four new bus routes and led to changes in many others. As a result, 22 routes now show increased ridership, and city-wide journey times have decreased by 10%.)

Organisations of all types and sizes are competing for the new markets and opportunities that digital information creates – that is simply the natural consequence of the emergence of a new resource in a competitive economy. Much of that information results from data created by the actions and activities of all of us as individuals; so we are the ultimate stakeholders in the information economy, and should seek to establish an equitable consensus for how our data is used.

However, in most cases converting the data that is created by our actions into useful information with a business value requires either a computing infrastructure to process the data or human expertise to assess it. Both of those have a cost associated with them that must be borne by some individual or organisation.

Those forces of the information economy may only ever be resolved in specific contexts rather than in universal principle. But any new development or supporting technology system that adds to the cost of allowing data associated with it to be openly exploited in principle adds a potential impediment to future economic and social productivity. So, even if the means to bear the costs associated with providing useful information are not agreed initially:

Principle 7: Any new development should demonstrate that all reasonable steps have been taken to ensure that information from its technology systems can be made openly available without additional expenditure. Whether or not information is actually available will be dependent on commercial and legal agreement, but it should not be additionally subject to unreasonable expenditure. And where there is no compelling commercial or legal reason to keep data closed, it should actually be made open.

A central tenet of the Smarter Cities movement is to create value by integrating systems. The integration of technology systems is made simpler and less expensive when those systems conform to standards for the format, meaning, encoding and interchange of data. However, standards for interoperability for Smarter City systems are in the early stages of development, including contributions from initiatives such as the British Standards Institute’s Smarter Cities Strategy, the City Protocol Society, and IBM’s SCRIBE Research project into city information models. Candidate principle eight therefore states that:

Principle 8: The information systems of any new development should conform to the best available current standards for interoperability between IT systems in general; and for interoperability in the built environment, physical infrastructures and Smarter Cities specifically.

There is much debate as to whether, beyond basic network connectivity, higher-level digital services should form part of a national or civic infrastructure to support businesses and communities in creating growth through digital technologies. The EU “Future Internet” project FI-WARE and Imperial College’s “Digital Cities Exchange” research programme are both investigating the specific digital services that could be provided as enabling infrastructure to support this growth; and the British Standards Institute is exploring related standards to encourage growth amongst SMEs.

A further candidate principle expresses the potential importance of this research to the economic competitiveness of cities in the information economy:

Principle 9: New developments should demonstrate that they have considered the commercial viability of providing the digital civic infrastructure services recommended by credible research sources.

Sustainable Consumerism

(Graphic of energy use in Amsterdam from "Smart City Amsterdam" by Daan Velthauzs)

(Graphic of energy use in Amsterdam from “Smart City Amsterdam” by Daan Velthauzs)

The price of energy is expected to rise in the long term until new energy sources are scalably commercialised; and the UK specifically is expected to experience power shortfalls by 2015. Many urban areas are already short of power, limited simply by the capacity of existing delivery subsystems.

Overall it is clear that it is economically and environmentally sensible to reduce our use of energy. One way to do so is to make better use of the information from city systems and buildings that describe energy usage. Property developers in Amsterdam used such information to lower the cost of energy infrastructure for new developments by collaborating to create an investment case for smart grid infrastructure.

Candidate principle ten is therefore:

Principle 10: Any data concerning a new development that could be used to reduce energy consumption within that development, or in related areas of a city, should be made open.

As consumer awareness of energy costs and sustainability has increased, developers of residential communities that have provided state-of-the-art technologies for sustainable living have reported strong demand, leading to a further candidate principle:

Principle 11: Property development proposals should indicate how they will attract business and residential tenants through providing up-to-date sustainable infrastructures for heat and power such as CHP, smart metering, local energy grids and solar energy.

Urban Communities

Developments carried out according to plans developed in collaboration with existing residents have provided some of the most interesting examples of successful placemaking. Social media, virtual reality and other digital technologies offer the opportunity to enable richer, more widespread consultations and explorations of planned developments by the communities that they will effect. Candidate principles twelve and thirteen express the possibility for these technologies to contribute to placemaking and successful urban developments:

Principle 12: Consultations on plans for new developments should fully exploit the capabilities of social media, virtual worlds and other technologies to ensure that communities affected by them are given the widest, most immersive opportunity possible to contribute to their design.

Principle 13: Management companies, local authorities and developers should have a genuinely engaging presence in social media so that they are approachable informally.

(Photograph by Meshed Media of Birmingham’s Social Media Cafe, where individuals from every part of the city who have connected online meet face-to-face to discuss their shared interest in social media.)

City communities are not passive observers to the Smarter City phenomenon. They may be crowd-sourcing mapping information for OpenStreetMap; running or participating in hacking events such as the Government Open Hackday in Birmingham last year; or they may be creating new social enterprises or regional technology startups, such as the many city currencies and trading schemes that are appearing.

But access to and familiarity with social media is far from ubiquitous; the potential for new communities to adopt and benefit from such technology is enormous, and need not be expensive. Informal programmes to spread awareness and provide education, such as the social media surgeries started by Podnosh in Birmingham, can have a powerful effect helping communities to exploit social technology to uncover hidden synergies and connections.

Principle 14: Local authorities should support awareness and enablement programmes for social media and related technologies, particularly “grass roots” initiatives within local communities.

Local food initiatives – in which local food processing is more important than local food growing in cities with limited open space but plentiful manufacturing space – have the potential to strengthen community ties; provide employment opportunities; promote healthier diets; and reduce the carbon impact of food supply systems. They can be supported by measures such as the provision of generous gardens, allotments or public space in the physical environment; and by the use of technology to enable online food markets or related distribution systems.

Such initiatives are generally operated by private sector organisations – often small-scale entrepreneurial or social enterprises; but their formation may be facilitated by local authorities or developers during the course of development or regeneration programmes. Candidate principle fifteen is therefore:

Principle 15: Urban development and regeneration programmes should support the formation, activity and success of local food initiatives by cooperating with local community and business support programmes to support the infrastructures they need to succeed and grow.

Demographic and economic trends indicate that we are living longer and needing to support ourselves later in life. A variety of technologies can provide or contribute to that support:

Principle 16: Residential accommodation should incorporate space for environmental monitoring, interactive portals, and connectivity to enable remote support, telehealth systems and homeworking.

Economic Development and Vitality

(The Custard Factory in Birmingham, at the heart of the city’s creative media sector)

In his address to the Academy of Urbanism Congress, economist Michael Ward, Chair of the Centre for Local Economic Strategies, asserted that:

“The key task facing civic leaders in the 21st Century is this: how, in a period of profound and continuing economic changes, will our citizens earn a living and prosper?”

For cities to provide jobs, they need successful businesses; and technology will have a dramatic effect on what it means to be a successful business in the 21st Century.

Over the last two decades, the internet, mobile phone and social media have redefined the boundaries of the communications, technology, media, publishing and technology industries. The companies that thrived through those changes were those who best understood how to use technology to merge capabilities from across those industries into new business models. In the coming decade as digitisation extends to industries such as manufacturing through technologies such as 3D printing and smart materials, more and more industry sectors will be redefined by similar levels of disruption and convergence.

So how are the economies of our cities placed to be successful in that world of change?

Many have the mix of technology, creative and industrial capabilities to be successful in future economies in principle; but in practise those capabilities are in separate geographical locations, between which it is difficult for serendipitous interactions to create new innovations – I discussed these issues in the context of Birmingham, my home city, in an article a few weeks ago.

Spatial modelling techniques can predict the impact of planned developments on these characteristics of the cities surrounding them – i.e. whether they will improve or worsen connectivity between value-creating districts in different economic sectors. Candidate principles seventeen and eighteen express how these techniques could be used:

Principle 17: New developments should demonstrate through the use of the latest urban modelling techniques that they will increase connectivity – particularly by walking and cycling – between important value-creating districts and economic priority zones that are adjacent or near to them.

Principle 18: Developments should offer the opportunity of serendipitous interaction and innovation between stakeholders from different occupations.

The nature of work, business and employment in many industries is changing, driven by technology. Whilst these changes may not take place at the same speed in all businesses, in all industries, in all places; it will become increasingly important over time that cities and districts provide the facilities that future enterprises will require:

Principle 19: Developments should provide, or should be adaptable to provide, facilities to enable the location and success of future ways of working including remote and mobile working, “fab labs” (3d printing facilities), “pop-up”  establishments and collaborative working spaces.

Governance

Most urban spaces and developments do not succeed immediately; time is required for them to attract and adapt to the uses that they will eventually successfully support. That condition of success will be more rapidly achieved or new developments, and will be sustained for longer, if it is possible to easily adapt them. Such adaptability is particularly important given the speed of change and innovation that digital technology can enable, leading to candidate principle twenty:

Principle 20: Planning, usage and other policies governing the use of urban space and structures should facilitate innovation and changes of use, including temporary changes of use.

Privacy and Public Safety

Privacy and security are perhaps the greatest current challenges of the digital age; but that is simply a reflection of their importance in all aspects of our lives. Jane Jacobs’ description of urban systems in terms of human and community behaviour was based on those concepts, and is still regarded as the basis of our understanding of cities.

But new technologies are changing the relationship between physical and digital environments with the consequence that a failure in privacy or security digital systems could affect community vitality or public safety in cities. So candidate principle twenty-one is:

Principle 21: Any information system in a city development should provide a clear policy for the use of personal information. Any use of that information should be with the consent of the individual.

Transport

(Packages from Amazon delivered to Google’s San Francisco office. Photo by moppet65535)

There is a truth about social media, information marketplaces and related “Smarter City” technologies that is far too rarely explored, but that has serious implications. It is that rather than removing the need to travel and transport things, these technologies can dramatically increase our requirements to do so. Candidate principle twenty-two expresses the need for transport plans to take account of this potential:

Principle 22: Transport plans supporting new developments should demonstrate that they have not only provided for traditional transport demand, but also that which might be created by online business models and other social technologies.

Extensions

This article is an early attempt to express candidate design principles for Smarter Cities; and I have not attempted to systematically address all of the potential domains of city systems where technology may have a role to play. Such an exercise would undoubtably yield further candidate principles. In addition, many other efforts are underway to encode emerging knowledge about the successful use of technology in city systems through organisations such as the City Protocol Society and the British Standards Institute or research programmes such as Imperial College’s Digital Cities Exchange. And so a final candidate principle encourages continuous awareness of the progress of such initiatives:

Principle 23: New developments should demonstrate that their design takes account of the latest best and emerging practises and patterns from Smarter Cities, smart urbanism, digital urbanism and placemaking.

Conclusion

When I first began to extract candidate design principles from my workshop and meeting notes, I doubted whether I would identify more than a handful; I was certainly not expecting to identify more than twenty. I think that it is encouraging to observe that there is so much that can be stated positively about the potential of technology to create value in cities.

My sense, though, is that an overarching set of five to ten principles would be much more useful in defining an approach to Smarter Cities that could be broadly adopted. In order to identify what those principles should be, I will need to more clearly define their audience and purpose. Such an exercise will probably form the basis of a subsequent article for this blog.

But in the meantime, I hope that I have offered food for thought; and I look forward to hearing your views.

My thanks to those who have commented on the principles I shared on twitter ahead of posting this: Leo HollisTony SmithWe Make GoodIan OwenOsvaldoFred Bartels and Frederico Muñoz.

Seven steps to a Smarter City; and the imperative for taking them (updated 8th September 2013)

(Interior of the new Library of Birmingham, opened in September 2013. Photo by Andy Mabbett)

(Interior of the new Library of Birmingham, opened in September 2013. Photo by Andy Mabbett licensed under Creative Commons via Wikimedia Commons)

(This article originally appeared in September 2012 as “Five steps to a Smarter City: and the philosophical imperative for taking them“. Because it contains an overall framework for approaching Smart City transformations, I keep it updated to reflect the latest content on this blog; and ongoing developments in the industry. It can also be accessed through the page link “Seven steps to a Smarter City” in the navigation bar above).

As I’ve worked with cities over the past two years developing their “Smarter City” strategies and programmes  to deliver them, I’ve frequently written articles on this blog exploring the main challenges they’ve faced: establishing a cross-city consensus to act; securing funding; and finding the common ground between the institutional and organic natures of city ecosystems.

We’ve moved beyond exploration now. There are enough examples of cities making progress on the “Smart” agenda for us to identify  the common traits that lead to success. I first wrote “Five steps to a Smarter City: and the philosophical imperative for taking them” in September 2012 to capture what at the time seemed to be emerging practises with promising potential, and have updated it twice since then. A year later, it’s time for a third and more confident revision.

In the past few months it’s also become clear that an additional step is required to recognise the need for new policy frameworks to enable the emergence of Smarter City characteristics, to complement the direct actions and initiatives that can be taken by city institutions, businesses and communities.

The revised seven steps involved in creating and achieving a Smarter City vision are:

  1. Define what a “Smarter City” means to you (Updated)
  2. Convene a stakeholder group to co-create a specific Smarter City vision; and establish governance and a credible decision-making process (Updated)
  3. Structure your approach to a Smart City by drawing on the available resources and expertise (Updated)
  4. Establish the policy framework (New)
  5. Populate a roadmap that can deliver the vision (Updated)
  6. Put the financing in place (Updated)
  7. Enable communities and engage with informality: how to make “Smarter” a self-sustaining process (Updated)

I’ll close the article with a commentary on a new form of leadership that can be observed at the heart of many of the individual initiatives and city-wide programmes that are making the most progress. Described by Andrew Zolli in “Resilience: why things bounce back” as “translational leadership“, it is characterised by an ability to build unusually broad collaborative networks across the institutions and communities – both formal and informal – of a city.

But I’ll begin with what used to be the ending to this article: why Smarter Cities matter. Unless we’re agreed on the need for them, it’s unlikely we’ll take the steps required to achieve them.

The Smarter City imperative

(Why Smarter Cities matter: "Lives on the Line" by James Cheshire at UCL's Centre for Advanced Spatial Analysis, showing the variation in life expectancy and correlation to child poverty in London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

(Why Smarter Cities matter: “Lives on the Line” by James Cheshire at UCL’s Centre for Advanced Spatial Analysis, showing the variation in life expectancy across London. From Cheshire, J. 2012. Lives on the Line: Mapping Life Expectancy Along the London Tube Network. Environment and Planning A. 44 (7). Doi: 10.1068/a45341)

I think it’s vitally important to take a pro-active approach to Smarter Cities.

According to the United Nations Department of Economic and Social Affairs’ 2011 revision to their “World Urbanisation Prospects” report, between now and 2050 the world’s population will rise by 2-3 billion. The greatest part of that rise will be accounted for by the growth of Asian, African and South American “megacities” with populations of between 1 and 35 million people.

As a crude generalisation, this unprecedented growth offers four challenges to cities in different circumstances:

  • For rapidly growing cities: we have never before engineered urban infrastructures to support such growth. Whenever we’ve tried to accommodate rapid urban growth before, we’ve failed to provide adequate infrastructure, resulting in slums. One theme within Smarter Cities is therefore the attempt to use technology to respond more successfully to this rapid urbanisation.
  • For cities in developed economies with slower growth: urbanisation in rapidly growing economies is creating an enormous rise in the size of the world’s middle-class, magnifying global growth in demand for resources such as energy, water, food and materials; and creating new competition for economic activity. So a second theme of Smarter Cities that applies in mature economies is to remain vibrant economically and socially in this context, and to improve the distribution of wealth and opportunity, against a background of modest economic growth, ageing populations with increasing service needs, legacy infrastructure and a complex model of governance and operation of city services.
  • For cities in countries that are still developing slowly: increasing levels of wealth and economic growth elsewhere  create an even tougher hurdle than before in creating opportunity and prosperity for the populations of those countries not yet on the path to growth. At the same time that economists and international development organisations attempt to ensure that these nations benefit from their natural resources as they are sought by growing economies elsewhere, a third strand of Smarter Cities is concerned with supporting wider growth in their economies despite a generally low level of infrastructure, including technology infrastructure.
(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

(Photo of Masshouse Circus, Birmingham, a concrete urban expressway that strangled the citycentre before its redevelopment in 2003, by Birmingham City Council)

We have only been partly successful in meeting these challenges in the past. As public and private sector institutions in Europe and the United States evolved through the previous period of urbanisation driven by the Industrial Revolution they achieved mixed results: standards of living rose dramatically; but so unequally that life expectancy between the richest and poorest areas of a single UK city often varies by 10 to 20 years.

In the sense that city services and businesses will always seek to exploit the technologies available to them, our cities will become smarter eventually as an inevitable consequence of the evolution of technology and growing competition for resources and economic activity.

But if those forces are allowed to drive the evolution of our cities, rather than supporting a direction of evolution that is proactively chosen by city stakeholders, then we will not solve many of the challenges that we care about most: improving the distribution of wealth and opportunity, and creating a better, sustainable quality of life for everyone. As I argued in “Smarter City myths and misconceptions“, “business as usual” will not deliver what we want and need – we need new approaches.

I do not pretend that it will be straightforward to apply our newest tool – digital technology – to achieve those objectives. In “Death, Life and Place in Great Digital Cities“, I explored the potential for unintended consequences when applying technology in cities, and compared them to the ongoing challenge of balancing the impacts and benefits of the previous generations of technology that shaped the cities we live in today – elevators, concrete and the internal combustion engine. Those technologies enabled the last century of growth; but in some cases have created brutal and inhumane urban environments which limit the quality of life that is possible within them.

But there are nevertheless many ways for cities in every circumstance imaginable to benefit from Smarter City ideas, as I described in my presentation earlier this year to the United Nations Commission on Science and Technology for Development, “Science, technology and innovation for sustainable cities and peri-urban communities“.

The first step in doing so is for each city and community to decide what “Smarter Cities “means to them.

Singapore Traffic Prediction

(A prediction of traffic speed and volume 30 minutes into the future in Singapore. In a city with a growing economy and a shortage of space, the use of technology to enable an efficient transportation system has long been a priority)

1. Define what a “Smarter City” means to you

Many urbanists and cities have grappled with how to define what a “Smart City”, a “Smarter City” or a “Future City” might be. It’s important for cities to agree to use an appropriate definition because it sets the scope and focus for what will be a complex collective journey of transformation.

In his article “The Top 10 Smart Cities On The Planet“, Boyd Cohen of Fast Company defined a Smart City as follows:

“Smart cities use information and communication technologies (ICT) to be more intelligent and efficient in the use of resources, resulting in cost and energy savings, improved service delivery and quality of life, and reduced environmental footprint–all supporting innovation and the low-carbon economy.”

IBM describes a Smarter City in similar terms, more specifically stating that the role of technology is to create systems that are “instrumented, interconnected and intelligent.”

Those definitions are useful; but they don’t reflect the different situations of cities everywhere, which are only very crudely described by the four contexts I identified above. We should not be critical of any of the general definitions of Smarter Cities; they are useful in identifying the nature and scope of powerful ideas that could have widespread benefits. But a broad definition will never provide a credible direction for any individual city given the complexities of its challenges, opportunities, context and capabilities.

Additionally, definitions of “Smarter Cities” that are based on relatively advanced technology concepts don’t reflect the origins of the term “Smart” as recognised by the social scientists I met with in July at a workshop at the University of Durham.  The “Smart” idea is more than a decade old, and emerged from the innovative use of relatively basic digital technologies to stimulate economic growth, community vitality and urban renewal.

As I unifying approach, I’ve therefore come recently to conceive of a Smarter City as follows:

A Smarter City systematically creates and encourages innovations in city systems that are enabled by technology; that change the relationships between the creation of economic and social value and the consumption of resources; and that contribute in a coordinated way to achieving a vision and clear objectives that are supported by a consensus amongst city stakeholders.

In co-creating a consensual approach to “Smarter Cities” in any particular place, it’s important to embrace the richness and variety of the field. Many people are very sceptical of the idea of Smarter Cities; often I find that their scepticism arises from the perception that proponents of Smarter Cities are intent on applying the same ideas everywhere, regardless of their suitability, as I described in Smarter City myths and misconceptions” in July.

For example, highly intelligent, multi-modal transport infrastructures are vital in cities such as Singapore, where a rapidly growing economy has created an increased demand for transport; but where there is no space to build new road capacity. But they are much less relevant – at least in the short term – for cities such as Sunderland where the priority is to provide better access to digital technology to encourage the formation and growth of new businesses in high-value sectors of the economy. Every city, individual or organisation that I know of that is successfully pursuing a Smarter City initiative or strategy recognises and engages with that diversity,

Creating a specific Smarter City vision is therefore a task for each city to undertake for itself, taking into account its unique character, strengths and priorities. This process usually entails a collaborative act of creativity by city stakeholders – I’ll explore how that takes place in the next section.

To conclude, it’s likely that the following generic objectives should be considered and adapted in that process:

  • A Smarter City is in a position to make a success of the present: for example, it is economically active in high-value industry sectors and able to provide the workforce and infrastructure that companies in those sectors need.
  • A Smarter City is on course for a successful future: with an education system that provides the skills that will be needed by future industries as technology evolves.
  • A Smarter City creates sustainable, equitably distributed growth: where education and employment opportunities are widely available to all citizens and communities, and with a focus on delivering social and environmental outcomes as well as economic growth.
  • A Smarter City operates as efficiently & intelligently as possible: so that resources such as energy, transportation systems and water are used optimally, providing a low-cost, low-carbon basis for economic and social growth, and an attractive, healthy environment in which to live and work.
  • A Smarter City enables citizens, communities, entrepreneurs & businesses to do their best; because making infrastructures Smarter is an engineering challenge; but making cities Smarter is a societal challenge; and those best placed to understand how societies can change are those who can innovate within them.
  • A Smarter City harnesses technology effectively and makes it accessible; because technology continues to define the new infrastructures that are required to achieve efficiencies in operation; and to enable economic and social growth.

2. Convene a stakeholder group to co-create a specific Smarter City vision

For a city to agree a shared “Smarter City” vision involves bringing an unusual set of stakeholders together in a single forum: political leaders, community leaders, major employers, transport and utility providers, entrepreneurs and SMEs, universities and faith groups, for example. The task for these stakeholders is to agree a vision that is compelling, inclusive; and specific enough to drive the creation of a roadmap of individual projects and initiatives to move the city forward.

It’s crucial that this vision is co-created by a group of stakeholders; as a city leader commented to me last year: “One party can’t bring the vision to the table and expect everyone else to buy into it”.

This is a process that I’m proud to be taking part in in Birmingham through the City’s Smart City Commission, whose vision for the city was published in December. I discussed how such processes can work, and some of the challenges and activities involved, in July 2012 in an article entitled “How Smarter Cities Get Started“.

To be sufficiently creative, empowered and inclusive, the group of stakeholders needs to encompass not only the leaders of key city institutions and representatives of its breadth of communities; it needs to contain original thinkers; social entrepreneurs and agents of change. As someone commented to me recently following a successful meeting of such a group: “this isn’t a ‘usual’ group of people”. In a similar meeting this week, a colleague likened the process of assembling such a group to that of building the Board of a new company.

To attract the various forms of investment that are required to support a programme of “Smart” initiatives, these stakeholder groups need to be decision-making entities, such as Manchester’s “New Economy” Commission, not discussion forums.  They need to take investment decisions together in the interest of shared objectives; and they need a mature understanding and agreement of how risk is shared and managed across those investments.

Whatever specific form a local partnership takes, it needs to demonstrate transparency and consistency in its decision-making and risk management, in order that its initiatives and proposals are attractive to investors. These characteristics are straightforward in themselves; but take time to establish amongst a new group of stakeholders taking a new, collaborative approach to the management of a programme of transformation.

Finally, to create and execute a vision that can succeed, the group needs to tell stories. A Smarter City encompasses all of a city’s systems, communities and businesses; the leaders in that ecosystem can only act with the support of their shareholders, voters, citizens, employees and neighbours. We will only appeal to such a broad constituency by telling simple stories that everyone can understand. I discussed some of the reasons that lead to this in “Better stories for Smarter Cities: three trends in urbanism that will reshape our world” in January and “Little/big; producer/consumer; and the story of the Smarter City” in March. Both articles cover similar ground; and were written as I prepared for my TEDxWarwick presentation, “Better Stories for Smarter Cities”, also in March.

The article “Smart ideas for everyday cities” from December 2012 discusses all of these challenges, and examples of groups that have addressed them, in more detail.

3. Structure your approach to a Smart City by drawing on the available resources and expertise

Any holistic approach to a Smarter City needs to recognise the immensely complex context that a city represents: a rich “system of systems” comprising the physical environment, economy, transport and utility systems, communities, education and many other services, systems and human activities.

(The components of a Smart City architecture I described in “The new architecture of Smart Cities“)

In “The new architecture of Smart Cities” in September 2012 I laid out a framework  for thinking about that context; in particular highlighting the need to focus on the “soft infrastructure” of conversations, trust, relationships and engagement between people, communities, enterprises and institutions that is fundamental to establishing a consensual view of the future of a city.

In that article  I also asserted that whilst in Smarter Cities we are often concerned with the application of technology to city systems, the context in which we do so – i.e. our understanding of the city as a whole – is the same context as that in which other urban professionals operate: architects, town planners and policy-makers, for example. An implication is that when looking for expertise to inform an approach to “Smarter Cities”, we should look broadly across the field of urbanism, and not restrict ourselves to that material which pertains specifically to the application of technology to cities.

Formal sources include:

  • UN-HABITAT, the United Nations agency for human settlements, which recently published its “State of the World’s Cities 2012/2013” report. UNHABITAT promote socially and environmentally sustainable towns and cities, and their reports and statistics on urbanisation are frequently cited as authoritative. Their 2012/2013 report includes extensive consultation with cities around the world, and proposes a number of new mechanisms intended to assist decision-makers.
  • The Academy of Urbanism, a UK-based not-for-profit association of several hundred urbanists including policy-makers, architects, planners and academics, publishes the “Friebrug Charter for Sustainable Urbanism” in collaboration with the city of Frieburg, Germany. Frieburg won the Academy’s European City of the Year award in 2010 but its history of recognition as a sustainable city goes back further. The charter contains a number of useful principles and ideas for achieving consensual sustainability that can be applied to Smarter Cities.
  • The UK Technology Strategy Board’s “Future Cities” programme (link requires registration) and the ongoing EU investments in Smart Cities are both investing in initiatives that transfer Smarter City ideas and technology from research into practise, and disseminating the knowledge created in doing so.

(Photo by lecercle of a girl in Mumbai doing her homework on whatever flat surface she could find. Her use of a stationary tool usually employed for physical mobility to enhance her own social mobility is an example of the very basic capacity we all have to use the resources available to us in innovative ways)

It is also important to consider how change is achieved in systems as complex as cities. In “Do we need a Pattern Language for Smarter Cities” I noted some of the challenges involve in driving top-down programmes of change; and contrasted them to what can happen when an environment is created that encourages innovation and attempts to influence it to achieve desired outcomes, rather than to adopt particular approaches to doing so. And in “Zen and the art of messy urbanism” I explored the importance of unplanned, informal and highly creative “grass-roots” activity in creating growth in cities, particularly where resources and finances are constrained.

Some very interesting such approaches have emerged from thinking in policy, economics, planning and architecture: the Collective Research Initiatives Trust‘s study of Mumbai, “Being Nicely Messy“; Colin Rowe and Fred Koetter’s “Collage City“; Manu Fernandez’s “Human Scale Cities” project; and the “Massive / Small” concept and associated “Urban Operating System” from Kelvin Campbell and Urban Initiatives, for example have all suggested an approach that involves a “toolkit” of ideas for individuals and organisations to apply in their local context.

The “tools” in such toolkits are similar to the “design patterns“ invented by the town planner Christopher Alexander in the 1970s as a tool for capturing re-usable experience in town planning, and later adopted by the Software industry. I believe they offer a useful way to organise our knowledge of successful approaches to “Smarter Cities”, and am slowly creating a catalogue of them, including the “City information partnership” and “City-centre enterprise incubation“.

A good balance between the top-down and bottom-up approaches can be found in the large number of “Smart Cities” and “Future Cities” communities on the web, such as UBM’s “Future Cities” site; Next City; the Sustainable Cities Collective; the World Cities Network; and Linked-In discussion Groups including “Smart Cities and City 2.0“, “Smarter Cities” and “Smart Urbanism“.

Finally, I published an extensive article on this blog in December 2012 which provided a framework for identifying the technology components required to support Smart City initiatives of different kinds – “Pens, paper and conversations. And the other technologies that will make cities smarter“.

4. Establish the policy framework

The influential urbanist Jane Jacobs wrote in her seminal 1961 work ”The Death and Life of Great American Cities“:

“Private investment shapes cities, but social ideas (and laws) shape private investment. First comes the image of what we want, then the machinery is adapted to turn out that image. The financial machinery has been adjusted to create anti-city images because, and only because, we as a society thought this would be good for us. If and when we think that lively, diversified city, capable of continual, close- grained improvement and change, is desirable, then we will adjust the financial machinery to get that.”

Jacobs’ was concerned with redressing the focus of urban design away from vehicle traffic and back to meeting the daily requirements of human lives; but today, it is similarly true that our planning and procurement practises do not recognise the value of the Smart City vision, and therefore are not shaping the financial instruments to deliver it. This is not because those practises are at fault; it is because technologists, urbanists, architects, procurement officers, policy-makers and planners need to work together to evolve those practises to take account of the new possibilities available to cities through technology.

It’s vitally important that we do this. As I described in November 2012 in “No-one is going to pay cities to become Smarter“, the sources of research and innovation funding that are supprting the first examples of Smarter City initiatives will not finance the widespread transformation of cities everywhere. But there’s no need for them to: the British Property Federation, for example, estimate that £14 billion is invested in the development of new space in the UK each year – that’s 500 times the annual value of the UK Government’s Urban Broadband Fund. If planning regulations and other policies can be adapted to promote investment in the technology infrastructures that support Smarter Cities, the effect could be enormous.

I ran a workshop titled “Can digital technology help us build better cities?” to explore these themes in May at the annual Congress of the Academy of Urbanism in Bradford; and have been exploring them with a number of city Councils and institutions such as the British Standards Institute throughout the year. In June I summarised the ideas that emerged from that work in the article “How to build a Smarter City: 23 design principles for digital urbanism“.

Two of the key issues to address are open data and digital privacy.

As I explored in “Open urbanism:  why the information economy will lead to sustainable cities” in December 2012, open data is a vital resource for creating successful, sustainable, equitable cities. But there are thousands of datasets relevant to any individual city; owned by a variety of public and private sector institutions; and held in an enormous number of fragmented IT systems of varying ages and designs. Creating high quality, consistent, reliable data in this context is a “Brownfield regeneration challenge for the information age”, as I described in October 2012. Planning and procurement regulations that require city information to be made openly available will be an important tool in creating the investment required to overcome that challenge.

(The image on the right was re-created from an MRI scan of the brain activity of a subject watching the film shown in the image on the left. By Shinji Nishimoto, Alex G. Huth, An Vu and Jack L. Gallant, UC Berkley, 2011)

(The image on the right was re-created from an MRI scan of the brain activity of a subject watching the film shown in the image on the left. By Shinji Nishimoto, Alex G. Huth, An Vu and Jack L. Gallant, UC Berkley, 2011)

Digital privacy matters to Smarter Cities in part because technology is becoming ever more fundamental to our lives as more and more of our business is transacted online through e-commerce and online banking. Additionally, the boundary between technology, information and the physical world is increasingly disappearing – as shown recently by the scientists who demonstrated that one person’s thoughts could control another’s actions, using technology, not magic or extrasensory phenomena. That means that our physical safety and digital privacy are increasingly linked – the emergence this year of working guns 3D-printed from digital designs is one of the most striking examples. 

Jane Jacobs defined cities by their ability to provide privacy and safety amongst their citizens; and her thinking is still regarded by many urbanists as the basis of our understanding of cities. As digital technology becomes more pervasive in city systems, it is vital that we evolve the policies that govern digital privacy to ensure that those systems continue to support our lives, communities and businesses successfully.

5. Populate a roadmap that can deliver the vision

In order to fulfill a vision for a Smarter City, a roadmap of specific projects and initiatives is needed, including both early “quick wins” and longer term strategic programmes.

Those projects and initiatives take many forms; and it can be worthwhile to concentrate initial effort on those that are simplest to execute because they are within the remit of a single organisation; or because they build on cross-organisational initiatives within cities that are already underway.

In my August 2012 article “Five roads to a Smarter City” I gave some ideas of what those initiatives might be, and the factors affecting their viability and timing, including:

  1. Top-down, strategic transformations across city systems;
  2. Optimisation of individual infrastructures such as energy, water and transportation;
  3. Applying “Smarter” approaches to “micro-city” environments such as industrial parks, transport hubs, university campuses or leisure complexes;
  4. Exploiting the technology platforms emerging from the cost-driven transformation to shared services in public sector;
  5. Supporting the “Open Data” movement.

In “Pens, paper and conversations. And the other technologies that will make cities smarter” in December 2012, I described a framework for identifying the technology components required to support Smart City initiatives of different kinds, such as:

  1. Re-engineering the physical components of city systems (to improve their efficiency)
  2. Using information  to optimise the operation of city systems
  3. Co-ordinating the behaviour of multiple systems to contribute to city-wide outcomes
  4. Creating new marketplaces to encourage sustainable choices, and attract investment

The Smarter City design patterns I described in the previous section also provide potential ideas, including City information partnerships and City-centre enterprise incubation; I’m hoping shortly to add new patterns such as Community Energy Initiatives, Social Enterprises, Local Currencies and Information-Enabled Resource Marketplaces.

It is also worthwhile to engage with service and technology providers in the Smart City space; they have knowledge of projects and initiatives with which they have been involved elsewhere. Many are also seeking suitable locations in which to invest in pilot schemes to develop or prove new offerings which, if successful, can generate follow-on sales elsewhere. The “First of a Kind” programme in IBM’s Research division is one example or a formal programme that is operated for this purpose.

A roadmap consisting of several such individual activities within the context of a set of cross-city goals, and co-ordinated by a forum of cross-city stakeholders, can form a powerful programme for making cities Smarter.

(Photo of the Brixton Pound by Charlie Waterhouse)

6. Put the financing in place

A crucial factor in assessing the viability of those activities, and then executing them, is putting in place the required financing. In many cases, that will involve cities approaching investors or funding agencies. In “Smart ideas for everyday cities” in December 2012 I described some of the organisations from whom funds could be secured; and some of the characteristics they are looking for when considering which cities and initiatives to invest in.

But for cities to seek direct funding for Smarter Cities is only one approach; I compared it to four other approaches in “Gain and responsibility: five business models for sustainable cities” in August:

  1. Cross-city Collaborations
  2. Scaling-up Social Enterprise
  3. Creativity in finance
  4. Making traditional business sustainable
  5. Encouraging entrepreneurs everywhere

The role of traditional business is of particular importance. Billions of us depend for our basic needs – not to mention our entertainment and leisure – on global supply chains operated on astounding scales by private sector businesses. Staples such as food, cosmetics and cleaning products consume a vast proportion of the world’s fresh water and agricultural capacity; and a surprisingly small number of organisations are responsible for a surprisingly large proportion of that consumption as they produce the products and services that many of us use. We will only achieve smarter, sustainable cities, and a smarter, sustainable world, in collaboration with them. The CEOs of  Unilever and Tesco have made statements of intent along these lines recently, and IBM and Hilton Hotels are two businesses that have described the progress they have already made.

There are very many individual ways in which funds can be secured for Smart City initiatives, of course; I described some more in “No-one is going to pay cities to become Smarter” in November 2012, and several others in two articles in September 2012:

In “Ten ways to pay for a Smarter City (part one)“:

And in “Ten ways to pay for a Smarter City (part two):

I’m a technologist, not a financier or economist; so those articles are not intended to be exhaustive or definitive. But they do suggest a number of practical options that can be explored.

(The discussion group at #SmartHack in Birmingham, described in “Tea, trust and hacking – how Birmingham is getting Smarter“, photographed by Sebastian Lenton)

 

7. Think beyond the future and engage with informality: how to make “Smarter” a self-sustaining process

Once a city has become “Smart”, is that the end of the story?

I don’t think so. The really Smart city is one that has put in place soft and hard infrastructures that can be used in a continuous process of reinvention and creativity.

In the same way that a well designed urban highway should connect rather than divide the city communities it passes through, the new technology platforms put in place to support Smarter City initiatives should be made open to communities and entrepreneurs to constantly innovate in their own local context. As I explored in “Smarter city myths and misconceptions” this idea should really be at the heart of our understanding of Smarter Cities.

I’ve explored those themes frequently in articles on this blog; including the two articles that led to my TEDxWarwick presentation, “Better stories for Smarter Cities: three trends in urbanism that will reshape our world” and “Little/big; producer/consumer; and the story of the Smarter City“. Both of them explored the importance of large city institutions engaging with and empowering the small-scale hyperlocal innovation that occurs in cities and communities everywhere; and that is often the most efficient way of creating social and economic value.

I described that process along with some examples of it in “The amazing heart of a Smarter City: the innovation boundary” in August 2012. In October 2012, I described some of the ways in which Birmingham’s communities are exploring that boundary in “Tea, trust and hacking: how Birmingham is getting smarter“; and in November I emphasised in “Zen and the art of messy urbanism” the importance of recognising the organic, informal nature of some of the innovation and activity within cities that creates value.

The Physicist Geoffrey West is one of many scientists who has explored the roles of technology and population growth in speeding up city systems; as our world changes more and more quickly, our cities will need to become more agile and adaptable – technologists, town planners and economists all seem to agree on this point. In “Refactoring, nucleation and incubation: three tools for digital urban adaptability” I explored how ideas from all of those professions can help them to do so.

Smarter, agile cities will enable the ongoing creation of new products, services or even marketplaces that enable city residents and visitors to make choices every day that reinforce local values and synergies. I described some of the ways in which technology could enable those markets to be designed to encourage transactions that support local outcomes in “Open urbanism: why the information economy will lead to sustainable cities” in October 2012 and “From Christmas lights to bio-energy: how technology will change our sense of place” in August 2012. The money-flows within those markets can be used as the basis of financing their infrastructure, as I discussed in “Digital Platforms for Smarter City Market-Making” in June 2012 and in several other articles described in “5. Put the financing in place” above.

Commentary: a new form of leadership

Andrew Zolli’s book “Resilience: why things bounce back” contains many examples of “smart” initiatives that have transformed systems such as emergency response, agriculture, fishing, finance and gang culture, most, but not all, of which are enabled by technology.

A common theme from all of them is productive co-operation and co-creation between large formal organisations (such as businesses and public sector institutions) and informal community groups or individuals (examples in Resilience include subsistence farmers, civic activitists and pacific island fishermen). Jared Diamond made similar observations about successful examples of socially and environmentally sustainable resource extraction businesses, such as Chevron’s sustainable operations in the Kutubu oilfield in Papua New Guinea, in his book “Collapse“.

Zolli identified a particular style of individual behaviour that was crucial in bringing about these collaborations that he called “translational leadership“: the ability to build new bridges; to bring together the resources of local communities and national and international institutions; to harness technology at appropriate cost for collective benefit; to step in and out of institutional and community behaviour and adapt to different cultures, conversations and approaches to business; and to create business models that balance financial health and sustainability with social and environmental outcomes.

That’s precisely the behaviour and leadership that I see in successful Smarter Cities initiatives. It’s sometimes shown by the leaders of public authorities, Universities or private businesses; but it’s equally often shown by community activists or entrepreneurs.

For me, this is one of the most exciting and optimistic insights about Smarter Cities: the leaders who catalyse their emergence can come from anywhere. And any one of us can choose to take a first step in the city where we live.

Smarter City myths and misconceptions

(A good example of a technology dilemma: do smartphones encourage social interaction, or inhibit it?. Photo by LingHK)

Part of my job is to communicate the ideas behind Smarter Cities, and to support those ideas with examples of the value they create when applied in cities such as Sunderland, Dublin, Birmingham and Rio.

In doing so, I often find myself countering a few common challenges to the concept of a Smarter City that I believe are based on a misconception of how Smarter Cities initiatives are carried in practise out by those involved in them.

Everyone that I know who works in this space – for technology vendors, for city Councils, Universities, charities, social enterprises, small businesses, or for any of the other institutions who might be involved in a city initiative – understands one thing in particular: that cities are incredibly complicated. Understanding how to apply any intervention to achieve a specific change or outcome in them is extremely difficult.

I know technology very well; and I have no difficulty imagining new ways in which it could be used in cities. But understanding how in practise people might respond to those ideas is more complex. Will they be motivated to adopt a new technology, or a new technology-enabled service? Why? Will they appropriate it for some purpose other than it was intended? Is that a good or a bad thing? What might the side effects be?

In the case of real innovations, it’s not always possible to answer those questions definitively, of course; but it’s important to consider them in the course of the design process. And to do so we need the skills not just of technologists and businesspeople but social scientists, urban designers, economists, community workers – and, depending on the context, any number of other specialisms.

However, we are still going through the process of creating a shared understanding of Smarter Cities between all of those disciplines; and of communicating that understanding to the world at large. In the conversations taking place today as we try to do that, here are five of the most common challenges that I encounter to the idea of Smarter Cities; and why I think those challenges are based on misconceptions of how we actually go about building them.

I’ll start with the misconception that I’m most guilty of myself:

Myth or misconception 1: Everybody knows we need Smarter Cities

(Most people live in cities, and most people use technology: people socialising with technology at a flashmob in Liverpool. Photo by blogadoon)

I spend most of my professional life working on Smarter Cities projects; it’s easy for me to forget that most people aren’t even aware of the concept, let alone convinced by it.

I doubt that many of the one third of the world’s population who aren’t connected to the internet, for example, are particularly familiar with the term Smarter Cities; nor the 14% of UK adults who’ve never used it. For many of them – and, I suspect, billions of other people who may be internet users, but who spend most of their energy focussing on their busy social, working and family lives – it will simply not have reached their attention.

This matters because whilst most people do not spend their time considering the ideas we discuss in the world of Smarter Cities, most of them nevertheless use city systems and technology.

As most people reading this blog will know, according to sources including the World Health Organisation, more than half of the world’s population now lives in urban areas; and in the UK where I live, that’s true of more than 90% of us. So most people live in cities; and many who don’t are employed in occupations such as farming and transport which are increasingly dominated by the need to support the populations of cities.

Similarly, by the end of this year, ABI Research estimate there will be 1.4 billion SmartPhone users in the world; there are already 5 billion mobile phone users. Most people happily adopt the latest consumer technologies relatively quickly once they become affordable.

Every person who lives in a city is a target customer for private sector service providers; a taxpayer or voter for city officials; a potential campaigner or activist; or the leader or employee of an organisation providing city services. Politicians, businesses and public officials will only deliver Smarter Cities when people want them; and people won’t want them until they know what they are, and why they matter to them as individuals.

Simon Giles of Accenture was quoted recently in an article on UBM’s Future Cities site that the Smarter Cities industry has not done a good enough job of selling the benefits of its ideas to a wide audience; I think that’s a challenge we need to face up to, and start to tell better stories about the differences Smarter Cities will make to everyday lives.

Of course, there are also many people who are perfectly aware of the Smarter Cities movement, but who disagree with its ideas. In practise, I often find that such disagreements are less to do with the specific characteristics of any of the technologies involved, but arise from a concern that in principle Smarter Cities represents a technocratic assertion that we should change the way we design and build cities by putting the capabilities of technology ahead of the needs of citizens.

That’s simply not the case; and I’ll argue why it’s not by describing a few more misconceptions I’ve encountered.

Myth or misconception 2: The idea of applying technology in cities is new

(Human activity and transport technology have been competing for space in cities for centuries. Photo of urban streetlife circa 1900 by the Kheel Center, Cornell University)

Urbanists such as the architect and town planner Tim Stonor  and Enrique Peñalosa, former mayor of Bogotá, have argued powerfully for city design to shift its emphasis towards human behaviour, and away from a focus on the last technology that transformed them: the car.

That debate about the role of technology in cities, then, is far from new. Jane Jacobs, writing in the 1960s when she was concerned that rapid growth in road transport was dominating the thinking of planners, quoted at length an essay on the development of cities in the Industrial Revolution to illustrate the extent to which, a century earlier, city streets were dominated by the previous generation of transport technology – the horse.

As human beings we have used technology since we first made tools from stones and wood. From there we embarked on a complex process of socio-technological evolution that continues today.

What is arguably a new characteristic of that evolution in current times is what appears to be the prolonged exponential growth we’ve experienced in the capability of digital technologies over the past few decades.

In his 2011 book “Civilization“, Niall Fergusson comments that news of the Indian Mutiny in 1857 took 46 days to reach London, travelling in effect at 3.8 miles an hour. By Jan 2009 when US Airways flight 1549 crash landed in the Hudson river, Jim Hanrahan’s message on Twitter communicated the news to the entire world four minutes later; it reached Perth, Australia at more than 170,000 miles an hour. The astonishing speed and ease of communication which we take for granted has led to an explosion of information; more new information was created in 2007 than in the preceding 5000 years.

Only history will tell if the speed and societal impact of the developments we’re experiencing in digital technology constitute a historical tipping point in the form of an “Information Revolution”, or if we’re simply experiencing an increase in speed of a process that begin with the development of language and includes the inventions of writing and the printing press.

It’s useful sometimes to be reminded of that historical perspective, and to remember that the evolution of human beings, human behaviour, technology and cities is a single process.

Myth or misconception 3: Smarter Cities are inhuman technologies that risk being as damaging in their effects on cities as road traffic

(Technology is part of everyday social life. Photo taken in St. James Park London by David Jones)

In describing to her readers the role of horse-drawn transport in shaping the cities of the Industrial Revolution, Jane Jacobs reminded them that it’s impact on them was similar to that of the motor car in the 20th Century: horses were physically dangerous to pedestrians; took up a lot of space; created effluent pollution in city streets that we would find unthinkably repellent today; and that their hooves and cobbles were incredibly noisy.

However, her point was that none of this was evidence that either horse-drawn transport or cars destroy cities. On the contrary, they enable cities to grow.

Technology and cities have evolved together through history entirely as a consequence of our natural behaviour as individuals: we have dense cities with busy streets because people want to move and interact, not because someone invented the elevator or the car or first harnessed a horse.

Our challenge is always to bring the benefits and the impact of technology to an acceptable balance on behalf of people and communities. Fifty years on, Jacobs’ work should still remind us to focus not on technology, or planning, or pollution; but on the needs and behaviour of people.

There is nothing inhuman about technology; but is not always the case that we design technological services in a way that shows understanding and empathy of the human requirements of their end users. Whilst that is itself an eminently human failing, it is one that we must challenge. Digital privacy and e-commerce are just two examples of technologies that can have such a profound effect on the physical health and vitality of cities that it is imperative we employ them intelligently.

And we are fully capable of doing so. The residents of Stockholm voted to extend a road-use charging pilot to a permanent scheme after it was shown to reduce journey times and increase their reliability. And amongst the stories of successful community initiatives in the Birmingham Community Lovers’ Guide are several that depend on social media technology.

Smarter city initiatives succeed when they result in services that are well-designed to meet the needs of people; when people are involved in their co-creation; or when people are free to choose when and how to use the technologies available to them. Many urban and technology professionals would say that those statements simply repeat the principles of good design in their field.

Myth or misconception 4: Masdar and Songdo are the Smartest cities on the planet; OR: Masdar and Songdo are inhuman follies of technology

(A ventilation tower using natural airflow in Masdar, UAE. Photo by Tom Olliver)

In 2011 FastCompany named Songdo, South Korea, as the Smartest City in the World. Songdo, like Masdar in the United Arab Emirates, has been newly constructed using extremely high technology techniques in planning, construction and operation to create a liveable, efficient city. However: both have come in for criticism for being “inhuman”.

In my view, they are neither the Smartest Cities in the world, nor inhuman. Like everywhere else, they fall between those two extremes. But they are also absolutely necessary explorations of what we can achieve; and the people designing and building them are seeking to do so in the best interests of their inhabitants.

According to the United Nations Department of Economic and Social Affairs, by 2050, the world’s population will grow by 3 billion, mostly in cities with populations of 1 to 30 million inhabitants in rapidly growing economies in Asia, Africa and South America. We have never before engineered urban infrastructures to support such growth.Whenever we’ve tried to accommodate rapid, urban growth before, we’ve also failed to provide adequate infrastructure. Slums are the inevitable result of that failed urbanisation; and while some aspects of their self-organizing economies work very effectively, they don’t provide their inhabitants with a quality of life that most of us consider acceptable.

Masdar and Songdo are attempts to support rapid, sustainable urbanisation that should be applauded. They may not get everything right – but who does?

I recently asked a respected architect why it was that so many new urban developments seem not to take adequately into account the natural behaviour of the people expected to use them. He replied that new developments rarely work immediately: our behaviour adapts to make the best of the environment around us; when that environment changes, it takes time for us to adapt to its new form. Until we do so, that new form will not appear to suit us.

Being “Smarter” is most fundamentally about doing things in a different way: by challenging preconceptions, and by making intelligent use of available resources. Today, those resources include digital technologies: the “Internet of Things“, which allows us to collect data from and interact intimately with physical systems; “big data“, which allows us to draw sophisticated insight from that data; and social media, which puts the power of those insights into the hands of people, businesses and communities.

But the concept of “Smart” pre-dates those technologies, just as it pre-dates Songdo and Masdar. I spent a day discussing Smarter Cities with social scientists from around the world recently at a workshop at the University of Durham. From their perspective the idea is more than a decade old, and emerged from thinking about the innovative use of more basic technologies in stimulating economic growth and urban renewal.

I’m tremendously excited about the power we could unleash by making the capabilities of the sophisticated infrastructures of cities such as Masdar and Songod as accessible to and appropriateable by small-scale, local innovators as “mundane” technologies already are. That’s what happens in Dublin when the information shared by local authorities and services providers in the Dublinked partnership is made available to people and businesses as Open Data; and in Rio when the information provided by 30 city agencies and analysed in the city’s new operations centre is shared through social media.

Myth or misconception 5: Business as usual will deliver the result

(The SES "Container City" incubation facility for social enterprise in Sunderland)

(The “Container City” incubation facility for social enterprises operated by Sustainable Enterprise Strategies in Sunderland)

No, it won’t.

As public and private sector institutions evolved through the previous period of urbanisation driven by the Industrial Revolution they achieved mixed results: standards of living rose dramatically; but so unequally that life expectancy between the richest and poorest areas of a single UK city often varies by 10 to 20 years.

Why should we expect more equitable outcomes this time when the challenges facing us are of such enormous magnitude and taking place so quickly?

Many city leaders, businesspeople, activists and innovators recognise the need for new thinking to align the objectives of the business models that define the majority of the world’s economy with the need for what Christine Lagarde, Managing Director of the International Monetary Fund, described as sustainable, equitably distributed growth.

Consequently, new organisational models and co-operative ecosystems are emerging to deliver Smarter initiatives:

  • Social Enterprises, which develop financially sustainable business models, but which are optimised to deliver social, environmental or long-term economic benefits, rather than the maximum short-term financial return.
  • New partnerships between public sector agencies; educational institutions; service and technology providers; communities; and individuals – such as Dublinked; or the Dubuque 2.0 sustainability partnership in where the city authority, residents and utility providers have agreed to share in the cost of fixing leaks in water supply identified by smart meters.

There are also, of course, enormous roles for traditional public and private sector organisations to play as they evolve their existing operations.

Local authorities define the planning, policy and procurement frameworks that define the criteria that private sector investments in cities must fulfil. I was recently asked by a city I work closely with to contribute suggestions for how those frameworks could reflect the role of “Smarter City” ideas. I identified 23 candidate design principles for requiring that investments in physical infrastructure in the city not only conform to the city’s spatial strategy; but also contribute to its Smarter City vision, including the deployment of a cohesive civic technology infrastructure. That’s just one example of the many ways public sector authorities are evolving their policies to accommodate new challenges and new technologies.

And whilst their responsibility to shareholders is to achieve profitability and growth, many private sector businesses do so whilst balancing positive social and environmental impacts. As Smarter solutions demonstrate their ability to support business operations more efficiently through exploiting advanced technology, more businesses seeking that balance will adopt them.

But to what extent does market demand incent businesses to seek that balance?

In Collapse, Jared Diamond explores at length the role of corporations, consumers, communities, campaigners and political institutions in influencing whether businesses such as fishing and resource extraction are operated in the long term interests of the ecosystem containing them – including their communities and natural environment – or whether they are being optimised only for short term financial gain and potentially creating damaging impacts as a consequence.

(Photo by Stefan of Himeji, Japan, showing the forest that covers much of Japan’s landmass enclosing – and enclosed by – the city. In the 17th and 19th Centuries, Japan successfully slowed population growth and reversed a trend of of deforestation which threatened it’s society and economy, as described in Jared Diamond’s book “Collapse“.)

Diamond asserted that in principle a constructive,  sustainable relationship between such businesses and their ecosystems is perfectly compatible with business interest; and in fact is vital to sustaining long-term, profitable business operations. He described at length Chevron’s operations in the Kutubu oilfield in Papua New Guinea,  working in partnership with local communities to achieve social, environmental and business sustainability. The World Resources Institute’s recent report, “Aligning profit and environmental sustainability: stories from industry” contains many other examples.

However, the investment markets and shareholders are – to grossly oversimplify the issue – relatively ambivalent to these concerns, compared to their primary interest in financial returns over the short or medium term.

This is perhaps one of the most contentious issues in the domain of Smarter Cities; and one of the most important for us to resolve.

Some would say that the enormous market demand created by 2050 by those 3 billion new inhabitants of emerging market megacities will incent the private sector to develop sustainable services to supply them. Bill McKibben, writting in Rolling Stone magazine last year on “Global Warming’s Terrifying New Math“, argued that, on the contrary, trillions of dollars of investment are already locked into unsustainable business models.

Diamond himself argued that consumer choice could influence businesses to adopt sustainable models; but only when accurate, reliable information about the social and environmental impact of resources, goods and services flows through supply networks to inform consumers at the point where they are able to choose. Others argue that new approaches such as social enterprise are required.

I personally think that all of those positions have some validity; and that we’ll need to both develop new business models and adapt existing ones if we are to create successful, sustainable cities. Doing so will require the intelligent application of all of the skills and technologies at our disposal.

Mea Culpa

I’ll conclude this article by issuing a challenge: help me to find the misconceptions in my own thinking.

In working in this domain – and in particular in writing this blog – I offer opinions that go far beyond the areas of technology in which I consider myself expert, and extend into the other professional domains that are relevant to Smarter Cities.

I’ve described here the misconceptions and over-simplifications of Smarter Cities that I encounter in my work; I have no doubt whatsoever that in turn I harbour misconceptions in areas that are not my speciality.

I would be delighted for those shortcomings to be exposed: I have always found conversations with people who disagree with me in interesting ways to be the most effective way to learn. And there’s still much more that I don’t know about Smarter Cities than I do.

%d bloggers like this: